
Tutorial Reference Library
Ajax isn’t just one single technology, but a combination of several different languages and
standards. To help you learn not only Ajax but also some of the technologies that make up
Ajax, we’ve included on this CD some of the best Sams Teach Yourself tutorials on related
topics like JavaScript and XML in easily accessible and searchable PDF format.

To jump to a particular title you can just click on a book cover below, or you can browse
through the books by topic in the bookmarks on the left.

Ajax Starter Kit
Quick Start Guide
(based on Sams Teach
Yourself Ajax in 10 Minutes)

Phil Ballard
ISBN 0-672-32868-2

Sams Teach
Yourself JavaScript
in 24 Hours
Michael Moncur
ISBN 0-672-32879-8

Sams Teach
Yourself XML in
10 Minutes
Andrew Watt
ISBN 0-672-32471-7

Sams Teach
Yourself HTML in
10 Minutes
Dee Hayes
ISBN 0-672-32878-X

Sams Teach
Yourself CSS in
10 Minutes
Russ Weakley
ISBN 0-672-32745-7

Sams Teach
Yourself PHP in
10 Minutes
Chris Newman
ISBN 0-672-32762-7

Ajax

Quick Start
Guide

Ajax Basics Constructing Applications Using Libraries

Ajax

S329603_Booklet_Cover.qxd 5/8/07 5:09 PM Page 1

Quick Start Guide

Phil Ballard

Ajax Starter Kit

800 East 96th Street, Indianapolis, Indiana 46240

00_0672329603_fm.qxd 5/8/07 2:23 PM Page i

ii

Ajax Starter Kit Quick Start Guide

Copyright © 2007 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from the publisher. No
patent liability is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the preparation of this
book, the publisher and author assume no responsibility for errors or omissions.
Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-10: 0-672-32960-3

ISBN-13: 978-0-672-32960-9

Library of Congress Cataloging-in-Publication data is on file.

Printed in the United States of America

First Printing: June 2007

09 08 07 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to the
accuracy of this information. Use of a term in this book should not be regarded
as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on an
“as is” basis. The author and the publisher shall have neither liability nor respon-
sibility to any person or entity with respect to any loss or damages arising from
the information contained in this book or from the use of the CD or programs
accompanying it.

Reader Services
Visit our website and register this product at www.samspublishing.com/
register for convenient access to any updates, downloads, or errata that
may be available.

00_0672329603_fm.qxd 5/7/07 10:46 PM Page ii

iii

Table of Contents

Welcome to Ajax! 1

Part I: A Refresher on Web Technologies

1: Anatomy of a Website 7

Workings of the World Wide Web. 7

2: Writing Web Pages in HTML 13

Introducing HTML . 13

Elements of an HTML Page . 15

A More Advanced HTML Page 20

Some Useful HTML Tags . 22

Cascading Style Sheets in Two Minutes. 23

3: Sending Requests Using HTTP 25

Introducing HTTP . 25

The HTTP Request and Response 26

HTML Forms. 28

4: Client-Side Coding Using JavaScript 33

About JavaScript . 33

In at the Deep End . 35

Manipulating Data in JavaScript. 44

5: Server-Side Programming in PHP 47

Introducing PHP . 47

Embedding PHP in HTML Pages 48

Variables in PHP. 49

Controlling Program Flow . 51

6: A Brief Introduction to XML 53

Introducing XML . 53

XML Basics. 54

JavaScript and XML . 57

The Document Object Model (DOM) 58

00_0672329603_fm.qxd 5/7/07 10:46 PM Page iii

Ajax Starter Kit Quick Start Guide

iv

Part II: Introducing Ajax

7: Anatomy of an Ajax Application 61

The Need for Ajax. 61

Introducing Ajax . 63

The Constituent Parts of Ajax 66

Putting It All Together . 68

8: The XMLHTTPRequest Object 71

More About JavaScript Objects 71

Introducing XMLHTTPRequest 73

Creating the XMLHTTPRequest Object 73

9: Talking with the Server 81

Sending the Server Request . 81

Monitoring Server Status. 86

The Callback Function . 87

10: Using the Returned Data 91

The responseText and responseXML Properties 91

Another Useful JavaScript DOM Property 95

Parsing responseXML. 96

Providing User Feedback. 97

11: Our First Ajax Application 101

Constructing the Ajax Application 101

The HTML Document . 102

Adding JavaScript . 103

Putting It All Together . 107

Part III: More Complex Ajax Technologies

12: Returning Data as Text 111

Getting More from the responseText Property 111

13: AHAH—Asynchronous HTML and HTTP 119

Introducing AHAH. 119

Creating a Small Library for AHAH 120

Using myAHAHlib.js . 122

00_0672329603_fm.qxd 5/7/07 10:46 PM Page iv

Contents

v

14: Returning Data as XML 129

Adding the “x” to Ajax. 129

The responseXML Property. 130

Project—An RSS Headline Reader 133

15: Web Services and the REST Protocol 143

Introduction to Web Services 143

REST—Representational State Transfer 144

Using REST in Practice . 146

REST and Ajax . 150

16: Web Services Using SOAP 151

Introducing SOAP (Simple Object Access Protocol) 151

The SOAP Protocol . 152

Using Ajax and SOAP . 155

Reviewing SOAP and REST . 156

17: A JavaScript Library for Ajax 157

An Ajax Library . 157

Reviewing myAHAHlib.js . 158

Implementing Our Library . 159

Using the Library . 163

Extending the Library . 166

18: Ajax “Gotchas” 167

Common Ajax Errors . 167

The Back Button . 167

Bookmarking and Links. 168

Telling the User That Something Is Happening 169

Making Ajax Degrade Elegantly 169

Dealing with Search Engine Spiders 170

Pointing Out Active Page Elements 170

Don’t Use Ajax Where It’s Inappropriate 171

Security . 172

Test Code Across Multiple Platforms. 172

Ajax Won’t Cure a Bad Design 173

Some Programming Gotchas. 173

00_0672329603_fm.qxd 5/7/07 10:46 PM Page v

Ajax Starter Kit Quick Start Guide

vi

Part IV: Commercial and Open Source Ajax Resources

19: The prototype.js Toolkit 175

Introducing prototype.js . 175

Wrapping XMLHTTPRequest—the Ajax Object. 178

Example Project—Stock Price Reader 180

20: Using Rico 183

Introducing Rico. 183

Rico’s Other Interface Tools . 187

21: Using XOAD 193

Introducing XOAD. 193

XOAD HTML . 196

Advanced Programming with XOAD 199

Index 201

00_0672329603_fm.qxd 5/7/07 10:46 PM Page vi

Welcome to Ajax!

Ajax is stirring up high levels of interest in the Internet development community.
Ajax allows developers to provide visitors to their websites slick, intuitive user
interfaces somewhat like those of desktop applications instead of using the tradi-
tional page-based web paradigm.

Based on well-known and understood technologies such as JavaScript and XML, Ajax
is easily learned by those familiar with the mainstream web design technologies and
does not require users to have any browser plug-ins or other special software.

About This Book
Part of the Sams Publishing Teach Yourself in 10 Minutes series, this book aims to
teach the basics of building Ajax applications for the Internet. Divided into bite-
sized lessons, each designed to take no more than about 10 minutes to complete,
this volume offers

■ A review of the technologies on which the World Wide Web is based

■ Basic tutorials/refreshers in HTML, JavaScript, PHP, and XML

■ An understanding of the architecture of Ajax applications

■ Example Ajax coding projects

After completing all the lessons you’ll be equipped to write and understand basic
Ajax applications, including all necessary client- and server-side programming.

What Is Ajax?
Ajax stands for Asynchronous Javascript and XML. Although strictly speaking Ajax
itself is not a technology, it mixes well-known programming techniques in an
uncommon way to enable web developers to build Internet applications with much
more appealing user interfaces than those to which we have become accustomed.

When using popular desktop applications, we expect the results of our work to be
made available immediately, without fuss, and without us having to wait for the whole
screen to be redrawn by the program.While using a spreadsheet such as Excel, for
instance, we expect the changes we make in one cell to propagate immediately

01_0672329603_intro.qxd 5/7/07 10:46 PM Page 1

I N T R O D U C T I O N : Welcome to Ajax!

2

through the neighboring cells while we continue to type, scroll the page,
or use the mouse.

Unfortunately, this sort of interaction has seldom been available to
users of web-based applications. Much more common is the experience
of entering data into form fields, clicking on a button or link, and then
sitting back while the page slowly reloads to exhibit the results of the
request. In addition, we often find that the majority of the reloaded
page consists of elements that are identical to those of the previous
page and that have therefore been reloaded unnecessarily; background
images, logos, and menus are frequent offenders.

Ajax promises us a solution to this problem. By working as an extra
layer between the user’s browser and the web server, Ajax handles serv-
er communications in the background, submitting server requests and
processing the returned data. The results may then be integrated seam-
lessly into the page being viewed, without that page needing to be
refreshed or a new one loaded.

In Ajax applications, such server requests are not necessarily synchro-
nized with user actions such as clicking on buttons or links. A well-writ-
ten Ajax application may already have asked of the server, and received,
the data required by the user—perhaps before the user even knew she
wanted it. This is the meaning of the asynchronous part of the Ajax
acronym.

The parts of an Ajax application that happen “under the hood” of the
user’s browser, such as sending server queries and dealing with the
returned data, are written in JavaScript, and XML is an increasingly pop-
ular means of coding and transferring formatted information used by
Ajax to efficiently transfer data between server and client.

We’ll look at all these techniques, and how they can be made to work
together, as we work through the lessons.

About This Starter Kit
The Ajax Starter Kit includes everything a web developer needs to learn
the basics of Ajax and its building-block technologies—HTML,
JavaScript, PHP, and XML.

Aimed primarily at web developers seeking to build better interfaces
for the users of their web applications, this book also should prove use-
ful to web designers eager to learn how the latest techniques can offer
new outlets for their creativity.

01_0672329603_intro.qxd 5/7/07 10:46 PM Page 2

About This Starter Kit

3

Although the nature of Ajax applications means that they require some
programming, all the required technologies are explained from first princi-
ples within the book, so even those with little or no programming experi-
ence should be able to follow the lessons without a great deal of difficulty.

Quick Start Guide
The Ajax Starter Kit Quick Start Guide is the best starting point for the
would-be Ajax developer. Divided into 21 short, easy-to-read lessons,
the booklet offers an overview of the basics and

■ A review of the technologies on which the World Wide Web is
based

■ Basic tutorials/refreshers in HTML, JavaScript, PHP, and XML

■ An understanding of the architecture of Ajax applications

■ Example Ajax coding projects

After completing all the lessons you’ll be equipped to write and under-
stand basic Ajax applications, including all necessary client- and server-
side programming.

Reference Library
The Ajax Starter Kit’s CD-ROM includes—in easy to search and read PDF
format — a complete library of tutorials and how-to’s on all the main
technologies that make up Ajax:

■ Sams Teach Yourself JavaScript in 24 Hours

■ Sams Teach Yourself HTML in 10 Minutes

■ Sams Teach Yourself XML in 10 Minutes

■ Sams Teach Yourself PHP in 10 Minutes

Toolkit
The CD-ROM also includes a complete toolkit of all the technologies you
need to set up a testing environment on your Windows, Mac, or Linux
computer, so you can work with the examples from the book and begin
to create your own:

■ XAMPP for Windows, Mac OS X, and Linux—an easy-to-install
package to set up a PHP- and MySQL-enabled Apache server on
your computer

01_0672329603_intro.qxd 5/7/07 10:46 PM Page 3

I N T R O D U C T I O N : Welcome to Ajax!

4

■ The jEdit programming editor, for Windows, Mac, and Linux

■ Prototype, Rico, and XOAD—three JavaScript and Ajax libraries
that help simplify the tasks of the developer in creating Ajax
applications

■ The source code for all of the examples from the tutorials

Who This Book Is For
This volume is aimed primarily at web developers seeking to build bet-
ter interfaces for the users of their web applications and programmers
from desktop environments looking to transfer their applications to the
Internet.

It also proves useful to web designers eager to learn how the latest
techniques can offer new outlets for their creativity. Although the
nature of Ajax applications means that they require some program-
ming, all the required technologies are explained from first principles
within the book, so even those with little or no programming experi-
ence should be able to follow the lessons without a great deal of diffi-
culty.

What Do I Need To Use This
Book?
The main requirement is to have an interest in exploring how people
and computers might work better together. Although some program-
ming experience, especially in JavaScript, will certainly be useful it is by
no means mandatory because there are introductory tutorials in all the
required technologies.

To try out the program code for yourself you need access to a web
server and the means to upload files to it (for example, via File Transfer
Protocol, usually called FTP). Make sure that your web host allows you
to use PHP scripts on the server, though the majority do these days.

To write and edit program code you need a suitable text editor.
Windows Notepad does the job perfectly well, though some specialized
programmers’ editors offer additional useful facilities such as line num-
bering and syntax highlighting. The appendix contains details of some
excellent examples that may be downloaded and used free of charge.

01_0672329603_intro.qxd 5/7/07 10:46 PM Page 4

Online Resources and Errata

5

Conventions Used in This Book
In addition to the main text of each lesson, you will find a number of
boxes labeled as Tips, Notes, and Cautions.

Online Resources and Errata
Visit the Sams Publishing website at www.samspublishing.com where
you can download the example code and obtain further information
and details of errata.

TIPS offer useful shortcuts
or easier ways to achieve
something.

NOTES are snippets of
extra information relevant
to the current theme of the
text.

CAUTIONS detail traps
that may catch the unwary
and advise how to avoid
them.

01_0672329603_intro.qxd 5/7/07 10:46 PM Page 5

01_0672329603_intro.qxd 5/7/07 10:46 PM Page 6

7

Anatomy of a Website

We have a lot of ground to cover, so let’s get to it. We’ll begin by reviewing in this lesson
what the World Wide Web is and what are the major components that make it work.

Workings of the World Wide Web
The World Wide Web operates using a client/server networking principle. When
you enter the URL (the web address) of a web page into your browser and click on
Go, you ask the browser to make an HTTP request of the particular computer hav-
ing that address. On receiving this request, that computer returns (“serves”) the
required page to you in a form that your browser can interpret and display. Figure
1.1 illustrates this relationship. In the case of the Internet, of course, the server and
client computers may be located anywhere in the world.

1

02_0672329603_ch01.qxd 5/7/07 10:46 PM Page 7

1 : Anatomy of a Website

8

FIGURE 1.1 How web servers and clients (browsers) interact.

Client

Client

Client

Client

Server

HTTP Request

HTML Response

Lesson 3,“Sending Requests Using the HTTP Protocol,” discusses the
nitty-gritty of HTTP requests in more detail. For now, suffice to say that
your HTTP request contains several pieces of information needed so
that your page may be correctly identified and served to you, including
the following:

■ The domain at which the page is stored (for example, mydo-
main.com)

■ The name of the page (This is the name of a file in the web serv-
er’s file system—for example, mypage.html.)

■ The names and values of any parameters that you want to send
with your request

What Is a Web Page?
Anyone with some experience using the World Wide Web will be famil-
iar with the term web page. The traditional user interface for websites
involves the visitor navigating among a series of connected pages each
containing text, images, and so forth, much like the pages of a maga-
zine.

Generally, each web page is actually a separate file on the server. The
collection of individual pages constituting a website is managed by a
program called a web server.

02_0672329603_ch01.qxd 5/7/07 10:46 PM Page 8

Workings of the World Wide Web

9

Web Servers
A web server is a program that interprets HTTP requests and delivers
the appropriate web page in a form that your browser can understand.
Many examples are available, most running under either UNIX/Linux
operating systems or under some version of Microsoft Windows.

Perhaps the best-known server application is the Apache Web Server from
the Apache Software Foundation (http://www.apache.org), an open
source project used to serve millions of websites around the world (see
Figure 1.2).

CAUTION: The term web
server is often used in pop-
ular speech to refer to both
the web server program—
such as Apache—and the
computer on which it runs.

FIGURE 1.2 The Apache Software Foundation home page at http://www.apache.org/ displayed in Internet
Explorer.

Another example is Microsoft’s IIS (Internet Information Services), often
used on host computers running the Microsoft Windows operating
system.

ON THE CD: Apache for
Windows, Mac, and Linux is
included on the Ajax
Starter Kit CD.

02_0672329603_ch01.qxd 5/7/07 10:46 PM Page 9

1 : Anatomy of a Website

10

Server-Side Programming
Server-side programs, scripts, or languages, refer to programs that run
on the server computer. Many languages and tools are available for
server-side programming, including PHP, Java, and ASP (the latter being
available only on servers running the Microsoft Windows operating sys-
tem). Sophisticated server setups often also include databases of infor-
mation that can be addressed by server-side scripts.

The purposes of such scripts are many and various. In general, however,
they all are designed to preprocess a web page before it is returned to
you. By this we mean that some or all of the page content will have
been modified to suit the context of your request—perhaps to display
train times to a particular destination and on a specific date, or to show
only those products from a catalog that match your stated hobbies and
interests.

In this way server-side scripting allows web pages to be served with
rich and varied content that would be beyond the scope of any design
using only static pages—that is, pages with fixed content.

Web Browsers
A web browser is a program on a web surfer’s computer that is used to
interpret and display web pages. The first graphical web browser,
Mosaic, eventually developed into the famous range of browsers pro-
duced by Netscape.

NOTE: Server-side pro-
gramming in this book is
carried out using the popu-
lar PHP scripting language,
which is flexible, is easy to
use, and can be run on
nearly all servers. Ajax,
however, can function
equally well with any
server-side scripting
language.

NOTE: By graphical web browser we mean one that can display not
only the text elements of an HTML document but also images and col-
ors. Typically, such browsers have a point-and-click interface using a
mouse or similar pointing device.

There also exist text-based web browsers, the best known of which is
Lynx (http://lynx.browser.org/), which display HTML pages on character-
based displays such as terminals, terminal emulators, and operating sys-
tems with command-line interfaces such as DOS.

The Netscape series of browsers, once the most successful available,
were eventually joined by Microsoft’s Internet Explorer offering, which
subsequently went on to dominate the market.

02_0672329603_ch01.qxd 5/7/07 10:46 PM Page 10

Workings of the World Wide Web

11

Recent competitive efforts, though, have introduced a wide range of
competing browser products including Opera, Safari, Konqueror, and
especially Mozilla’s Firefox, an open source web browser that has
recently gained an enthusiastic following (see Figure 1.3).

Browsers are readily available for many computer operating systems,
including the various versions of Microsoft Windows, UNIX/Linux, and
Macintosh, as well as for other computing devices ranging from mobile
telephones to PDAs (Personal Digital Assistants) and pocket computers.

FIGURE 1.3 The Firefox browser from Mozilla.org browsing the Firefox Project home page.

Client-Side Programming
We have already discussed how server scripts can improve your web
experience by offering pages that contain rich and varied content cre-
ated at the server and inserted into the page before it is sent to you.

Client-side programming, on the other hand, happens not at the server
but right inside the user’s browser after the page has been received.
Such scripts allow you to carry out many tasks relating to the data in

02_0672329603_ch01.qxd 5/7/07 10:46 PM Page 11

1 : Anatomy of a Website

12

the received page, including performing calculations, changing display
colors and styles, checking the validity of user input, and much more.

Nearly all browsers support some version or other of a client-side
scripting language called JavaScript, which is an integral part of Ajax
and is the language we’ll be using in this book for client-side program-
ming.

DNS—The Domain Name Service
Every computer connected to the Internet has a unique numerical
address (called an IP address) assigned to it. However, when you want to
view a particular website in your browser, you don’t generally want to
type in a series of numbers—you want to use the domain name of the
site in question. After all, it’s much easier to remember www.somedo-
main.com than something like 198.105.232.4.

When you request a web page by its domain name, your Internet ser-
vice provider submits that domain name to a DNS server, which tries to
look up the database entry associated with the name and obtain the
corresponding IP address. If it’s successful, you are connected to the
site; otherwise, you receive an error.

The many DNS servers around the Internet are connected together into
a network that constantly updates itself as changes are made. When
DNS information for a website changes, the revised address information
is propagated throughout the DNS servers of the entire Internet, typi-
cally within about 24 hours.

Summary
In Lesson 1 we discussed the history and development of the Internet
and reviewed the functions of some of its major components including
web servers and web browsers. We also considered the page-based
nature of the traditional website user interface and had a brief look at
what server- and client-side scripting can achieve to improve users’ web
surfing experience.

02_0672329603_ch01.qxd 5/7/07 10:46 PM Page 12

Writing Web Pages in
HTML

In this lesson we introduce HTML, the markup language behind virtually every page of
the World Wide Web. A sound knowledge of HTML provides an excellent foundation for
the Ajax applications discussed in later lessons.

Introducing HTML
It wouldn’t be appropriate to try to give an exhaustive account of HTML
(Hypertext Markup Language)—or, indeed, any of the other component technolo-
gies of Ajax. Instead we’ll review the fundamental principles and give some code
examples to illustrate them, paying particular attention to the subjects that will
become relevant when we start to develop Ajax applications.

2

03_0672329603_ch02.qxd 5/7/07 10:51 PM Page 13

2 : Writing Web Pages in HTML

14

What Is HTML?
The World Wide Web is constructed from many millions of individual
pages, and those pages are, in general, written in Hypertext Markup
Language, better known as HTML.

That name gives away a lot of information about the nature of HTML.
We use it to mark up our text documents so that web browsers know
how to display them and to define hypertext links within them to pro-
vide navigation within or between them.

Anyone who (like me) can remember the old pre-WYSIWYG word pro-
cessing programs will already be familiar with text markup. Most of
these old applications required that special characters be placed at the
beginning and end of sections of text that you wanted to be displayed
as (for instance) bold, italic, or underlined text.

What Tools Are Needed to Write HTML?
Because the elements used in HTML markup employ only ordinary key-
board characters, all you really need is a good text editor to construct
HTML pages. Many are available, and most operating systems have at
least one such program already installed. If you’re using some version of
Windows, for example, the built-in Notepad application works just fine,
or you can use Text Edit on Macs.

Our First HTML Document
Let’s jump right in and create a simple HTML document. Open Notepad
(or whatever editor you’ve chosen to use) and enter the text shown in
Listing 2.1. The HTML markup elements (often referred to as tags) are
the character strings enclosed by < and >.

LISTING 2.1 testpage.html
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
➥Transitional//EN” ”http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<title>A Simple HTML Document</title>
</head>
<body>
<h1>My HTML Page</h1>
Welcome to my first page written in HTML.

This is simply a text document with HTML markup to show some
words in bold and some other words in <i>italics</i>.

ON THE CD: Look for
Sams Teach Yourself HTML in
10 Minutes on the Ajax
Starter Kit CD.

ON THE CD: Although
Notepad or Text Edit are
perfectly serviceable text
editors, many so-called pro-
grammers’ editors are avail-
able offering useful addi-
tional functions such as
line numbering and syntax
highlighting. A full-fea-
tured, cross-platform editor
called jEdit is included on
the Ajax Starter Kit CD.

CAUTION: Although text
editors are ideal for writing
program code, the use of
word processing software
can cause problems due to
unwanted markup and
other symbols that such
programs often embed in
the output code. If you
choose to use a word
processor, make sure that it
is capable of saving files as
plain ASCII text.

03_0672329603_ch02.qxd 5/7/07 10:51 PM Page 14

Elements of an HTML Page

15

</body>
</html>

Now save the document somewhere on your computer, giving it the
name testpage.html.

If you now load that page into your favorite browser, such as Internet
Explorer or Firefox, you should see something like the window displayed
in Figure 2.1.

FIGURE 2.1 Our test document displayed in Internet Explorer.

Elements of an HTML Page
Let’s look at Listing 2.1 in a little more detail.

The first element on the page is known as the DOCTYPE element. Its pur-
pose is to notify the browser of the “flavor” of HTML used in the docu-
ment. The DOCTYPE element used throughout this book refers to HTML
4.0 Transitional, a fairly forgiving version of the HTML specification that

03_0672329603_ch02.qxd 5/7/07 10:51 PM Page 15

2 : Writing Web Pages in HTML

16

allows the use of some earlier markup styles and structures in addition
to the latest HTML 4.0 specifications.

The DOCTYPE element must always occur right at the beginning of the
HTML document.

Next, note that the remainder of the document is enclosed by the ele-
ments <html> at the start of the page and </html> at the end. These
tags notify the browser that what lies between should be interpreted
and displayed as an HTML document.

The document within these outer tags is split into two further sections.
The first is enclosed in <head> and </head> tags, and the second is con-
tained between <body> and </body>. Essentially, the document’s head
section is used to store information about the document that is not to
be displayed in the browser window, whereas the body of the docu-
ment contains text to be interpreted and displayed to the user via the
browser window.

The <head> of the Document
From Listing 2.1 we can see that the head section of our simple HTML
document contains only one line—the words A Simple HTML
Document enclosed in <title> and </title> tags.

Remember that the head section contains information that is not to be
displayed in the browser window. This is not, then, the title displayed at
the top of our page text, as you can confirm by looking again at Figure
2.1. Neither does the document title refer to the filename of the docu-
ment, which in this case is testpage.html.

In fact, the document title fulfils a number of functions, among them:

■ Search engines often use the page title (among other factors) to
help them decide what a page is about.

■ When you bookmark a page, it is generally saved by default as
the document title.

■ Most browsers, when minimized, display the title of the current
document on their icon or taskbar button.

It’s important, therefore, to choose a meaningful and descriptive title
for each page that you create.

CAUTION: Although
many modern browsers
correctly display HTML
without these tags, it is bad
practice to omit them. Even
if the page is shown cor-
rectly on your own PC, you
have no idea what operat-
ing system and browser a
visitor may be using—he
may not be so lucky.

03_0672329603_ch02.qxd 5/7/07 10:51 PM Page 16

Elements of an HTML Page

17

Many other element types are used in the head section of a document,
including link,meta, and script elements. Although we don’t give an
account of them here, they are described throughout the book as they
occur.

The Document <body>
Referring again to Listing 2.1, we can clearly see that the content of the
document’s body section is made up of the text we want to display on
the page, plus some tags that help us to define how that text should
look.

To define that certain words should appear in bold type, for example,
we enclose those words in and tags. Similarly, to convert cer-
tain words into an italic typeface, we can use the <i> and </i> tags.

The heading, My HTML Page, is enclosed between <h1> and </h1> tags.
These indicate that we intend the enclosed text to be a heading. HTML
allows for six levels of headings, from h1 (the most prominent) to h6.
You can use any of the intermediate values h2, h3, h4, and h5 to display
pages having various levels of subtitles, for instance corresponding to
chapter, section, and paragraph headings. Anything displayed within
header tags is displayed on a line by itself.

All the tags discussed so far have been containers—that is, they consist
of opening and closing tags between which you place the text that you
want these tags to act upon. Some elements, however, are not contain-
ers but can be used alone. Listing 2.1 shows one such element: the
 tag, which signifies a line break. Another example is <hr /> (a hori-
zontal line).

Adding Attributes to HTML Elements
Occasionally there is a need to specify exactly how a markup tag should
behave. In such cases you can add (usually within the opening tag)
parameter and value pairs, known as attributes, to change the behavior
of the element:

<body bgcolor=”#cccccc”>
… page content goes here …
</body>

TIP: If you want to write in
the body section of the
HTML page but don’t want
it to be interpreted by the
browser and therefore dis-
played on the screen, you
may do so by writing it as a
comment. HTML comments
start with the character
string <!-- and end with
the string --> as in this
example:

<!-- this is just a
comment and won’t
be displayed in the
browser -->

03_0672329603_ch02.qxd 5/7/07 10:51 PM Page 17

2 : Writing Web Pages in HTML

18

In this example, the behavior of the <body> tag has been modified by
adjusting its BGCOLOR (background color) property to a light gray.
Figure 2.2 shows the effect this has if applied to our file testpage.html:

FIGURE 2.2 Our test page with the body color changed to gray.

Images
Images can be inserted in our page by means of the tag. In this
case we specify the source file of the image as a parameter by using the

TIP: Color values in HTML are coded using a hexadecimal system. Each
color value is made up from three component values, corresponding to
red, green, and blue. Each of the color values can range from hex 00 to
hex ff (zero to 255 in decimal notation). The three hex numbers are
concatenated into a string prefixed with a hash character #. The color
value #000000 therefore corresponds to black, and #ffffff to pure
white.

03_0672329603_ch02.qxd 5/7/07 10:51 PM Page 18

Elements of an HTML Page

19

src attribute. Other aspects of the image display that we can alter this
way include the borders, width, and height of the image:

<img src=”myimagefile.jpg” border=”2” width=”250”
height=”175” />

Border width, image width, and image height are in numbers of pixels
(the “dots” formed by individual picture elements on the screen).

TIP: A further useful attribute for images is alt, which is an abbrevia-
tion of alternative text. This specifies a short description of the image
that will be offered to users whose browsers cannot, or are configured
not to, display images. Alternative text can also be important in making
your website accessible to those with visual impairment and other dis-
abilities:

<img src=”myimagefile.jpg” alt=”Description of Image”
➥/>

Tables
Often you want to display information in tabular format, and HTML has
a set of elements designed specifically for this purpose:

<table>
<tr><th>Column Header 1</th><th>Column Header 2</th></tr>
<tr><td>Data Cell 1</td><td>Data Cell 2</td></tr>
<tr><td>Data Cell 3</td><td>Data Cell 4</td></tr>
</table>

The <table> and </table> tags contain a nested hierarchy of other
tags, including <tr> and </tr>, which define individual table rows;
<th> and </th>, which indicate cells in the table’s header; and <td> and
</td>, which contain individual cells of table data.

Look ahead to Figure 2.3 to see an example of how a table looks when
displayed in a browser window.

Hyperlinks
Hypertext links (hyperlinks) are fundamental to the operation of HTML.
By clicking on a hyperlink, you can navigate to a new location, be that
to another point on the current page or to some point on a different
page on another website entirely.

03_0672329603_ch02.qxd 5/7/07 10:51 PM Page 19

2 : Writing Web Pages in HTML

20

Links are contained within an <a>, or anchor tag, a container tag that
encloses the content that will become the link. The destination of the
link is passed to this tag as a parameter href:

Here is my hyperlink

Clicking on the words my hyperlink in the above example results in
the browser requesting the page newpage.html.

TIP: A hyperlink can contain images as well as, or instead of, text. Look
at this example:

Here, a user can click on the image picfile.gif to navigate to
newpage.html.

A More Advanced HTML Page
Let’s revisit our testpage.html and add some extra elements. Listing 2.2
shows seville.html, developed from our original HTML page but with
different content in the <body> section of the document. Figure 2.3
shows how the page looks when displayed, this time in Mozilla Firefox.

Now we have applied a background tint to the body area of the docu-
ment. The content of the body area has been centered on the page, and
that content now includes an image (which we’ve given a two-pixel-
wide border), a heading and a subheading, a simple table, and some
text.

LISTING 2.2 seville.html
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
➥Transitional//EN” “http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<title>A Simple HTML Document</title>
</head>
<body bgcolor=”#cccccc”>
<center>

<h1>Guide to Seville</h1>
<h3>A brief guide to the attractions</h3>

03_0672329603_ch02.qxd 5/7/07 10:51 PM Page 20

A More Advanced HTML Page

21

<table border=”2”>
<tr>
<th bgcolor=”#aaaaaa”>Attraction</th>
<th bgcolor=”#aaaaaa”>Description</th>

</tr>
<tr>
<td>Cathedral</td>
<td>Dating back to the 15th century</td>

</tr>
<tr>
<td>Alcazar</td>
<td>The medieval Islamic palace</td>

</tr>
</table>
<p>Enjoy your stay in beautiful Seville.</p>
</center>
</body>
</html>

Let’s take a closer look at some of the code.

First, we used the BGCOLOR property of the <body> tag to provide the
overall background tint for the page:

<body bgcolor=”#cccccc”>

Everything in the body area is contained between the <center> tag
(immediately after the body tag) and its partner </center>, immediately
before the closing body tag.This ensures that all of our content is centered
on the page.

The main heading is enclosed in <h1> … </h1> tags as previously, but
is now followed by a subheading using <h3> … </h3> tags to provide
a slightly smaller font size.

By using the border property in our opening <table> tag, we set a bor-
der width of two pixels for the table:

<table border=”2”>

Meanwhile we darkened the background of the table’s header cells
slightly by using the BGCOLOR property of the <th> elements:

<th bgcolor=”#aaaaaa”>Attraction</th>

03_0672329603_ch02.qxd 5/7/07 10:51 PM Page 21

2 : Writing Web Pages in HTML

22

Some Useful HTML Tags
Table 2.1 lists some of the more popular HTML tags.

TABLE 2.1 Some Common HTML Markup Elements

DOCUMENT TAGS

<html>..</html> The entire document

<head>..</head> Document head

<body>..</body> Document body

<title>..</title> Document title

STYLE TAGS

<a>.. Hyperlink

.. Bold text

.. Emphasized text

.. Changed font

FIGURE 2.3 seville.html shown in Mozilla Firefox.

03_0672329603_ch02.qxd 5/7/07 10:51 PM Page 22

Cascading Style Sheets in Two Minutes

23

STYLE TAGS

<i>..</i> Italic text

<small>..</small> Small text

<table>..</table> Table

<tr>..</tr> Table row

<th>..</th> Cell in table header

<td>..</td> Cell in table body

.. Bulleted list

.. Ordered (numbered) list

.. List item in bulleted or ordered list

Cascading Style Sheets in Two
Minutes
The preceding approach to styling web pages has a few downsides.

First, you need to explicitly state the attributes of each page element.
When you want to change the look of the page, you need to go
through the source code line by line and change every instance of
every attribute. This may be okay with a few simple pages, but as the
amount of content increases, the pages become more difficult to main-
tain. Additionally, the attributes applied to HTML elements allow only
limited scope for you to adjust how they are displayed.

Wouldn’t it be better to make one change to the code and have that
change applied to all HTML elements of a given type? As I’m sure
you’ve already guessed, you can.

To achieve this goal you use styles. Styles may be embedded within
your HTML document by using style tags in the head of the document:

<style type=”text/css”>
… style definition statements …

</style>

TIP: The World Wide Web
Consortium is responsible
for administering the defin-
itions of HTML, HTTP, XML,
and many other web tech-
nologies. Its website is at
http://www.w3.org/.

03_0672329603_ch02.qxd 5/7/07 10:51 PM Page 23

2 : Writing Web Pages in HTML

24

Alternatively, they may be linked from an external file, using a link ele-
ment, once again placed in the head section of the document:

<link rel=stylesheet href=”mystylesheet.css”
type=”text/css” />

TIP: You can even define styles on-the-fly. These are known as inline
styles and can be applied to individual HTML elements. Taking the body
tag of Listing 2.2 as an example:

<body bgcolor=”#cccccc”>

You could achieve the same effect using an inline style:

<body style=”background-color:#cccccc”>

Setting Style Sheet Rules
Style sheets allow you to set styling rules for the various HTML ele-
ments. A rule has two components: the selector, which identifies which
HTML tag the rule should affect, and the declaration, which contains
your styling rule. The following example defines a style for the para-
graph element, <p>:

P {color: #333333}

This example determines that any text enclosed in paragraph tags
<p> … </p> should be displayed using dark gray text.You may also
specify more than one rule for each tag. Suppose that, in addition to gray
text, you want all text in the paragraph element to be displayed in italics:

P {color: #333333; font-style: italic}

A style sheet can contain as many such rules as you require.

You may also apply a declaration to more than one tag at once, by sepa-
rating the tag selectors with commas. The following rule determines
that all h1, h2, and h3 headings appear in blue text:

H1, H2, H3 {color: blue}

Summary
This lesson discussed the basics of web page layout using Hypertext
Markup Language, including the structure of HTML documents, exam-
ples of HTML page elements, and page styling using both element
attributes and cascading style sheets.

03_0672329603_ch02.qxd 5/7/07 10:51 PM Page 24

25

Sending Requests Using
HTTP

Various protocols are used for communication over the World Wide Web, perhaps the
most important being HTTP, the protocol that is also fundamental to Ajax applica-
tions. This lesson introduces the HTTP protocol and shows how it is used to request and
receive information.

Introducing HTTP
HTTP or Hypertext Transfer Protocol is the main protocol of the World Wide Web.
When you request a web page by typing its address into your web browser, that
request is sent using HTTP. The browser is an HTTP client, and the web page server
is (unsurprisingly) an HTTP server.

In essence, HTTP defines a set of rules regarding how messages and other data
should be formatted and exchanged between servers and browsers.

Why Do I Need To Know About This?
Ajax sends server requests using the HTTP protocol. It’s important to recognize the
different types of HTTP requests and the responses that the server may return.
Ajax applications need to construct HTTP requests to query the server and will
base decisions about what to do next on the content of HTTP responses from the
server.

3

04_0672329603_ch03.qxd 5/7/07 10:51 PM Page 25

3 : Sending Requests Using HTTP

26

What Is (and Isn’t) Covered in This Lesson
It would be possible to fill the whole book with information on the
HTTP protocol, but here we simply discuss it in terms of its roles in
requesting web pages and passing information between them.

In this lesson you’ll look at the construction of HTTP requests and
responses and see how HTML forms use such requests to transfer data
between web pages.

The HTTP Request and Response
The HTTP protocol can be likened to a conversation based on a series
of questions and answers, which we refer to respectively as HTTP
requests and HTTP responses.

The contents of HTTP requests and responses are easy to read and
understand, being near to plain English in their syntax.

This section examines the structure of these requests and responses,
along with a few examples of the sorts of data they may contain.

The HTTP Request
After opening a connection to the intended server, the HTTP client
transmits a request in the following format:

■ An opening line

■ Optionally, a number of header lines

■ A blank line

■ Optionally, a message body

The opening line is generally split into three parts; the name of the
method, the path to the required server resource, and the HTTP version
being used. A typical opening line might read:

GET /sams/testpage.html HTTP/1.0

In this line we are telling the server that we are sending an HTTP
request of type GET (explained more fully in the next section), we are
sending this using HTTP version 1.0, and the server resource we require
(including its local path) is

/sams/testpage.html.

TIP: For a detailed
account of HTTP, see Sams
Publishing’s HTTP
Developer’s Handbook by
Chris Shiflett.

04_0672329603_ch03.qxd 5/7/07 10:51 PM Page 26

The HTTP Request and Response

27

Header lines are used to send information about the request, or about
the data being sent in the message body. One parameter and value
pair is sent per line, the parameter and value being separated by a
colon. Here’s an example:

User-Agent: [name of program sending request]

For instance, Internet Explorer v5.5 offers something like the following:

User-agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT
5.0)

A further example of a common request header is the Accept: header,
which states what sort(s) of information will be found acceptable as a
response from the server:

Accept: text/plain, text/html

By issuing the header in the preceding example, the request is inform-
ing the server that the sending application can accept either plain text
or HTML responses (that is, it is not equipped to deal with, say, an audio
or video file) .

The HTTP Response
In answer to such a request, the server typically issues an HTTP
response, the first line of which is often referred to as the status line. In
that line the server echoes the HTTP version and gives a response sta-
tus code (which is a three-digit integer) and a short message known as
a reason phrase. Here’s an example HTTP response:

HTTP/1.0 200 OK

The response status code and reason phrase are essentially intended as
machine-and human-readable versions of the same message, though
the reason phrase may actually vary a little from server to server. Table
3.1 lists some examples of common status codes and reason phrases.
The first digit of the status code usually gives some clue about the
nature of the message:

■ 1**—Information

■ 2**—Success

■ 3**—Redirected

■ 4**—Client error

■ 5**—Server error

NOTE: In this example
the server resource we
seek is on our own server,
so we have quoted a rela-
tive path. It could of course
be on another server else-
where, in which case the
server resource would
include the full URL.

NOTE: HTTP request
methods include POST,
GET, PUT, DELETE, and
HEAD. By far the most inter-
esting in our pursuit of
Ajax are the GET and POST
requests. The PUT, DELETE,
and HEAD requests are not
covered here.

04_0672329603_ch03.qxd 5/7/07 10:51 PM Page 27

3 : Sending Requests Using HTTP

28

TABLE 3.1 Some Commonly Encountered HTTP Response Status
Codes

STATUS CODE EXPLANATION

200 - OK The request succeeded.

204 - No Content The document contains no data.

301 - Moved Permanently The resource has permanently moved
to a different URI.

401 - Not Authorized The request needs user authentica-
tion.

403 - Forbidden The server has refused to fulfill the
request.

404 - Not Found The requested resource does not exist
on the server.

408 - Request Timeout The client failed to send a request in
the time allowed by the server.

500 - Server Error Due to a malfunctioning script, server
configuration error or similar.

The response may also contain header lines each containing a header
and value pair similar to those of the HTTP request but generally con-
taining information about the server and/or the resource being
returned:

Server: Apache/1.3.22
Last-Modified: Fri, 24 Dec 1999 13:33:59 GMT

HTML Forms
Web pages often contain fields where you can enter information.
Examples include select boxes, check boxes, and fields where you can
type information. Table 3.2 lists some popular HTML form tags.

TABLE 3.2 Some Common HTML Form Tags

TAG DESCRIPTION

<form>...</form> Container for the entire form

<input /> Data entry element; includes text, pass-
word, check box and radio button fields,
and submit and reset buttons

<select>...</select> Drop-down select box

TIP: A detailed list of sta-
tus codes is maintained by
the World Wide Web
Consortium, W3C, and is
available at http://www.w3.
org/Protocols/rfc2616/
rfc2616-sec10.html.

04_0672329603_ch03.qxd 5/7/07 10:51 PM Page 28

HTML Forms

29

TAG DESCRIPTION

<option>...</option> Selectable option within select box

<textarea>...</textarea> Text entry field with multiple rows

After you have completed the form you are usually invited to submit it,
using an appropriately labeled button or other page element.

At this point, the HTML form constructs and sends an HTTP request
from the user-entered data. The form can use either the GET or POST
request type, as specified in the method attribute of the <form> tag.

GET and POST Requests
Occasionally you may hear it said that the difference between GET and
POST requests is that GET requests are just for GETting (that is, retrieving)
data, whereas POST requests can have many uses, such as uploading
data, sending mail, and so on.

Although there may be some merit in this rule of thumb, it’s instructive
to consider the differences between these two HTTP requests in terms
of how they are constructed.

A GET request encodes the message it sends into a query string, which is
appended to the URL of the server resource. A POST request, on the
other hand, sends its message in the message body of the request. What
actually happens at this point is that the entered data is encoded and
sent, via an HTTP request, to the URL declared in the action attribute of
the form, where the submitted data will be processed in some way.

Whether the HTTP request is of type GET or POST and the URL to which
the form is sent are both determined in the HTML markup of the form.
Let’s look at the HTML code of a typical form:

<form action=”http://www.sometargetdomain.com/somepage.htm”
➥ method=”post”>
Your Surname: <input type=”text” size=”50” name=”surname”
/>

<input type=”submit” value=”Send” />
</form>

This snippet of code, when embedded in a web page, produces the sim-
ple form shown in Figure 3.1.

04_0672329603_ch03.qxd 5/7/07 10:51 PM Page 29

3 : Sending Requests Using HTTP

30

Let’s take a look at the code, line by line. First, we begin the form by
using the <form> tag, and in this example we give the tag two attribut-
es. The action attribute determines the URL to which the submitted
form will be sent. This may be to another page on the same server and
described by a relative path, or to a remote domain, as in the code
behind the form in Figure 3.1.

Next we find the attribute method, which determines whether we want
the data to be submitted with a GET or a POST request.

Now suppose that we completed the form by entering the value
Ballard into the surname field. On submitting the form by clicking the
Send button, we are taken to http://www.sometargetdomain.com/
somepage.htm, where the submitted data will be processed—perhaps
adding the surname to a database, for example.

The variable surname (the name attribute given to the Your Surname
input field) and its value (the data we entered in that field) will also
have been sent to this destination page, encoded into the body of the
POST request and invisible to users.

FIGURE 3.1 A simple HTML form.

04_0672329603_ch03.qxd 5/7/07 10:51 PM Page 30

HTML Forms

31

Now suppose that the first line of the form code reads as follows:

<form action=”http://www.sometargetdomain.com/somepage.htm”
➥ method=”get”>

On using the form, we would still be taken to the same destination, and
the same variable and its value would also be transmitted. This time,
however, the form would construct and send a GET request containing
the data from the form. Looking at the address bar of the browser, after
successfully submitting the form, we would find that it now contains:

http://www.example.com/page.htm?surname=Ballard

Here we can see how the parameter and its value have been appended
to the URL. If the form had contained further input fields, the values
entered in those fields would also have been appended to the URL as
parameter=value pairs, with each pair separated by an & character.
Here’s an example in which we assume that the form has a further text
input field called firstname:

http://www.example.com/page.htm?surname=Ballard&firstname=
Phil

Some characters, such as spaces and various punctuation marks, are not
allowed to be transmitted in their original form. The HTML form encodes
these characters into a form that can be transmitted correctly. An equiva-
lent process decodes these values at the receiving page before process-
ing them, thus making the encoding/decoding operation essentially
invisible to the user. We can, however, see what this encoding looks like
by making a GET request and examining the URL constructed in doing so.

Suppose that instead of the surname field in our form we have a full-
name field that asks for the full name of the user and encodes that infor-
mation into a GET request. Then, after submitting the form, we might see
the following URL in the browser:

http://www.example.com/page.htm?fullname=Phil+Ballard

Here the space in the name has been replaced by the + character; the
decoding process at the receiving end removes this character and
replaces the space.

The XMLHTTPRequest object at the heart of all Ajax applications uses
HTTP to make requests of the server and receive responses. The content
of these HTTP requests are essentially identical to those generated
when an HTML form is submitted.

NOTE: In many cases, you
may use either the POST or
GET method for your form
submissions and achieve
essentially identical results.
The difference becomes
important, however, when
you learn how to construct
server calls in Ajax applica-
tions.

04_0672329603_ch03.qxd 5/7/07 10:51 PM Page 31

3 : Sending Requests Using HTTP

32

Summary
This lesson covered some basics of server requests and responses using
the HTTP protocol, the main communications protocol of the World
Wide Web. In particular, we discussed how GET and POST requests are
constructed, and how they are used in HTML forms. Additionally, we
saw some examples of responses to these requests that we might
receive from the server.

04_0672329603_ch03.qxd 5/7/07 10:51 PM Page 32

Client-Side Coding Using
JavaScript

In this lesson we introduce the concept of client-side scripting using JavaScript. Client-
side scripts are embedded in web pages and executed by a JavaScript interpreter built
into the browser. They add extra functionality to an otherwise static HTML page.

About JavaScript
JavaScript was developed from a language called LiveScript, which was developed
by Netscape for use in its early browsers. JavaScript source code is embedded
within the HTML code of web pages and interpreted and executed by the browser
when the page is displayed.

Using JavaScript, you can add extra functionality to your web pages. Examples
include

■ Change the way page elements are displayed

■ Add animation and other image effects

■ Open pop-up windows and dialogs

■ Check the validity of user-entered data

Nearly all modern browsers support JavaScript, though with a few differences in
some commands. Where these occur, they are described in the text.

4

05_0672329603_ch04.qxd 5/7/07 10:51 PM Page 33

4 : Client-Side Coding Using JavaScript

34

Why Do I Need To Know About JavaScript?
The j in Ajax stands for JavaScript; you use functions written in this lan-
guage and embedded within your web pages to formulate Ajax server
calls and to handle and process the response returned from the server.

What Is (and Isn’t) Covered in This Lesson
There is no room here for an exhaustive guide to all JavaScript’s func-
tions. Instead this lesson concentrates on those aspects of the language
necessary for later developing Ajax applications.

After completing this lesson, you’ll have experience with the following:

■ Embedding JavaScript commands and external JavaScript files
into web pages

■ Using some of the common JavaScript commands

■ Using event handlers to launch JavaScript commands

■ Working with JavaScript variables and objects

■ Abstracting JavaScript commands into functions

JavaScript Basics
JavaScript commands can be embedded directly into HTML pages by
placing them between <script> …</script> tags. It is also common
for JavaScript functions to be kept in a separate file on the server (usu-
ally with a file extension .js) and linked to HTML files where required, by
placing a line like this into the head of the HTML file:

<SCRIPT language=”JavaScript” SRC=”myJS.js”></SCRIPT>

This allows you to call any JavaScript within the file myJS.js, just as if
that source code had been typed directly into your own web page.

CAUTION: Although
JavaScript is likely to be
supported by your brows-
er, it is usually possible for
the browser options to be
configured so as to disable
its use. If you find that you
cannot get any JavaScript
commands to work, consult
your browser’s help files to
find out how to check
whether JavaScript is cor-
rectly enabled.

NOTE: Microsoft’s
Internet Explorer browser
actually runs a proprietary
Microsoft language called
Jscript, instead of
JavaScript. The two are,
however, virtually identical
and therefore largely com-
patible. Where differences
occur, they are described in
the text.

ON THE CD: For a much
more thorough course in
JavaScript, try Sams Teach
Yourself JavaScript in 24
Hours by Michael Moncur,
included on the Ajax
Starter Kit CD.

TIP: Placing JavaScript functions into external files allows them to be
made available to a number of different web pages without having to
retype any code. It also makes them easier to maintain because the lat-
est version is automatically linked into the calling HTML page each time
that page is requested.

It is possible to build up substantial JavaScript libraries in this way, link-
ing them into web pages when their particular functions are required.

05_0672329603_ch04.qxd 5/7/07 10:51 PM Page 34

In at the Deep End

35

In at the Deep End
Let’s get right to it and add a JavaScript command to the simple web
page we developed in Lesson 2,“Writing Web Pages in HTML.”

Open your favorite text editor and load up seville.html (Listing 2.2 from
Lesson 2). We’re going to add the following code to the page, immedi-
ately after the </p> (the closing paragraph tag) on line 24:

<script language=”JavaScript” type=”text/javascript”>
document.writeln(“This line was written using
JavaScript!”);
</script>

The whole of the source code with the extra lines added is shown in
Listing 4.1. Make sure that you have added the code correctly; then save
the file as testpage3.html and load it into your favorite browser.

LISTING 4.1 Adding JavaScript to an HTML Page
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
➥Transitional//EN” “http://www.w3.org/TR/html4/
➥loose.dtd”>
<html>
<head>
<title>A Simple HTML Document</title>
</head>
<body bgcolor=”#cccccc”>
<center>

<h1>A More Advanced HTML Page</h1>
<h3>Welcome to my second page written in HTML.</h3>
<table border=”2”>
<tr>
<th bgcolor=”#aaaaaa”>Vegetables</th>
<th bgcolor=”#aaaaaa”>Fruits</th>

</tr>
<tr>
<td>Carrot</td>
<td>Apple</td>

</tr>
<tr>
<td>Cabbage</td>
<td>Orange</td>

</tr>
</table>

<p>... and here’s some text in a paragraph.</p>

CAUTION: JavaScript,
unlike HTML, is case sensi-
tive. When entering
JavaScript commands, be
careful not to enter charac-
ters in the incorrect case, or
errors will occur.

05_0672329603_ch04.qxd 5/7/07 10:51 PM Page 35

4 : Client-Side Coding Using JavaScript

36

<script language=”JavaScript” type=”text/javascript”>
document.writeln(“This line was written using JavaScript!”)
</script>
</center>
</body>
</html>

If all has gone well, the page should now be like that shown in Figure
4.1. You should now be able to see an extra line of text toward the bot-
tom of the page saying “This line was written using JavaScript!”

FIGURE 4.1 HTML document including one line written by JavaScript.

Let’s look at our JavaScript code. The first item is the <script> tag, and
here we have included the definition

Language=”JavaScript”

which tells the browser that the statements contained within this script
element should be interpreted as JavaScript.

Also in this tag appears the attribute

type=”text/javascript”

05_0672329603_ch04.qxd 5/7/07 10:51 PM Page 36

In at the Deep End

37

This declares that the script enclosed in the element is written in
JavaScript.

The script is ended on the next to the last line with the familiar
</script> tag.

Now for the meat in the sandwich:

document.writeln(“This line was written using JavaScript!”)

JavaScript (in common with many other programming languages) uses
the concept of objects. The word document in this line of code refers to
the object on which we want our JavaScript command to operate. In
this case, we are dealing with the document object, which is the entire
HTML document (including any embedded JavaScript code) that we are
displaying in the browser. We’ll have a further look at objects later in the
lesson.

The term writeln describes the operation we want JavaScript to per-
form on the document object. We say it is a method of the document
object, in this case one that writes a line of text into the document.

The string within the parentheses we refer to as the argument that we
pass to the writeln method. In this case it tells the method what to
write to the document object.

Including JavaScript in HTML Pages
We can include as many <script>…</script> tags in our page as we
need. However, we must pay some attention to where in the document
they are placed.

JavaScript commands are executed in the order in which they appear in
the page. Note from Listing 4.1 that we entered our JavaScript code at
exactly the place in the document where we want the new text to
appear.

JavaScript can also be added to the head section of the HTML page.
This is a popular place to keep JavaScript functions, which we’ll describe
shortly.

Event Handlers
Often you want your JavaScript code to be executed because some-
thing specific has occurred. In an HTML form, for instance, you may
decide to have JavaScript check the validity of the data entered by the

TIP: There are other possi-
ble languages in which
such scripts could be writ-
ten; each has its own type
declaration such as

type=”text/vbscript”

or

type=”text/xml”

NOTE: In addition to
methods, objects also pos-
sess properties. Such prop-
erties tell you something
about the object, as
opposed to the object’s
methods, which perform
actions upon it.

05_0672329603_ch04.qxd 5/7/07 10:51 PM Page 37

4 : Client-Side Coding Using JavaScript

38

user at the moment when the form is submitted. On another occasion,
you may want to alert your user by opening a warning dialog whenever
a particular button is clicked.

To achieve these effects you use special interfaces provided by the
browser and known as event handlers. Event handlers allow you to call
JavaScript methods automatically when certain types of events occur.
Consider the following code:

<form>
<input type=”button” value=”Click Here”
➥ onClick=”alert(‘Thanks for clicking!’)”>
</form>

Here we capture the action of the user clicking the button, using the
onClick event handler. When the user’s click is detected, the script car-
ries out the instructions listed in the onClick attribute of the input tag:

onClick=”alert(‘Thanks for clicking!’)”

This line calls the JavaScript alert method, which pops up a dialog box
displaying a message and an OK button. The message to be displayed in
the alert dialog is contained in the string passed to the alert method as
an argument.

Let’s add this code to our HTML document, as shown in Listing 4.2. Save
the page as testpage4.html after you’ve made the changes and load it
into the browser.

LISTING 4.2 Calling alert() from the onClick Event Handler
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional
➥//EN” “http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<title>A Simple HTML Document</title>
</head>
<body bgcolor=”#cccccc”>
<center>

<h1>A More Advanced HTML Page</h1>
<h3>Welcome to my second page written in HTML.</h3>
<table border=”2”>
<tr>
<th bgcolor=”#aaaaaa”>Vegetables</th>
<th bgcolor=”#aaaaaa”>Fruits</th>

</tr>
<tr>
<td>Carrot</td>

05_0672329603_ch04.qxd 5/7/07 10:51 PM Page 38

In at the Deep End

39

<td>Apple</td>
</tr>
<tr>
<td>Cabbage</td>
<td>Orange</td>

</tr>
</table>

<p>... and here’s some text in a paragraph.</p>
<script language=”JavaScript” type=”text/javascript”>
document.writeln(“This line was written using JavaScript!”)
</script>
<form>
<input type=”button” value=”Click Here” onClick=”alert
➥(‘Thanks for clicking!’)”>
</form>
</center>
</body>
</html>

Our HTML page should now show our new button, as in Figure 4.2.

FIGURE 4.2 The new Click Here button in our web page.

Go ahead and click on the button. If everything goes according to plan,
an alert dialog pops open as shown in Figure 4.3. You can click OK to
clear the dialog.

05_0672329603_ch04.qxd 5/7/07 10:51 PM Page 39

4 : Client-Side Coding Using JavaScript

40

Creating Functions
Often you will need to combine various JavaScript methods and
objects, perhaps using many lines of code. JavaScript allows you to
compose such blocks of instructions and name them, making your
code easier to write, understand, and maintain.

For example, let’s use another event handler, but this time we’ll use it to
call a function rather than to directly call a JavaScript method.

FIGURE 4.3 The dialog that appears after you click on the new button.

NOTE: Note that a func-
tion definition always starts
with the word function
followed by the function’s
name. The statements with-
in a function are contained
within curly braces {}.

Here’s the code for our function, which we’ll place in the head section
of our HTML document:

<script language=”JavaScript”>
function showAlert()
{
alert(“A Picture of Seville”)

}
</script>

Within the usual <script> tags, we have now defined a function called
showAlert, which carries out the commands contained within the curly
braces. In this case, there is only one command, a call to the previously
encountered alert method.

05_0672329603_ch04.qxd 5/7/07 10:51 PM Page 40

In at the Deep End

41

We want this alert dialog to appear when the user’s mouse passes over
the photograph in our web page. We are therefore going to add an
attribute to the tag that contains the image, as follows:

<img src=”cathedral.jpg” border=”2”
➥ onMouseOver=”showAlert()” alt=”Cathedral” />

This line uses the onMouseOver event handler to detect when the cursor
enters the area occupied by the photograph. When this happens, our
new function showAlert is called.

Listing 4.3 shows the revised code.

LISTING 4.3 Using the onMouseOver Event Handler
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<title>A Simple HTML Document</title>
<script language=”JavaScript” type=”text/javascript”>
function showAlert()
{
alert(“A Picture of Seville”)
}
</script>
</head>
<body bgcolor=”#cccccc”>
<center>
<img src=”cathedral.jpg” border=”2” alt=”Cathedral”
➥onMouseOver=”showAlert()” />
<h1>A More Advanced HTML Page</h1>
<h3>Welcome to my second page written in HTML.</h3>
<table border=”2”>
<tr>
<th bgcolor=”#aaaaaa”>Vegetables</th>
<th bgcolor=”#aaaaaa”>Fruits</th>

</tr>
<tr>
<td>Carrot</td>
<td>Apple</td>

</tr>
<tr>
<td>Cabbage</td>
<td>Orange</td>

</tr>
</table>

<p>... and here’s some text in a paragraph.</p>

05_0672329603_ch04.qxd 5/7/07 10:51 PM Page 41

4 : Client-Side Coding Using JavaScript

42

<script language=”JavaScript” type=”text/javascript”>
document.writeln(“This line was written using JavaScript!”)
</script>
<form>
<input type=”button” value=”Click Here” onClick=”alert
➥(‘Thanks for clicking!’)”>
</form>
</center>
</body>
</html>

With this HTML document loaded into your browser, roll your mouse
over the photograph. An alert box should appear with the message “A
Picture of Seville”.

Passing Arguments to Functions
Of course, we could easily call our function from a wide variety of event
handlers within our page and have it pop open an alert dialog.
Unfortunately, the alert would always contain the message “A Picture of
Seville”, which is not very useful!

Wouldn’t it be good if we could tell the function what message to display
so that we could have different alert messages for different circum-
stances? We can achieve this by passing the message to our function as
an argument:

<script language=”JavaScript” type=”text/javascript”>
function showAlert(message)
{
alert(message)

}
</script>

The function now “expects” to find the text for the message defined
passed as an argument within the call. Rewrite the onMouseOver event
handler for the image to provide this:

<img src=”cathedral.jpg” border=”2”
➥ onMouseOver=”showAlert(‘A Picture of Seville’)”
➥ alt=”cathedral” />

We’ll also rewrite the button’s onClick event handler to use this func-
tion but with a different message:

<input type=”button” value=”Click Here”
➥ onClick=”showAlert(‘Thanks for clicking!’)” />

05_0672329603_ch04.qxd 5/7/07 10:51 PM Page 42

In at the Deep End

43

Listing 4.4 shows the revised code.

LISTING 4.4 Calling JavaScript Functions from Event Handlers
<html>
<head>
<title>A Simple HTML Document</title>
<script language=”JavaScript” type=”text/javascript”>
function showAlert(message)
{
alert(message)
}
</script>
</head>
<body bgcolor=”#cccccc”>
<center>
<img src=”cathedral.jpg” border=”2” alt=”Cathedral”
➥ onMouseOver=”showAlert(‘A Picture of Seville’)” />
<h1>A More Advanced HTML Page</h1>
<h3>Welcome to my second page written in HTML.</h3>
<table border=”2”>
<tr>
<th bgcolor=”#aaaaaa”>Vegetables</th>
<th bgcolor=”#aaaaaa”>Fruits</th>

</tr>
<tr>
<td>Carrot</td>
<td>Apple</td>

</tr>
<tr>
<td>Cabbage</td>
<td>Orange</td>

</tr>
</table>

<p>... and here’s some text in a paragraph.</p>
<script language=”JavaScript” type=”text/javascript”>
document.writeln(“This line was written using JavaScript!”)
</script>
<form>
<input type=”button” value=”Click Here” onClick=
➥”showAlert(‘Thanks for clicking!’)”>
</form>
</center>
</body>
</html>

05_0672329603_ch04.qxd 5/7/07 10:51 PM Page 43

4 : Client-Side Coding Using JavaScript

44

Other Event Handlers
So far you have seen examples of the onClick and onMouseOver event
handlers. Many others are available for use; Table 4.1 lists a selection of
the most popular event handlers.

TABLE 4.1 Some Common JavaScript Event Handlers

EVENT HANDLER COMMENTS

onChange Occurs when the value in an input field changes

onClick Occurs when a user clicks the mouse on the element
in question

onLoad Occurs when the page has finished loading

onMouseOver Occurs when the mouse pointer enters the screen
area occupied by the element in question …

onMouseOut … and when it leaves

onSubmit Occurs at the point a form is submitted

Manipulating Data in JavaScript
You can use JavaScript to achieve much more than popping up dialog
boxes. JavaScript gives you the opportunity to define and use variables
and arrays, work with date and time arithmetic, and control program
flow with loops and conditional branches.

Variables
The concept of a variable might already be familiar to you if you’ve ever
done any algebra, or programmed in just about any computer language.
A variable is a piece of data given a name by which you can conveniently
refer to it later. In JavaScript, you declare variables with the keyword var:

var speed = 63;

The preceding line of code declares the variable speed and by using the
assignment operator = assigns it a value of 63.

We may now use this variable in other statements:

var speedlimit = 55;
var speed = 63;
var excess_speed = speed – speedlimit;

Variables need not be numeric; the statement

var lastname = ‘Smith’;

05_0672329603_ch04.qxd 5/7/07 10:51 PM Page 44

Manipulating Data in JavaScript

45

assigns a string to the variable lastname.

Both numeric and string variables may be manipulated within
JavaScript statements. Consider the following code:

var firstname = ‘Susan’;
var lastname = ‘Smith’;
document.writeln(‘Hello, ‘+ firstname + ‘ ‘ + lastname);

This code would write Hello, Susan Smith into our document.

Objects
You met the concept of an object earlier in the lesson and saw how
objects have both properties that describe them and methods that per-
form actions on them.

Objects in JavaScript have a hierarchical relationship. References begin
with the highest-level object, with subsequent levels appended separat-
ed by a period:

document.image1.src

This string starts with the object document, then refers to an object
image1 within that object, and finally the property src (the source file
for the image).

Suppose that we have the following HTML code somewhere in our page:

<form name=”form1” action=”somepage.html” method=”post”>
<input type=”text” name=”lastname”>
<input type=”submit” value=”Submit”>
</form>

We can refer, in JavaScript, to the string that the user has typed into the
lastname field by referring to the property value of the object corre-
sponding to that field:

document.form1.lastname.value

Example—Form Validation
Let’s use this technique to check a user’s entered form data for validity.
We want to trap the event of the user attempting to submit the form
and use this event to trigger our JavaScript function, which checks the
data for validity. Here’s the HTML code for our form:

<form name=”form1” method=”post” action=”otherpage.html”>
Enter a number from 1 to 10: <input size=”4” type=”text”
➥ name=”usernumber”>

NOTE: In fact, the object
that truly has the highest
level in the object hierar-
chy is window, which refers
to the browser screen and
everything within it. In
general, you don’t need to
include this object;
JavaScript assumes it to be
there.

05_0672329603_ch04.qxd 5/7/07 10:51 PM Page 45

4 : Client-Side Coding Using JavaScript

46

<input type=”submit” value=”Enter”
➥ onSubmit=”return numcheck()”>
</form>

We can see here that the onSubmit event handler is called when the
Submit button is clicked and calls a JavaScript function called num-
check(). We need this function to check what our user has entered for
validity, and either submit the form or (if the entry is invalid) issue an
error. Note the word return prior to the function call. This is here
because on this occasion we want the function to tell us whether the
submit method should be allowed to go ahead. We want our function
to return a value of false to the form if the form submission is to be
stopped. Here’s the function:

<script language=”JavaScript” type=”text/javascript”>
function numcheck()
{

var numentered = document.form1.usernumber.value;
if((numentered>=1)&&(numentered<=10))
{

return true;
} else
{

alert(“Your entry was invalid. Please try
again.”);

return false;
}

}

The first action of the function is to assign the user’s entered value to
the variable numentered. We then test that number for validity by
checking that it is greater than or equal to 1 and less than or equal to
10. Depending on the result, we either return a value of true to the call-
ing form (thus allowing the form to be submitted) or pop up a dialog
informing of the error. In the latter case, when the user clicks OK to clear
the dialog, a value of false is returned to the calling form, preventing
the form from being submitted until the user enters appropriate data.

Summary
This lesson covered the basics of JavaScript programming. We saw how
JavaScript commands may be integrated into HTML pages, discussed
grouping JavaScript commands into functions, and learned how event
handlers are employed to launch JavaScript commands and functions.

05_0672329603_ch04.qxd 5/7/07 10:51 PM Page 46

Server-Side Programming
in PHP

Ajax applications can work with virtually any server-side language, requiring only that
the server should return correctly formatted responses to its HTTP requests. This lesson
introduces PHP, a popular open source scripting language used on a huge number of
web servers throughout the world.

Introducing PHP
Like JavaScript, PHP is composed of commands that can be embedded within the
HTML code of your pages. PHP however is a server-side programming language—
that is, it works hand-in-hand with your web server to process the source code of a
page before that page is sent to the browser.

Why Do I Need To Know This?
As you are already aware, Ajax applications make calls to the web server and sub-
sequently use the returned information within the page currently being viewed.
You need a way to run programs on the server to process the Ajax request and
return the required data.

Ajax can work with various server-side technologies including PHP, ASP, Java, and
others. This book uses PHP, arguably the most popular and easy to use of the avail-
able server-side languages.

This lesson provides an introduction to PHP for those who have never encoun-
tered it and a refresher of the basics for any who have.

5

06_0672329603_ch05.qxd 5/7/07 10:51 PM Page 47

5 : Server-Side Programming in PHP

48

What Is (and Isn’t) Covered in This Lesson
As with every lesson in this part of the book, it is neither feasible nor
appropriate to give an exhaustive course on every aspect of the sub-
ject.

This lesson covers the basics of PHP programming with some practical
examples, concentrating mainly on those aspects of PHP most relevant
to our explorations of Ajax.

Embedding PHP in HTML Pages
PHP statements are embedded into HTML documents by surrounding
the PHP statements with <?php and ?> tags. Anything between such
tags is evaluated by the web server and replaced with appropriate
HTML code, prior to the page being served to the browser.

You can have as many sets of <?php and ?> tags in your page as you
want.

Outputting HTML from PHP
Several PHP commands can help you write text and HTML code directly
into your page. Perhaps the simplest is the echo command:

echo “I wrote this line using PHP”;

The preceding statement simply places “I wrote this line using PHP” into
the HTML document at precisely the place where the PHP statement
occurs.

Listing 5.1 shows the source code of a PHP file to print Hello World in
the browser window.

LISTING 5.1 Printing Hello World in PHP
<html>
<head>
<title>A Simple PHP Script</title>
</head>
<body>
<?php echo “<h1>Hello World!</h1>”; ?>
</body>
</html>

Note that in this script, the output string also contains some HTML tags,
<h1> and </h1>. As the PHP statements are executed by the web

ON THE CD: PHP for
Windows, Mac, and Linux is
included on the Ajax
Starter Kit CD.

TIP: For a more complete
course on PHP, try Sams
Teach Yourself PHP in 10
Minutes by Chris Newman
on the Ajax Starter Kit CD.

TIP: Web servers normally
recognize by the file exten-
sion which files contain
PHP code and process
them accordingly. The most
used file extension for PHP
files is .php, but you may
also see .php3, .php4,
.phtml, and various others.
To make your code
portable to as many web
server environments as
possible, it’s best to stick
with .php.

06_0672329603_ch05.qxd 5/7/07 10:51 PM Page 48

Variables in PHP

49

server before serving the page to us, these tags are written into the
document’s HTML along with the “Hello World” text and evaluated by
our browser along with all other HTML markup in the document. Figure
5.1 shows the browser displaying our “Hello World” page.

If we ask the browser to show us the source of this page, it displays the
following code, in which we can see that the PHP elements have been
completely evaluated by the web server, which has inserted the rele-
vant HTML into the page:

<html>
<head>
<title>A Simple PHP Script</title>
</head>
<body>
<h1>Hello World!</h1></body>
</html>

FIGURE 5.1 ”Hello World” in PHP.

Variables in PHP
Variables in PHP, much like in any programming language, are named
pockets in which pieces of data are stored. All variable names in PHP
must begin with a “$” character, followed by a string made up of letters,
numbers, and underscores.

We can assign values to variables in PHP without declaring the vari-
ables beforehand:

CAUTION: Variable
names are case sensitive
in PHP. For example,
$varname and $VarName
represent two distinct vari-
ables. Take care to enter
the names of variables in
the correct case.

06_0672329603_ch05.qxd 5/7/07 10:51 PM Page 49

5 : Server-Side Programming in PHP

50

$score = 71;
$player = ‘Harry Scott’;

Variables can take a number of data types, including strings, integers,
floats, and Boolean (true or false). When a variable is assigned a value,
such as in the preceding examples, PHP assigns a data type automati-
cally.

Numbers
All the basic mathematical operators are available in PHP, as shown in
the following examples:

$answer = 13 + 4;
$answer = 13 * 4;
$answer = 13 / 4;
$answer = 13 – 4;

You can also calculate the modulus, for which we use the % character:

$answer = 13 % 4;

Strings
In PHP you enclose strings within single or double quotes:

$mystring = “The quick brown fox”;

Strings may be concatenated using the period character:

$newstring = “ jumped over the lazy dog”;
$concat = $mystring.$newstring;

TIP: PHP offers the date() command, which allows you to get the
server time and date and format it to your liking; for example, the line

echo date(‘D F Y H:I’);

outputs the current date in a form similar to Fri 16 December 2005
11:36.

Arrays
PHP also supports arrays. An array is a variable that can contain a set of
values rather than just one. Here’s a PHP array containing some of the
days of the week:

$daynames = array(“Monday”,”Tuesday”,”Wednesday”,
➥ “Thursday”,”Friday”);

06_0672329603_ch05.qxd 5/7/07 10:51 PM Page 50

Controlling Program Flow

51

The items in an array are referenced by a key, which is an integer start-
ing at zero and incrementing for each item in the array. The following
line outputs Thursday to an HTML page:

echo $daynames[3];

Note that, because the index value begins at zero, the preceding state-
ment actually echoes the fourth element of the array.

This type of array is known as a numeric array, but you may also use
associative arrays. In this case, the key value of each element is not
numeric but instead is a string of your choosing. The syntax to declare
such an array and assign values to it is slightly different:

$lunch = array(“Susan” => “Chicken”, “Matthew” => “Beef”,
➥ “Louise” => “Salmon”);

You can now select the elements of such an array using the key value:

echo $lunch[“Louise”];

This command would output the word Salmon to our page.

Controlling Program Flow
PHP contains various structures for controlling the flow of your pro-
grams. One of the most useful is the simple if statement, which allows
you to alter the flow of program execution depending on the outcome
of a condition. Let’s have a look at a code snippet using the if state-
ment:

if($temp > 80)
{

echo $temp.” degrees is too hot. Turn down
➥ the thermostat.”;
}

This if statement simply evaluates the condition contained in the
brackets. If the condition is satisfied, the statements within the curly
braces are executed; otherwise, these statements are ignored.

We can also add an else clause to our if statement:

if($temp > 80)
{

echo $temp.” degrees is too hot. Turn down
➥ the thermostat.”;
}
else

06_0672329603_ch05.qxd 5/7/07 10:51 PM Page 51

5 : Server-Side Programming in PHP

52

{
echo $temp.” degrees is cool enough.”;

}

PHP also has loop constructs, which allow you to repeat the same code
instructions a number of times until the conditions are satisfied for the
loop to be terminated. This is the code for a while loop:

$x = 1;
while($x<=12)
{

echo “This is trip number “.$x.” through the loop
”;

$x++;
}

The statement $x++ means “increment x by one.”The loop executes
over and over until the condition

$x<=12

is no longer met (because $x has become greater than 12), and the
statements within the curly braces will then be ignored. Program exe-
cution then carries on from below the closing curly brace.

You can also make a similar loop using PHP’s for construct:

for($x = 1; $x <= 12; $x++)
{
echo “This is trip number “.$x.” through the loop
”;
}

The for statement takes an argument with three components. The first
is evaluated before the first loop and provides a starting value for $x.
The second component of the argument is the condition that will be
evaluated on each loop to test whether the loop should be executed,
and the third is a statement that will be carried out after each loop, and
in this case increments $x.

The operation of this loop is identical to that of the while example.

Summary
This lesson introduced the principles of programming in the PHP serv-
er-side language, including the use of variables and program flow con-
trol constructs. You have also seen how PHP statements may be
embedded into HTML pages.

06_0672329603_ch05.qxd 5/7/07 10:51 PM Page 52

A Brief Introduction
to XML

The “x” of Ajax stands for XML, a powerful markup language that can allow your Ajax
applications to transfer and process complex, structured information. This lesson dis-
cusses the basics of creating and using XML documents.

Introducing XML
Anyone who has carried out any HTML markup will already be somewhat familiar
with the nature of XML code. XML (eXtensible Markup Language) has many simi-
larities in markup style to HTML.

However, whereas HTML is intended to determine how web pages are displayed,
XML has a rather more wide-ranging use. XML documents can be used in all man-
ner of data storage and data exchange applications ranging from document stor-
age and retrieval to roles traditionally fulfilled by database programs.

Why Do I Need To Know This?
One of the many uses of XML is for the transfer of structured information between
applications. In Ajax you can use XML to return information from the server to your
Ajax application, where it may be parsed and used.

6

07_0672329603_ch06.qxd 5/7/07 10:50 PM Page 53

6 : A Brief Introduction to XML

54

What Is (and Isn’t) Covered in This Lesson
In common with the other lessons in this section of the book, we do
not attempt to offer a complete and thorough treatise on XML. Rather,
this lesson covers the basics of the language and its application, con-
centrating mainly on those aspects relevant to your work with Ajax.

XML Basics
XML is a markup language that allows data to be stored and transmit-
ted in a structured, hierarchical manner. It has similarities in markup
style to HTML, but whereas HTML has a fixed list of element definitions
and is designed primarily to allow you to define how a document
should be displayed, XML elements may be defined within a particular
XML document to suit the data being described there.

In common with HTML, markup elements (normally referred to as tags)
enclosed by < and > are used to annotate the contents of a text file,
describing the information it contains.

Unlike the tags in HTML, though, whose definitions are fixed, XML tags
can be defined to be anything you want, allowing you to describe virtu-
ally any kind of data. Consider this example of an XML document:

<race>
<yacht raceNo=’74’>
<name>Wanderer</name>
<skipper>Walter Jeffries</skipper>
<helm>Sally Jacobs</helm>

</yacht>
<yacht raceNo=’22’>
<name>Free Spirit</name>
<skipper>Jennifer Scully</skipper>
<helm>Paul Thomas</helm>

</yacht>
</race>

This short XML document describes a yacht race, including the two
competing yachts and their respective personnel. Note how the tag
names are descriptive of the data they contain, and how the tag struc-
tures are hierarchical. You may also notice that XML tags, like those of
HTML, can also have attributes. The end effect is that the XML file is
quite readable—that is, the meaning of the data may be readily
inferred by a human reader.

ON THE CD: If you want
a more in-depth tutorial in
XML, see Sams Teach
Yourself XML in 10 Minutes
by Andrew H. Watt, on the
Ajax Starter Kit CD.

NOTE: The similarities
between XML and HTML
are not purely accidental.
Both are based on SGML
(Standard Generalized
Markup Language), a sys-
tem for organizing the ele-
ments of a document.
SGML was developed and
standardized by the
International Organization
for Standards (ISO).

CAUTION: Unlike HTML,
tagnames in XML are case
sensitive, so <yacht> and
<Yacht> would be treated
as two distinct elements.

07_0672329603_ch06.qxd 5/7/07 10:50 PM Page 54

XML Basics

55

XML Document Structure
The permitted structure of an XML document has only one mandatory
element, the so-called document element. In the preceding yacht race
example, this would be the <race> element.

TIP: XML uses the same syntax as HTML for the display of comments.
Any information beginning with the character string <!-- and ending
with the string --> will be ignored:

<!-- This is a comment -->

NOTE: The document element need not necessarily have elements
nested within it; the following is an allowable XML document:

<competition>Farlington Summer Cup</competition>

Document Prolog
Other information may be optionally included before the document ele-
ment, forming the document’s prolog. An example is the XML declara-
tion:

<?xml version=”1.0” ?>

The prolog may also contain, in addition to various comments and pro-
cessing instructions, a Document Type Declaration.

Document Type Declaration
The optional Document Type Declaration (often referred to as a
DOCTYPE declaration) is a statement of the permitted structure of an
XML document. It usually contains (or refers to another file that con-
tains) information about the names of the elements in the document
and the relationships between those elements.

Let’s look at an example Document Type Declaration for the yacht race
document:

<!DOCTYPE race SYSTEM race.dtd>

This declaration, which would appear in the document before the
<race> element, specifies that the document element will be called
<race> and that document structure definitions may be found in an

CAUTION: If such a dec-
laration exists, it must be
the first thing in the docu-
ment. Not even white
space is allowed before it.

CAUTION: Take care not
to confuse the Document
Type (DOCTYPE)
Declaration with the
Document Type Definition
(DTD). The DTD is com-
prised of both the markup
declarations contained in
the DOCTYPE Declaration
and those contained in any
external file to which the
DOCTYPE Declaration
refers.

07_0672329603_ch06.qxd 5/7/07 10:50 PM Page 55

6 : A Brief Introduction to XML

56

external file, race.dtd, which would perhaps contain something like
the following:

<!ELEMENT race (yacht+) >
<!ELEMENT yacht (name, skipper, helm) >
<!ATTLIST yacht raceNo #CDATA #REQUIRED >
<!ELEMENT name (#PCDATA) >
<!ELEMENT skipper (#PCDATA) >
<!ELEMENT helm (#PCDATA) >

Alternatively, this information could be quoted in the DOCTYPE
Declaration itself, placed between [and] characters:

<!DOCTYPE race [
<!ELEMENT race (yacht+) >
<!ATTLIST yacht raceNo #CDATA #REQUIRED >
<!ELEMENT yacht (name, skipper, helm) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT skipper (#PCDATA) >
<!ELEMENT helm (#PCDATA) >
]>

In either case we define four elements—namely, race, yacht, skipper, and
helm—and one attribute list.

Element Declarations
The line

<!ELEMENT race (yacht+) >

declares that the <race> element will contain elements of type
<yacht>, whereas the + character indicates that there may be any num-
ber of occurrences from one upward of such <yacht> elements.
Alternatively, we could use the character * to indicate any number of
occurrences including zero, or the character ? to indicate zero or one
occurrence. The absence of all of these characters indicates that there
should be exactly one <yacht> element within <race>.

The <yacht> element is declared to contain three further elements,
<name>, <skipper>, and <helm>. The #PCDATA term contained in the
declarations for those elements stands for parsed character data and
indicates that these elements must contain character-based data and
may not contain further elements. Other possible content types include
MIXED (text and elements) and ANY (any valid content).

TIP: DOCTYPE
Declarations can contain
both internal and external
references, known as the
internal and external sub-
sets of the DTD.

07_0672329603_ch06.qxd 5/7/07 10:50 PM Page 56

JavaScript and XML

57

Attribute List Declarations
Our example also contains the line

<!ATTLIST yacht raceNo #CDATA #REQUIRED >

Such declarations are used to specify what attributes are permitted or
required for any given element. In our example, we specify that the
<yacht> element has an attribute called raceNo, the value of which is
comprised of #CDATA (character data).

The term #REQUIRED indicates that, in this example, the <yacht> ele-
ment must have such an attribute. Other possibilities include #IMPLIED,
specifying that such an attribute is optional; #DEFAULT followed by a
value in quotation marks, specifying a default value for the attribute
should none be declared in the XML document; or #FIXED followed by
a value in quotation marks, fixing the value of the attribute to that
quoted.

Valid XML
If an XML document contains a DOCTYPE Declaration and complies fully
with the declarations it contains, it is said to be a valid XML document.

JavaScript and XML
Most modern browsers already contain some tools to help you deal
with XML documents.

A JavaScript object must exist to contain the XML document. Creating a
new instance of such an object is done slightly differently depending
on whether you use a non-Microsoft browser, such as Mozilla’s Firefox,
or Microsoft Internet Explorer:

For Firefox and other non-Microsoft browsers, use the following code to
create a JavaScript XML document object:

<script type=”text/javascript”>
var myxmlDoc =

➥ document.implementation.createDocument(“”,””,null);

myxmlDoc.load(“exampleDoc.xml”);

Program statements

</script>

07_0672329603_ch06.qxd 5/7/07 10:50 PM Page 57

6 : A Brief Introduction to XML

58

To create a JavaScript XML document object with Internet Explorer, use
this code:

<script type=”text/javascript”>
var myxmlDoc=new ActiveXObject(“Microsoft.XMLDOM”)
myxmlDoc.async=”false”
myxmlDoc.load(“exampleDoc.xml”)

Program statements

</script>

After you have an object to represent the XML document, you may use
the properties and methods of that object to gain access to the XML
data contained within the document. Effectively, the hierarchical struc-
ture and data of the XML document now have equivalents in the
JavaScript hierarchy of objects, the Document Object Model (DOM).

The Document Object Model
(DOM)
Let’s take a look at some of the methods and properties that help you
access and manipulate this information, often called Walking The DOM.

Nodes
Suppose that our JavaScript object myxmlDoc contains the XML listing
of the yacht race. The document element, <race>, contains two ele-
ments of type <yacht>; we say it has two children.

In general, you can get the number of children belonging to a particu-
lar element by using the childNodes.length property of the object.
Because <race> is the document element, it is at the top of the object
hierarchy, and we can refer to it simply with the variable myxmlDoc:

var noYachts = myxmlDoc.childNodes.length;

We can also determine information about individual children by
appending the node number in parentheses:

myxmlDoc.childNode(0)

The preceding line refers to the first <yacht> element appearing in the
document.

CAUTION: As in many
programming constructs,
the first element has the
number zero, the second
element has the number
one, and so forth.

07_0672329603_ch06.qxd 5/7/07 10:50 PM Page 58

The Document Object Model (DOM)

59

We can test for the presence of children for a particular element by
using the hasChildNodes() method:

myxmldoc.childNodes(1).hasChildNodes()

This line returns true because the second yacht in the document has
three children (with tag names name, skipper, and helm). However,

myxmldoc.childNodes(1).childNodes(0).hasChildNodes()

returns false because the <name> element within that <yacht> ele-
ment has no children.

Getting Tagnames
The tagname property allows you to find the tagname associated with a
particular element:

myxmldoc.childNodes(0).childNodes(1).tagname

The preceding line returns skipper.

Getting Element Attributes
The method getAttribute(“AttributeName”) can be used to return
the attribute values for a given element:

myxmldoc.childNodes(0).getAttribute(“raceNo”)

This line returns 74.

Tag Contents
The text property can be used to return the contents of a particular
element. The line

myxmldoc.childNodes(0).childNodes(1).text

would return Walter Jeffries.

You’ll learn about these and similar methods in more detail in Lesson
14,“Returning Data as XML.”

07_0672329603_ch06.qxd 5/7/07 10:50 PM Page 59

6 : A Brief Introduction to XML

60

Summary
This lesson discussed the basics of XML, including XML document
structures and Document Type Declarations. We also briefly examined
how JavaScript may be used to deal with XML data using object prop-
erties and methods, much like using any other JavaScript object. This
knowledge will be useful when we use Ajax to retrieve XML data from
the server.

07_0672329603_ch06.qxd 5/7/07 10:50 PM Page 60

Anatomy of an Ajax
Application

In this lesson you will learn about the individual building blocks of Ajax and how they
fit together to form the architecture of an Ajax application. Subsequent lessons here in
Part II,“Introducing Ajax,” examine these components in more detail, finally assembling
them into a working Ajax application.

The Need for Ajax
In Part I,“A Refresher on Web Technologies,” we reviewed the core technologies
that form the components of an Ajax application. By now, you will hopefully have
at least a rudimentary knowledge of JavaScript, PHP, and XML, all of which we’ll use
here in Part II.

Before discussing the individual components, let’s look in more detail at what we
want from our Ajax application.

Traditional Versus Ajax Client-Server Interactions
Lesson 1,“Anatomy of a Website,” discussed the traditional page-based model of a
website user interface. When you interact with such a website, individual pages
containing text, images, data entry forms, and so forth are presented one at a time.
Each page must be dealt with individually before navigating to the next.

For instance, you may complete the data entry fields of a form, editing and re-edit-
ing your entries as much as you want, knowing that the data will not be sent to the
server until the form is finally submitted.

Figure 7.1 illustrates this interaction.

7

08_0672329603_ch07.qxd 5/7/07 10:50 PM Page 61

7 : Anatomy of an Ajax Application

62

After you submit a form or follow a navigation link, you then must wait
while the browser screen refreshes to display the new or revised page
that has been delivered by the server.

As your experience as an Internet user grows, using this interface
becomes almost second nature. You learn certain rules of thumb that
help to keep you out of trouble, such as “don’t press the Submit button
a second time,” and “don’t press the Back button after submitting a
form.”

Unfortunately, interfaces built using this model have a few drawbacks.
First, there is a significant delay while each new or revised page is
loaded. This interrupts what we, as users, perceive as the “flow” of the
application.

Furthermore, a whole page must be loaded on each occasion, even
when most of its content is identical to that of the previous page. Items
common to many pages on a website, such as header, footer, and navi-
gation sections, can amount to a significant proportion of the data con-
tained in the page.

Figure 7.2 illustrates a website displaying pages before and after the
submission of a form, showing how much identical content has been
reloaded and how relatively little of the display has actually changed.

This unnecessary download of data wastes bandwidth and further
exacerbates the delay in loading each new page.

Server

Browser

Page 1 Page 2 Page 3 Page 4

Time

FIGURE 7.1 Traditional client–server interactions.

NOTE: Bandwidth refers
to the capacity of a com-
munications channel to
carry information. On the
Internet, bandwidth is usu-
ally measured in bps (bits
per second) or in higher
multiples such as Mbps
(million bits per second).

08_0672329603_ch07.qxd 5/7/07 10:50 PM Page 62

Introducing Ajax

63

The Rich User Experience
The combined effect of the issues just described is to offer a much infe-
rior user experience compared to that provided by the vast majority of
desktop applications.

On the desktop, you expect the display contents of a program to
remain visible and the interface elements to respond to commands
while the computing processes occur quietly in the background. As I
write this lesson using a word processor, for example, I can save the
document to disk, scroll or page up and down, and alter font faces and
sizes without having to wait on each occasion for the entire display to
be refreshed.

Ajax allows you to add to your web application interfaces some of this
functionality more commonly seen in desktop applications and often
referred to as a rich user experience.

Introducing Ajax
To improve the user’s experience, you need to add some extra capabili-
ties to the traditional page-based interface design. You want your user’s
page to be interactive, responding to the user’s actions with revised
content, and be updated without any interruptions for page loads or
screen refreshes.

FIGURE 7.2 Many page items are reloaded unnecessarily.

08_0672329603_ch07.qxd 5/7/07 10:50 PM Page 63

7 : Anatomy of an Ajax Application

64

To achieve this, Ajax builds an extra layer of processing between the
web page and the server.

This layer, often referred to as an Ajax Engine or Ajax Framework, inter-
cepts requests from the user and in the background handles server
communications quietly, unobtrusively, and asynchronously. By this we
mean that server requests and responses no longer need to coincide
with particular user actions but may happen at any time convenient to
the user and to the correct operation of the application. The browser
does not freeze and await the completion by the server of the last
request but instead lets the user carry on scrolling, clicking, and typing
in the current page.

The updating of page elements to reflect the revised information
received from the server is also looked after by Ajax, happening dynam-
ically while the page continues to be used.

Figure 7.3 represents how these interactions take place.

Server

Ajax

Page 1

Browser

Time

FIGURE 7.3 Ajax client–server interaction.

A Real Ajax Application—Google Suggest
To see an example of an Ajax application in action, let’s have a look at
Google Suggest. This application extends the familiar Google search
engine interface to offer the user suggestions for suitable search terms,
based on what he has so far typed.

With each key pressed by the user, the application’s Ajax layer queries
Google’s server for suitably similar search phrases and presents the
returned data in a drop-down box. Along with each suggested phrase

08_0672329603_ch07.qxd 5/7/07 10:50 PM Page 64

Introducing Ajax

65

is listed the number of results that would be expected for a search con-
ducted using that phrase. At any point the user has the option to select
one of these suggestions instead of continuing to type and have
Google process the selected search.

Because the server is queried with every keypress, this drop-down list
updates dynamically as the user types—with no waiting for page
refreshes or similar interruptions.

Figure 7.4 shows the program in action. You can try it for yourself by fol-
lowing the links from Google’s home page at http://www.google.com/
webhp?complete=1&hl=en.

FIGURE 7.4 An example of an Ajax application—Google Suggest.

Next let’s identify the individual components of such an Ajax applica-
tion and see how they work together.

NOTE: Google has presented other Ajax-enabled applications that you
can try, including the gmail web mail service and the Google Maps street
mapping program. See the Google website at http://www.google.com/
for details.

08_0672329603_ch07.qxd 5/7/07 10:50 PM Page 65

7 : Anatomy of an Ajax Application

66

The Constituent Parts of Ajax
Now let’s examine the components of an Ajax application one at a
time.

The XMLHTTPRequest Object
When you click on a hyperlink or submit an HTML form, you send an
HTTP request to the server, which responds by serving to you a new or
revised page. For your web application to work asynchronously, howev-
er, you must have a means to send HTTP requests to the server without
an associated request to display a new page.

You can do so by means of the XMLHTTPRequest object. This JavaScript
object is capable of making a connection to the server and issuing an
HTTP request without the necessity of an associated page load.

In following lessons you will see how an instance of such an object can
be created, and how its properties and methods can be used by
JavaScript routines included in the web page to establish asynchronous
communications with the server.

Lesson 8,“The XMLHTPPRequest Object,” discusses how to create an
instance of the XMLHTTPRequest object and reviews the object’s prop-
erties and methods.

Talking with the Server
In the traditional style of web page, when you issue a server request via
a hyperlink or a form submission, the server accepts that request, car-
ries out any required server-side processing, and subsequently serves
to you a new page with content appropriate to the action you have
undertaken.

While this processing takes place, the user interface is effectively frozen.
You are made quite aware of this, when the server has completed its
task, by the appearance in the browser of the new or revised page.

With asynchronous server requests, however, such communications
occur in the background, and the completion of such a request does
not necessarily coincide with a screen refresh or a new page being
loaded. You must therefore make other arrangements to find out what
progress the server has made in dealing with the request.

The XMLHTTPRequest object possesses a convenient property to report
on the progress of the server request. You can examine this property

TIP: As a security measure,
the XMLHTTPRequest
object can generally only
make calls to URLs within
the same domain as the
calling page and cannot
directly call a remote server.

08_0672329603_ch07.qxd 5/7/07 10:50 PM Page 66

The Constituent Parts of Ajax

67

using JavaScript routines to determine the point at which the server
has completed its task and the results are available for use.

Your Ajax armory must therefore include a routine to monitor the status
of a request and to act accordingly. We’ll look at this in more detail in
Lesson 9,“Talking with the Server.”

What Happens at the Server?
So far as the server-side script is concerned, the communication from the
XMLHTTPRequest object is just another HTTP request. Ajax applications
care little about what languages or operating environments exist at the
server; provided that the client-side Ajax layer receives a timely and cor-
rectly formatted HTTP response from the server, everything will work just
fine.

It is possible to build simple Ajax applications with no server-side
scripting at all, simply by having the XMLHTTPRequest object call a static
server resource such as an XML or text file.

Ajax applications may make calls to various other server-side resources
such as web services. Later on we’ll look at some examples of calling
web services using protocols such as SOAP and REST.

Dealing with the Server Response
Once notified that an asynchronous request has been successfully com-
pleted, you may then utilize the information returned by the server.

Ajax allows for this information to be returned in a number of formats,
including ASCII text and XML data.

Depending on the nature of the application, you may then translate,
display, or otherwise process this information within the current page.

We’ll look into these issues in Lesson 10,“Using the Returned Data.”

Other Housekeeping Tasks
An Ajax application will be required to carry out a number of other
duties too. Examples include detecting error conditions and handling
them appropriately, and keeping the user informed about the status of
submitted Ajax requests.

You will see various examples in later lessons.

NOTE: Here we’ll be using
the popular PHP scripting
language for our server-
side routines, but if you are
more comfortable with
ASP, JSP, or some other
server-side language, go
right ahead and use it in
your Ajax applications.

08_0672329603_ch07.qxd 5/7/07 10:50 PM Page 67

7 : Anatomy of an Ajax Application

68

Putting It All Together
Suppose that you want to design a new Ajax application, or update a
legacy web application to include Ajax techniques. How do you go
about it?

First you need to decide what page events and user actions will be
responsible for causing the sending of an asynchronous HTTP request.
You may decide, for example, that the onMouseOver event of an image will
result in a request being sent to the server to retrieve further information
about the subject of the picture; or that the onClick event belonging to a
button will generate a server request for information with which to popu-
late the fields on a form.

You saw in Lesson 4,“Client-Side Coding Using JavaScript,” how
JavaScript can be used to execute instructions on occurrences such as
these, by employing event handlers. In your Ajax applications, such
methods will be responsible for initiating asynchronous HTTP requests
via XMLHTTPRequest.

Having made the request, you need to write routines to monitor the
progress of that request until you hear from the server that the request
has been successfully completed.

Finally, after receiving notification that the server has completed its
task, you need a routine to retrieve the information returned from the
server and apply it in the application. You may, for example, want to use
the newly returned data to change the contents of the page’s body
text, populate the fields of a form, or pop open an information window.

Figure 7.5 shows the flow diagram of all this.

In Lesson 11,“Our First Ajax Application,” we’ll use what we have
learned to construct a complete Ajax application.

08_0672329603_ch07.qxd 5/7/07 10:50 PM Page 68

Summary

69

Summary
This lesson discussed the shortcomings of the traditional web interface,
identifying specific problems we want to overcome. We also introduced
the various building blocks of an Ajax application and discussed how
they work together.

In the following lessons of Part II, we will look at these components in
more detail, finally using them to build a complete Ajax application.

Web Page

Server

Ajax Engine

XMLHTTPRequest

create
server

request

send

monitor status

get response

capture
event

update
page

request

readyState

response

process
returned

data

FIGURE 7.5 How the components of an Ajax application work together.

08_0672329603_ch07.qxd 5/7/07 10:50 PM Page 69

08_0672329603_ch07.qxd 5/7/07 10:50 PM Page 70

71

The XMLHTTPRequest Object

In this lesson you will learn how to create an instance of the XMLHTTPRequest object
regardless of which browser your user may have. The object’s properties and methods
will be introduced.

More About JavaScript Objects
Lesson 7,“Anatomy of an Ajax Application,” introduced the building blocks of an
Ajax application and discussed how these pieces fit together.

This lesson examines the object at the heart of every Ajax application—the
XMLHTTPRequest object.

8

NOTE: You briefly met objects in Lesson 4,“Client-Side Coding Using JavaScript,”
when we discussed the document object associated with a web page. The
XMLHTTPRequest object, after it has been created, becomes a further such object
within the page’s object hierarchy and has its own properties and methods.

An object can be thought of as a single package containing a set of properties,
which contain and classify data, and a set of methods with which the object can
perform actions on that data.

09_0672329603_ch08.qxd 5/7/07 10:50 PM Page 71

8 : The XMLHTTPRequest Object

72

Suppose, for example, that we had an object of type wheelbarrow. Such
an object might have a property contents, which describes how many
items the wheelbarrow holds at any given moment. Methods might
include fill(), tip(), forward(), and stop(). When using JavaScript
you can design such objects as you see fit.

However, in addition to user-defined objects, JavaScript has a range of
ready-made objects for use in scripts. These are referred to as native
objects. Examples of JavaScript’s native objects include Math(),
String(), and Date().

Creating an Instance of an Object
Many objects, such as the document object that you saw in Lesson 4,
already exist and therefore do not need you to create an instance of
them. Others, however, require you to create an instance of the object
in question before you can use it.

You can create an instance of an object by calling a method known as
the object’s constructor, using the new keyword:

var myBarrow = new Wheelbarrow();

Having created an instance myBarrow of the object wheelbarrow, prop-
erties and methods for the object may be manipulated using a simple
syntax:

myBarrow.contents = 20;
myBarrow.forward();
myBarrow.stop();
myBarrow.tip();

Of course, you are at liberty to create other instances of the same
object and have them exist concurrently:

var myBarrow = new Wheelbarrow();
var yourBarrow = new Wheelbarrow();
myBarrow.contents = 20;
yourBarrow.contents = 50;

The Document Object Model or DOM
We mentioned briefly in Lesson 4 the hierarchy of objects “built in” to a
web page and known as the Document Object Model. You access these
objects and their properties and methods in the same way as native
objects and objects that you devise and create yourself.

09_0672329603_ch08.qxd 5/7/07 10:50 PM Page 72

Creating the XMLHTTPRequest Object

73

In later lessons you’ll see how the XMLHTTPRequest object can use XML
data returned from the server in response to XMLHTTPRequest calls to
create additional DOM objects that you can use in your scripts.

Introducing XMLHTTPRequest
XMLHTTPRequest is supported by virtually all modern browsers, includ-
ing Microsoft’s Internet Explorer 5+ and a variety of non-Microsoft
browsers, including Mozilla, Firefox, Konqueror, Opera, and Safari, and is
supported on a wide range of platforms, including Microsoft Windows,
UNIX/Linux, and Mac OS X.

The purpose of the XMLHTTPRequest object is to allow JavaScript to for-
mulate HTTP requests and submit them to the server. Traditionally pro-
grammed web applications normally make such requests
synchronously, in conjunction with a user-initiated event such as click-
ing on a link or submitting a form, resulting in a new or updated page
being served to the browser.

Using XMLHTTPRequest, however, you can have your page make such
calls asynchronously in the background, allowing you to continue using
the page without the interruption of a browser refresh and the loading
of a new or revised page.

This capability underpins all Ajax applications, making the
XMLHTTPRequest object the key to Ajax programming.

Creating the XMLHTTPRequest
Object
You cannot make use of the XMLHTTPRequest until you have created an
instance of it. Creating an instance of an object in JavaScript is usually
just a matter of making a call to a method known as the object’s con-
structor. In the case of XMLHTTPRequest, however, you must change this
routine a little to cater for the peculiarities of different browsers, as you
see in the following section.

Different Rules for Different Browsers
Microsoft first introduced the XMLHTTPRequest object, implementing it
in Internet Explorer 5 as an ActiveX object.

NOTE: The Document
Object Model or DOM is
really not a part of
JavaScript but a separate
entity existing outside it.
Although you can use
JavaScript to manipulate
DOM objects, other script-
ing languages may equally
well access them too.

CAUTION: Some
browsers may require
attention to their security
settings to allow the
XMLHTTPRequest object to
operate correctly. See your
browser’s documentation
for details.

TIP: Although the object’s
name begins with XML, in
fact, any type of document
may be returned from the
server; ASCII text, HTML,
and XML are all popular
choices, and we will
encounter all of these in
the course of the book.

09_0672329603_ch08.qxd 5/7/07 10:50 PM Page 73

8 : The XMLHTTPRequest Object

74

Most other browser developers have now included into their products
an equivalent object, but implemented as a native object in the brows-
er’s JavaScript interpreter.

Because you don’t know in advance which browser, version, or operat-
ing system your users will have, your code must adapt its behavior on-
the-fly to ensure that the instance of the object will be created success-
fully.

For the majority of browsers that support XMLHTTPRequest as a native
object (Mozilla, Opera, and the rest), creating an instance of this object
is straightforward. The following line creates an XMLHTTPRequest object
called request:

var request = new XMLHTTPRequest();

Here we have declared a variable request and assigned to it the value
returned from the statement new XMLHTTPRequest(), which is invok-
ing the constructor method for the XMLHTTPRequest object.

To achieve the equivalent result in Microsoft Internet Explorer, you
need to create an ActiveX object. Here’s an example:

var request = new ActiveXObject(“Microsoft.XMLHTTP”);

Once again, this assigns the name request to the new object.

To complicate matters a little more, some versions of Internet Explorer
have a different version of MSXML, the Microsoft XML parser, installed;
in those cases you need to use the following instruction:

var request = new ActiveXObject(“Msxml2.XMLHTTP”);

A Solution for All Browsers
You need, therefore, to create a script that will correctly create an
instance of a XMLHTTPRequest object regardless of which browser you
are using (provided, of course, that the browser supports
XMLHTTPRequest).

TIP: ActiveX is a propri-
etary Microsoft technology
for enabling active objects
into web pages. Among the
available web browsers, it
is currently only supported
in Microsoft’s Internet
Explorer. Internet Explorer
uses its built-in XML parser,
MSXML, to create the
XMLHTTPRequest object.

09_0672329603_ch08.qxd 5/7/07 10:50 PM Page 74

Creating the XMLHTTPRequest Object

75

A good solution to this problem is to have your script try in turn each
method of creating an instance of the object, until one such method
succeeds. Have a look at Listing 8.1, in which such a strategy is used.

LISTING 8.1 Using Object Detection for a Cross-Browser
Solution
function getXMLHTTPRequest()
{
var request = false;
try
{
request = new XMLHttpRequest(); /* e.g. Firefox */

}
catch(err1)
{
try
{
vrequest = new ActiveXObject(“Msxml2.XMLHTTP”);

/* some versions IE */
}

catch(err2)
{
try
{
request = new ActiveXObject(“Microsoft.XMLHTTP”);

/* some versions IE */
}
catch(err3)
{
request = false;
}

}
}

return request;
}

Listing 8.1 uses the JavaScript statements try and catch. The try state-
ment allows us to attempt to run a piece of code. If the code runs with-
out errors, all is well; however, should an error occur we can use the
catch statement to intervene before an error message is sent to the
user and determine what the program should then do about the error.

09_0672329603_ch08.qxd 5/7/07 10:50 PM Page 75

8 : The XMLHTTPRequest Object

76

An alternative, and equally valid, technique would be to detect which
type of browser is in use by testing which objects are defined in the
browser. Listing 8.2 shows this technique.

LISTING 8.2 Using Browser Detection for a Cross-Browser
Solution
function getXMLHTTPRequest()
{
var request = false;
if(window.XMLHTTPRequest)

{
request = new XMLHTTPRequest();
} else {
if(window.ActiveXObject)
{
try

{
request = new ActiveXObject(“Msml2.XMLHTTP”);
}

catch(err1)
{
try

{
request =

➥new ActiveXObject(“Microsoft.XMLHTTP”);
}

catch(err2)
{
request = false;
}

}
}

TIP: Note the syntax:

catch(identifier)

Here identifier is an object created when an error is caught. It con-
tains information about the error; for instance, if you wanted to alert the
user to the nature of a JavaScript runtime error, you could use a code
construct like this:

catch(err)
{
alert(err.description);
}

to open a dialog containing details of the error.

09_0672329603_ch08.qxd 5/7/07 10:50 PM Page 76

Creating the XMLHTTPRequest Object

77

}
return request;
}

In this example we’ve used the test

if(window.XMLHTTPRequest) { … }

to determine whether XMLHTTPRequest is a native object of the brows-
er in use; if so, we use the constructor method

request = new XMLHTTPRequest();

to create an instance of the XMLHTTPRequest object; otherwise, we try
creating a suitable ActiveX object as in the first example.

Whatever method you use to create an instance of the XMLHTTPRequest
object, you should be able to call this function like this:

var myRequest = getXMLHTTPRequest();

NOTE: JavaScript also makes available a navigator object that holds
information about the browser being used to view the page. Another
method we could have used to branch our code is to use this object’s
appName property to find the name of the browser:

var myBrowser = navigator.appName;

This would return “Microsoft Internet Explorer” for IE.

Methods and Properties
Now that we have created an instance of the XMLHTTPRequest object,
let’s look at some of the object’s properties and methods, listed in
Table 8.1.

TABLE 8.1 XMLHTTPRequest Objects and Methods

PROPERTIES DESCRIPTION

onreadystatechange Determines which event handler will be

called when the object’s readyState

property changes

readyState Integer reporting the status of the

request:

0 = uninitialized

1 = loading

09_0672329603_ch08.qxd 5/7/07 10:50 PM Page 77

8 : The XMLHTTPRequest Object

78

TABLE 8.1 Continued

PROPERTIES DESCRIPTION

2 = loaded

3 = interactive

4 = completed

responseText Data returned by the server in text

string form

responseXML Data returned by the server expressed

as a document object

status HTTP status code returned by server

statusText HTTP reason phrase returned by server

METHODS DESCRIPTION

abort() Stops the current request

getAllResponseHeaders() Returns all headers as a string

getResponseHeader(x) Returns the value of header x as a string

open(‘method’, specifies the HTTP method (for example,

’URL’,’a’) GET or POST), the target URL, and whether

the request should be handled asynchro-

nously (If yes, a=’true’—the default; if

no, a=’false’.)

send(content) Sends the request, optionally with POST

data

setRequestHeader Sets a parameter and value pair x=y and

(‘x’,’y’) assigns it to the header to be sent with

the request

Over the next few lessons we’ll examine how these methods and prop-
erties are used to create the functions that form the building blocks of
Ajax applications.

For now, let’s examine just a few of these methods.

The open() Method
The open() method prepares the XMLHTTPRequest object to communi-
cate with the server. You need to supply at least the two mandatory
arguments to this method:

09_0672329603_ch08.qxd 5/7/07 10:50 PM Page 78

Creating the XMLHTTPRequest Object

79

■ First, specify which HTTP method you intend to use, usually GET
or POST. (The use of GET and POST HTTP requests was discussed in
Lesson 3,“Sending Requests Using HTTP.”)

■ Next, the destination URL of the request is included as the sec-
ond argument. If making a GET request, this URL needs to be suit-
ably encoded with any parameters and their values as part of the
URL.

For security reasons, the XMLHTTPRequest object is allowed to commu-
nicate only with URLs within its own domain. An attempt to connect to
a remote domain results in a “permission denied” error message.

Optionally you may include a third argument to the send request, a
Boolean value to declare whether the request is being sent in asynchro-
nous mode. If set to false, the request will not be sent in asynchronous
mode, and the page will be effectively locked until the request is com-
pleted. The default value of true will be assumed if the parameter is
omitted, and requests will then be sent asynchronously.

The send() Method
Having prepared the XMLHTTPRequest using the open() method, you
can send the request using the send() method. One argument is
accepted by the send() function.

If your request is a GET request, the request information will be encoded
into the destination URL, and you can then simply invoke the send()
method using the argument null:

objectname.send(null);

However, if you are making a POST request, the content of the request
(suitably encoded) will be passed as the argument.

objectname.setRequestHeader(‘Content-Type’,
➥’application/x-www-form-urlencoded’);
objectname.send(var1=value1&var2=value2);

In this case we use the setRequestHeader method to indicate what
type of content we are including.

CAUTION: A common
mistake is to reference your
domain as mydomain.com
in a call made from
www.mydomain.com. The
two will be regarded as dif-
ferent by the JavaScript
interpreter, and connection
will not be allowed.

NOTE: A Boolean data
type has only two possible
values, 1 (or true) and 0 (or
false).

09_0672329603_ch08.qxd 5/7/07 10:50 PM Page 79

8 : The XMLHTTPRequest Object

80

Summary
This lesson introduced the XMLHTTPRequest object, the driving force
behind any Ajax application, and illustrated how an instance of such an
object is created both for Internet Explorer and for other, non-Microsoft
browsers. We also briefly examined some of the object’s properties and
methods.

Following lessons will show how more of the object’s methods and
properties are used.

09_0672329603_ch08.qxd 5/7/07 10:50 PM Page 80

Talking with the Server

In this lesson you’ll learn how to use the properties and methods of the
XMLHTTPRequest object to allow the object to send requests to and receive data from
the server.

Sending the Server Request
Lesson 8,“The XMLHTPPRequest Object,” discussed at some length the JavaScript
XMLHTTPRequest object and how an instance of it may be created in various differ-
ent browsers.

Now that we have our XMLHTTPRequest object, let’s consider how to create and
send server requests, and what messages we might expect to receive back from
the server.

We’re going to jump right in and first write some code using what you learned in
Lesson 8 to create an XMLHTTPRequest object called myRequest. We’ll then write a
JavaScript function called callAjax() to send an asynchronous request to the
server using that object. Afterward we’ll break down the code line by line to see
what it’s doing.

Listing 9.1 shows our prototype function to prepare and send an Ajax request
using this object.

9

10_0672329603_ch09.qxd 5/7/07 10:50 PM Page 81

9 : Talking with the Server

82

LISTING 9.1 Sending a Server Request
function getXMLHTTPRequest()
{
var req = false;
try
{
req = new XMLHttpRequest(); /* e.g. Firefox */
}

catch(err1)
{
try
{
req = new ActiveXObject(“Msxml2.XMLHTTP”);

/* some versions IE */
}

catch(err2)
{
try
{
req = new ActiveXObject(“Microsoft.XMLHTTP”);

/* some versions IE */
}
catch(err3)
{
req = false;
}

}
}

return req;
}

var myRequest = getXMLHTTPRequest();

function callAjax() {
// declare a variable to hold some information
// to pass to the server
var lastname = ‘Smith’;
// build the URL of the server script we wish to call
var url = “myserverscript.php?surname=” + lastname;
// ask our XMLHTTPRequest object to open a
// server connection
myRequest.open(“GET”, url, true);
// prepare a function responseAjax() to run when
// the response has arrived
myRequest.onreadystatechange = responseAjax;
// and finally send the request
myRequest.send(null);
}

TIP: Lines starting with //
are treated as comments
by JavaScript. You may use
lines like these to docu-
ment your code or add
other useful notes, and
your browser’s JavaScript
interpreter will ignore
them when executing code
instructions.

10_0672329603_ch09.qxd 5/7/07 10:50 PM Page 82

Sending the Server Request

83

First, we need to create an instance of an XMLHTTPRequest object and
call it myRequest. You’ll no doubt recognize the code for this from
Lesson 8.

Next we’ll look at the function callAjax().

The first line simply declares a variable and assigns a value to it:

var lastname = ‘Smith’;

This is the piece of data that our function intends to send to the server,
as the value of a variable called surname that is required by our server-
side script. In reality, of course, the value of such data would usually be
obtained dynamically by handling a page event such as a mouse click
or a keyboard entry, but for now this will serve as a simple example.

The server request we intend to make is a GET request, so we must con-
struct a suitable target URL having our parameter and value pairs suit-
ably coded on the end; the next line carries this out:

var url = “myserverscript.php?surname=” + lastname;

We dealt briefly with the open() method in Lesson 8. We use it in the
next line to prepare our server request:

myRequest.open(“GET”, url, true);

This line specifies that we are preparing a GET request and passes to it
the destination URL complete with the appended content of the GET
request.

The third parameter, true, indicates that we want our request to be
handled asynchronously. In this case it could have been omitted
because the default value of true is assumed in such cases. However, it
does no harm to include it for clarity.

Next, we need to tell our XMLHTTPRequest object myRequest what it
should do with the “progress reports” it will receive from the server. The
XMLHTTPRequest object has a property onreadystatechange that con-
tains information about what JavaScript function should be called
whenever the server status changes, and in the next line

myRequest.onreadystatechange = responseAjax;

we assign the function responseAjax() to do this job. We will write this
function later in the lesson.

10_0672329603_ch09.qxd 5/7/07 10:50 PM Page 83

9 : Talking with the Server

84

Dealing with the Browser Cache
All browsers maintain a so-called cache of visited web pages, a local
record of page contents stored on the hard disk of the browser’s com-
puter. When you request a particular web page, the browser first tries to
load the page from its cache, rather than submitting a new HTTP
request.

Although this can sometimes be advantageous in terms of page load
times, it creates a difficulty when trying to write Ajax applications. Ajax
is all about talking to the server, not reloading information from cache;
so when you make an asynchronous request to the server, a new HTTP
request must be generated every time.

It is possible to add HTTP headers to the data returned by server-side
routines, intended to tell the browser not to cache a particular page.
Examples include

“Pragma: no-cache”

and

“Cache-Control: must-revalidate”

among others.

Unfortunately such strategies vary widely in their effectiveness.
Different browsers have different cache handling strategies and sup-
port different header declarations, making it difficult to ensure that
pages are not cached.

A commonly used trick to work around this problem involves the
adding of a parameter with a random and meaningless value to the
request data. In the case of a GET request, this necessitates adding a fur-
ther parameter and value pair to the end of the URL.

If the random part of the URL is different each time, this effectively
“fools” the browser into believing that it is to send the asynchronous
request to an address not previously visited. This results in a new HTTP
request being sent on every occasion.

Let’s see how to achieve this. In JavaScript, you can generate random
numbers using the Math.random() method of the native Math()
object. Listing 9.2 contains a couple of changes to our callAjax()
function.

NOTE: This appears to be
more of a problem with IE
than with the non-
Microsoft browsers. Only
GET requests are affected;
POST requests are not
cached.

10_0672329603_ch09.qxd 5/7/07 10:50 PM Page 84

Sending the Server Request

85

LISTING 9.2 Dealing with the Browser Cache
function getXMLHTTPRequest()
{
var req = false;
try
{
req = new XMLHttpRequest(); /* e.g. Firefox */
}

catch(err1)
{
try
{
req = new ActiveXObject(“Msxml2.XMLHTTP”);

/* some versions IE */
}

catch(err2)
{
try
{
req = new ActiveXObject(“Microsoft.XMLHTTP”);

/* some versions IE */
}
catch(err3)
{
req = false;
}

}
}

return req;
}

var myRequest = getXMLHTTPRequest();

function callAjax() {
// declare a variable to hold some information
// to pass to the server
var lastname = ‘Smith’;
// build the URL of the server script we wish to call
var url = “myserverscript.php?surname=” + lastname;
// generate a random number
var myRandom=parseInt(Math.random()*99999999);
// ask our XMLHTTPRequest object to open
// a server connection
myRequest.open(“GET”, url + “&rand=” + myRandom, true);
// prepare a function responseAjax() to run when
// the response has arrived

10_0672329603_ch09.qxd 5/7/07 10:50 PM Page 85

9 : Talking with the Server

86

LISTING 9.2 Continued
myRequest.onreadystatechange = responseAjax;
// and finally send the request
myRequest.send(null);
}

We can see from Listing 9.2 that the script will now generate a destina-
tion URL for our Ajax request that looks something like this:

myserverscript.php?surname=Smith&rand=XXXX

where XXXX will be some random number, thereby preventing the page
from being returned from cache and forcing a new HTTP request to be
sent to the server.

NOTE: Some programmers prefer to add the current timestamp rather
than a random number. This is a string of characters derived from the
current date and time. In the following example, the JavaScript Date()
and getTime() methods of the native Date() object are used:

myRand= + new Date().getTime()

Monitoring Server Status
The XMLHTTPRequest object contains mechanisms by which we can
stay informed of the progress of our Ajax request and determine when
the information returned by the server is ready to use in our applica-
tion.

Let’s now have a look at the relevant properties.

The readyState Property
The readyState property of the XMLHTTPRequest object gives you
information from the server about the current state of a request you
have made. This property is monitored by the onreadystatechange
property, and changes in the value of readyState cause onreadystat-
echange to become true and therefore cause the appropriate function
(responseAjax() in our example) to be executed.

TIP: The function called on
completion of the server
request is normally referred
to as the callback function.

10_0672329603_ch09.qxd 5/7/07 10:50 PM Page 86

The Callback Function

87

readyState can take the following values:

0 = uninitialized

1 = loading

2 = loaded

3 = interactive

4 = completed

When a server request is first made, the value of readyState is set to
zero, meaning uninitialized.

As the server request progresses, data begins to be loaded by the serv-
er into the XMLHTTPRequest object, and the value of the readyState
property changes accordingly, moving to 1 and then 2.

An object readyState value of 3, interactive, indicates that the object is
sufficiently progressed so that certain interactivity with it is possible,
though the process is not yet fully complete.

When the server request has completed fully and the object is available
for further processing, the value of readyState changes finally to 4.

In most practical cases, you should look for the readyState property to
achieve a value of 4, at which point you can be assured that the server
has finished its task and the XMLHTTPRequest object is ready for use.

Server Response Status Codes
In addition to the readyState property, you have a further means to
check that an asynchronous request has executed correctly: the HTTP
server response status code.

HTTP responses were discussed in Lesson 3,“Sending Requests Using
HTTP.” If you refer to Table 3.1 you’ll see that a response status code of
200 corresponds to an OK message from the server.

We’ll see how to test for this as we further develop our callback function.

The Callback Function
By now, then, you have learned how to create an instance of an
XMLHTTPRequest object, declare the identity of a callback function, and
prepare and send an asynchronous server request. You also know which
property tells you when the server response is available for use.

TIP: Not all of the possible
values may exist for any
given object. The object
may “skip” certain states if
they bear no relevance to
the object’s content type.

10_0672329603_ch09.qxd 5/7/07 10:50 PM Page 87

9 : Talking with the Server

88

Let’s look at our callback function, responseAjax().

First, note that this function is called every time there is a change in the
value of the onreadystatechange property. Usually, then, when this
function is called, it is required to do absolutely nothing because the
value of the readyState property has not yet reached 4 and we there-
fore know that the server request has not completed its processing.

We can achieve this simply by using a JavaScript if statement:

function responseAjax() {
// we are only interested in readyState of 4,
// i.e. “completed”
if(myRequest.readyState == 4) {

… program execution statements …
}

}

In addition to checking that the server request has completed, we also
want to check the HTTP response status code to ensure that it is equal
to 200, indicating a successful response to our asynchronous HTTP
request.

Referring quickly back to Table 8.1, we can see that our
XMLHTTPRequest object myRequest has two properties that report the
HTTP status response. These are

myRequest.status

which contains the status response code, and

myRequest.statusText

containing the reason phrase.

We can employ these properties by using a further loop:

function responseAjax() {
// we are only interested in readyState of 4,
// i.e. “loaded”
if(myRequest.readyState == 4) {

// if server HTTP response is “OK”
if(myRequest.status == 200) {

… program execution statements …
} else {

// issue an error message for any
// other HTTP response
alert(“An error has occurred: “

➥+ myRequest.statusText);

10_0672329603_ch09.qxd 5/7/07 10:50 PM Page 88

The Callback Function

89

}
}

}

This code introduces an else clause into our if statement. Any server
status response other than 200 causes the contents of this else clause
to be executed, opening an alert dialog containing the text of the rea-
son phrase returned from the server.

Using the Callback Function
So how do we go about calling our callAjax() function from our
HTML page? Let’s see an example. Here’s the code for a simplified form
in an HTML page:

<form name=’form1’>
Name: <input type=’text’ name=’myname’>

Tel: <input type=’text’ name=’telno’>

<input type=’submit’>
</form>

We’ll launch the function using the onBlur event handler of a text input
field in a form:

<form name=’form1’>
Name: <input type=’text’ name=’myname’
➥onBlur=’callAjax()’>

Tel: <input type=’text’ name=’telno’>

<input type=’submit’>
</form>

The onBlur event handler is activated when the user leaves the field in
question. In this case, when the user leaves the field, callAjax() will be
executed, creating an instance of the XMLHTTPRequest object and mak-
ing an asynchronous server request to

myserverscript.php?surname=Smith

That doesn’t sound very useful. However, what if we were to now make
a slight change to the code of callAjax()?

function callAjax() {
// declare a variable to hold some
// information to pass to the server
var lastname = document.form1.myname.value;
…..

10_0672329603_ch09.qxd 5/7/07 10:50 PM Page 89

9 : Talking with the Server

90

Now we can see that, as the user leaves the form field myname, the value
she had typed into that field would be passed to the server via our
asynchronous request. Such a call may, for example, check a database
to verify the existence of the named person, and if so return informa-
tion to populate other fields on the form.

The result, so far as the user is concerned, is that she sees the remaining
fields magically populated with data before submitting—or even com-
pleting—the form.

How we might use the returned data to achieve such a result is dis-
cussed in Lesson 10,“Using the Returned Data.”

Summary
This lesson looked at the ways in which our XMLHTTPRequest object
can communicate with the server, including sending asynchronous
requests, monitoring the server status, and executing a callback
function.

In Lesson 10, you will see how Ajax applications can deal with the data
returned by the server request.

10_0672329603_ch09.qxd 5/7/07 10:50 PM Page 90

Using the Returned Data

In this lesson you will learn how to process the information returned from the server in
response to an Ajax request.

The responseText and responseXML
Properties
Lesson 9,“Talking with the Server,” discussed the server communications that
allow you to send and monitor asynchronous server requests. The final piece of
the Ajax jigsaw is the information returned by the server in response to a request.

This lesson discusses what forms that information can take, and how you can
process it and use it in an application. We will use two of the XMLHTTPRequest
object’s properties, namely responseText and responseXML.

Table 8.1 listed several properties of the XMLHTTPRequest object that we have yet
to describe. Among these are the responseText and responseXML properties.

Lesson 9 discussed how we could use the readyState property of the
XMLHTTPRequest object to determine the current status of the XMLHTTPRequest
call. By the time our server request has completed, as detected by the condition
myRequest.readyState == 4 for our XMLHTTPRequest object myRequest, then
the two properties responseText and responseXML will respectively contain text
and XML representations of the data returned by the server.

In this lesson you’ll see how to access the information contained in these two
properties and apply each in an Ajax application.

10

11_0672329603_ch10.qxd 5/7/07 10:50 PM Page 91

The responseText Property
The responseText property tries to represent the information returned
by the server as a text string.

Let’s look again at the callback function prototype:

function responseAjax() {
// we are only interested in readyState of 4, i.e.

“loaded”
if(myRequest.readyState == 4) {

// if server HTTP response is “OK”
if(myRequest.status == 200) {

… program execution statements …
} else {

// issue an error message for any other HTTP ➥re-
sponse

alert(“An error occurred: “ +
myRequest.statusText);

}
}

}

Let’s add a program statement to the branch of the if statement that is
executed on success, as in Listing 10.1.

LISTING 10.1 Displaying the Value of responseText
function responseAjax() {

// we are only interested in readyState of 4,
// i.e. “completed”
if(myRequest.readyState == 4) {

// if server HTTP response is “OK”
if(myRequest.status == 200) {

alert(“The server said: “

➥+ myRequest.responseText);

} else {
// issue an error message for
// any other HTTP response
alert(“An error has occurred: “

➥+ myRequest.statusText);
}

}
}

1 0 : Using the Returned Data

92

TIP: If the
XMLHTTPRequest call fails
with an error, or has not yet
been sent, responseText
will have a value null.

11_0672329603_ch10.qxd 5/7/07 10:50 PM Page 92

In this simple example, our script opens an alert dialog to display the
text returned by the server. The line

alert(“The server said: “ + myRequest.responseText);

takes the text returned by the server-side routine and appends it to the
string “The server said: “ before presenting it in a JavaScript alert
dialog.

Let’s look at an example using a simple PHP file on the server:

<?php echo “Hello Ajax caller!”; ?>

A successful XMLHTTPRequest call to this file would result in the
responseText property containing the string Hello Ajax caller!,
causing the callback function to produce the dialog shown in
Figure 10.1.

The responseText and responseXML Properties

93

FIGURE 10.1 Output generated by Listing 10.1.

Because the responseText contains a simple text string, we can manip-
ulate it using any of JavaScript’s methods relating to strings. Table 10.1
includes some of the available methods.

TABLE 10.1 Some JavaScript String Manipulation Methods

METHOD DESCRIPTION

charAt(number) Selects the single character at the
specified position within the string

indexOf(substring) Finds the position where the speci-
fied substring starts

lastIndexOf(substring) Finds the last occurrence of the sub-
string within the string

substring(start,end) Gets the specified part of the string

toLowerCase() Converts the string to lowercase

toUpperCase() Converts the string to uppercase

CAUTION : The
responseText property is
read-only, so there’s no
point in trying to manipu-
late its value until that
value has first been copied
into another variable.

11_0672329603_ch10.qxd 5/7/07 10:50 PM Page 93

We’ll be looking at how responseText may be used in real situations in
Lesson 12,“Returning Data as Text,” and Lesson 13,“AHAH—
Asynchronous HTML and HTTP.”

The responseXML Property
Now suppose that the PHP script we used on the server in the previous
example had instead looked like Listing 10.2.

LISTING 10.2 A Server-Side Script to Return XML
<?php
header(‘Content-Type: text/xml’);
echo “<?xml version=\”1.0\” ?><greeting>
➥Hello Ajax caller!</greeting>”;
?>

Although this is a short script, it is worthwhile to look at it in some
detail.

The first line inside the <?php and ?> delimiters uses PHP’s header
instruction to add an HTTP header to the returned data.

The header returned is the parameter and value pair

Content-Type: text/xml

which announces to our XMLHTTPRequest object to expect that the fol-
lowing data from the server will be formatted as XML.

The next line is a PHP echo statement that outputs this simple, but
complete, XML document:

<?xml version=”1.0” ?>
<greeting>
Hello Ajax caller!
</greeting>

1 0 : Using the Returned Data

94

CAUTION: Make sure that
your PHP script does not
output anything—even
white space characters
such as spaces and line
returns—prior to issuing a
header() instruction; oth-
erwise, an error will occur.

NOTE: In PHP you need to escape any quotes that occur within a quot-
ed string to ensure that the meaning of the statement is unambiguous.
You do so using a backslash character, hence the PHP command

echo “”;

produces the output:

11_0672329603_ch10.qxd 5/7/07 10:50 PM Page 94

When the server call is completed, we now find this XML document
loaded into the responseXML property of our XMLHTTPRequest object.

We can now access the content of the XML document via JavaScript’s
DOM methods and properties.

Another Useful JavaScript DOM
Property
You will no doubt recall that we described some of these methods in
Lesson 6,“A Brief Introduction to XML.” Let’s now examine one more of
these methods, namely getElementsByTagName().

The getElementsByTagName() Method
This useful method allows you to build a JavaScript array of all the ele-
ments having a particular tagname. You can then access elements of
that array using normal JavaScript statements. Here’s an example:

var myElements = object.getElementsByTagName(‘greeting’);

This line creates the array myElements and populates it with all the ele-
ments with tagname greeting. As with any other array, you can find
out the length of the array (that is, the number of elements having the
declared tagname) by using the length property:

myElements.length

You can access a particular element individually if you want; the first
occurring element with tagname greeting can be accessed as
myElements[0], the second (if there is a second) as myElements[1], and
so:

var theElement = myElements[0];

Another Useful JavaScript DOM Property

95

TIP: It is important to
note that the responseXML
property does not contain
just a string that forms a
text representation of the
XML document, as was the
case with the responseText
property; instead, the
entire data and hierarchical
structure of the XML docu-
ment has been stored as a
DOM-compatible object.

TIP: You could also access these individual array elements directly:
var theElement = object.getElementsByTagName
➥(‘greeting’)[0];

11_0672329603_ch10.qxd 5/7/07 10:50 PM Page 95

Parsing responseXML
Listing 10.3 gives an example of how we can use
getElementsByTagName(), alongside some other methods discussed in
Lesson 6, to return the text of our greeting in an alert dialog.

LISTING 10.3 Parsing responseXML using

getElementsByTagName()
function responseAjax() {

// we are only interested in readyState
// of 4, i.e. “completed”
if(myRequest.readyState == 4) {

// if server HTTP response is “OK”
if(myRequest.status == 200) {

var greetNode = http.responseXML
➥.getElementsByTagName(“greeting”)[0];

var greetText = greetNode.childNodes[0]
➥.nodeValue;

alert(“Greeting text: “ + greetText);
} else {

// issue an error message for
// any other HTTP response
alert(“An error has occurred: “

➥+ myRequest.statusText);
}

}
}

After the usual checks on the values of the readyState and status
properties, the code locates the required element from responseXML
using the getElementsByTagName() method and then uses
childNodes[0].nodeValue to extract the text content from this ele-
ment, finally displaying the returned text in a JavaScript alert dialog.

Figure 10.2 shows the alert dialog, showing the text string recovered
from the <greeting> element of the XML document.

1 0 : Using the Returned Data

96

FIGURE 10.2 Displaying the returned greeting.

11_0672329603_ch10.qxd 5/7/07 10:50 PM Page 96

Providing User Feedback
In web pages with traditional interfaces, it is clear to the user when the
server is busy processing a request; the interface is effectively unusable
while a new page is being prepared and served.

The situation is a little different in an Ajax application. Because the
interface remains usable during an asynchronous HTTP request, it may
not be apparent to the user that new information is expected from the
server. Fortunately there are some simple ways to warn that a server
request in is progress.

Recall that our callback function is called each time the value of
readyState changes, but that we are only really interested in the con-
dition myRequest.readyState == 4, which indicates that the server
request is complete.

Let’s refer again to Listing 10.3. For all values of readyState other than
4, the function simply terminates having done nothing. We can use
these changes to the value of readyState to indicate to the user that a
server request is progressing but has not yet completed. Consider the
following code:

function responseAjax() {
if(myRequest.readyState == 4) {

if(myRequest.status == 200) {
… [success – process the server response] …

} else {
… [failed – report the HTTP error] …

}
} else { // if readyState has changed

// but readyState <> 4
… [do something here to provide user feedback] …

}
}

A commonly used way to do this is to modify the contents of a page
element to show something eye-catching, such as a flashing or animat-
ed graphic, while a request is being processed and then remove it
when processing is complete.

Providing User Feedback

97

11_0672329603_ch10.qxd 5/7/07 10:50 PM Page 97

The getElementById() Method
JavaScript’s getElementById() method allows you to locate an individ-
ual document element by its id value. You can use this method in your
user feedback routine to temporarily change the contents of a particu-
lar page element to provide the visual clue that a server request is in
progress.

Suppose that we have, say, a small animated graphic file anim.gif that
we want to display while awaiting information from the server. We want
to display this graphic inside a <div> element within the HTML page.
We begin with this <div> element empty:

<div id=”waiting”></div>

Now consider the code of the callback function:

function responseAjax() {
if(myRequest.readyState == 4) {

document.getElementById(‘waiting’).innerHTML = ‘’;
if(myRequest.status == 200) {

… [success – process the server response] …

} else {
… [failed – report the HTTP error] …

}
} else { // if readyState has changed

// but readyState <> 4
document.getElementById(‘waiting’)

➥.innerHTML = ‘’;
}

}

On each change in value of the property readyState, the callback func-
tion checks for the condition readyState == 4. Whenever this condi-
tion fails to be met, the else condition of the outer loop uses the
innerHTML property to ensure that the page element with id waiting
(our <div> element) contains an image whose source is the animated
GIF. As soon as the condition readyState == 4 is met, and we there-
fore know that the server request has concluded, the line

document.getElementById(‘waiting’).innerHTML = ‘’;

once more erases the animation.

We’ll see this technique in action in Lesson 11,“Our First Ajax
Application,” when we create a complete Ajax application.

1 0 : Using the Returned Data

98

TIP: Elements within a
page that have had id val-
ues declared are expected
to each have a unique id
value. This allows you to
identify a unique element.
Contrast this with the
class attribute, which can
be applied to any number
of separate elements in a
page and is more common-
ly used to set the display
characteristics of a group of
objects.

11_0672329603_ch10.qxd 5/7/07 10:50 PM Page 98

Summary
This lesson examined the last link in the Ajax chain: how to deal with
server responses containing both text and XML information.

We also introduced a further JavaScript DOM method,
getElementsByTagName().

In the next lesson, the last in Part II, we use this knowledge along with
that gained from earlier lessons, to construct a complete and working
Ajax application.

Summary

99

11_0672329603_ch10.qxd 5/7/07 10:50 PM Page 99

11_0672329603_ch10.qxd 5/7/07 10:50 PM Page 100

Our First Ajax Application

In this lesson you will learn how to construct a complete and working Ajax application
using the techniques discussed in previous lessons.

Constructing the Ajax Application
The previous lessons have introduced all the techniques involved in the design
and coding of a complete Ajax application. In this lesson, we’re going to construct
just such an application.

Our first application will be simple in function, merely returning and displaying the
time as read from the server’s internal clock; nevertheless it will involve all the
basic steps required for any Ajax application:

■ An HTML document forming the basis for the application

■ JavaScript routines to create an instance of the XMLHTTPRequest object and
construct and send asynchronous server calls

■ A server-side routine (in PHP) to configure and return the required informa-
tion

■ A callback function to deal with the returned data and use it in the applica-
tion

Let’s get to it, starting with the HTML file that forms the foundation for our
application.

11

12_0672329603_ch11.qxd 5/7/07 10:49 PM Page 101

1 1 : Our First Ajax Application

102

The HTML Document
Listing 11.1 shows the code for our HTML page.

LISTING 11.1 The HTML Page for Our Ajax Application
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
➥Transitional//EN”
➥“http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<title>Ajax Demonstration</title>
<style>
.displaybox {
width:150px;
background-color:#ffffff;
border:2px solid #000000;
padding:10px;
font:24px normal verdana, helvetica, arial, sans-serif;
}
</style>
</head>
<body style=”background-color:#cccccc;
➥text-align:center”>

<h1>Ajax Demonstration</h1>
<h2>Getting the server time without page refresh</h2>
<form>
<input type=”button” value=”Get Server Time” />
</form>
<div id=”showtime” class=”displaybox”></div>

</body>
</html>

This is a simple HTML layout, having only a title, subtitle, button, and
<div> element, plus some style definitions.

Figure 11.1 shows what the HTML page looks like.

TIP: In HTML the <div> …
</div> element stands for
division and can be used to
allow a number of page
elements to be grouped
together and manipulated
in a block.

12_0672329603_ch11.qxd 5/7/07 10:49 PM Page 102

Adding JavaScript

103

Adding JavaScript
We can now add our JavaScript routines to the HTML page. We’ll do so
by adding them inside a <script> … </script> container to the
<head> section of the page.

FIGURE 11.1 The HTML file of Listing 11.1.

TIP: Alternatively we could have added the routines in an external
JavaScript file (ajax.js, say) and called this file from our document by
using a statement like:

<script language=”JavaScript” type=”text/javascript”
➥src=”ajax.js”></script>

in the <head> section of the document.

The XMLHTTPRequest Object
First, let’s add our function to create our XMLHTTPRequest object:

function getXMLHTTPRequest() {
try {
req = new XMLHttpRequest();
} catch(err1) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);

12_0672329603_ch11.qxd 5/7/07 10:49 PM Page 103

1 1 : Our First Ajax Application

104

} catch (err2) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);
} catch (err3) {
req = false;

}
}

}
return req;
}

It’s now a simple matter to create our XMLHTTPRequest object, which
on this occasion we’re going to call http:

var http = getXMLHTTPRequest();

The Server Request
Now we need a function to construct our server request, define a call-
back function, and send the request to the server. This is the function
that will be called from an event handler in the HTML page:

function getServerTime() {
var myurl = ‘telltimeXML.php’;
myRand = parseInt(Math.random()*999999999999999);
// add random number to URL to avoid cache problems
var modurl = myurl+”?rand=”+myRand;
http.open(“GET”, modurl, true);
// set up the callback function
http.onreadystatechange = useHttpResponse;
http.send(null);

}

Once again we have added a parameter with a random value to the
URL to avoid any cache problems. Our callback function is named
useHttpResponse and is called each time a change is detected in the
value of http’s readyState property.

Our PHP Server-Side Script
Before explaining the operation of the callback function, we need to
refer to the code of the simple PHP server routine telltimeXML.php,
shown in Listing 11.2.

12_0672329603_ch11.qxd 5/7/07 10:49 PM Page 104

Adding JavaScript

105

LISTING 11.2 telltimeXML.php
<?php
header(‘Content-Type: text/xml’);
echo “<?xml version=\”1.0\” ?><clock1><timenow>”
➥.date(‘H:i:s’).”</timenow></clock1>”;
?>

This short program reports the server time using PHP’s date() function.
The argument passed to this function defines how the elements of the
date and time should be formatted. Here we’ve ignored the date-relat-
ed elements completely and asked for the time to be returned as
Hours:Minutes:Seconds using the 24-hour clock.

Our server script returns an XML file in the following format:

<?xml version=”1.0” ?>
<clock1>

<timenow>
XX:XX:XX
</timenow>

</clock1>

with XX:XX:XX replaced by the current server time. We will use the call-
back function to extract this time information and display it in the
<div> container of the HTML page.

The Callback Function
Here is the code for the callback function useHttpResponse:

function useHttpResponse() {
if (http.readyState == 4) {
if(http.status == 200) {

var timeValue = http.responseXML
➥.getElementsByTagName(“timenow”)[0];

document.getElementById(‘showtime’).innerHTML
➥ = timeValue.childNodes[0].nodeValue;

}
} else {
document.getElementById(‘showtime’).innerHTML

➥ = ‘’;
}

}

Once again we have used the getElementsByTagname method, this
time to select the <timenow> element of the XML data, which we have
stored in a variable timeValue. However, on this occasion we’re not

12_0672329603_ch11.qxd 5/7/07 10:49 PM Page 105

1 1 : Our First Ajax Application

106

going to display the value in an alert dialog as we did in Lesson 10,
“Using the Returned Data.”

This time we want instead to use the information to update the con-
tents of an element in the HTML page. Note from Listing 11.1 how the
<div> container is defined in our HTML page:

<div id=”showtime” class=”displaybox”></div>

In addition to the class declaration (which is used in the <style>
definitions to affect how the <div> element is displayed), we see that
there is also defined an id (identity) for the container, with a value set
to showtime.

Currently the <div> contains nothing. We want to update the content
of this container to show the server time information stored in
timeValue. We do so by selecting the page element using JavaScript’s
getElementById() method, which we met in Lesson 10. We’ll then use
the JavaScript innerHTML property to update the element’s contents:

document.getElementById(‘showtime’).innerHTML
➥ = timeValue.childNodes[0].nodeValue;

Employing Event Handlers
Finally, we must decide how the server requests will be triggered. In
this case we shall slightly edit the HTML document to use the
onClick() event handler of the <button> object:

<input type=”button” value=”Get Server Time”
➥ onClick=”getServerTime()”>

This will correctly deal with the occasion when the Get Server Time
button is clicked. It does, however, leave the <div> element empty
when we first load the page.

To overcome this little problem, we can use the onLoad() event han-
dler of the page’s <body> element:

<body style=”background-color:#cccccc”
➥ onLoad=”getServerTime()”>

This event handler fires as soon as the <body> area of the page has fin-
ished loading.

12_0672329603_ch11.qxd 5/7/07 10:49 PM Page 106

Putting It All Together

107

Putting It All Together
Listing 11.3 shows the complete client-side code for our Ajax applica-
tion.

LISTING 11.3 The Complete Ajax Application
<html>
<head>
<title>Ajax Demonstration</title>
<style>
.displaybox {
width:150px;
background-color:#ffffff;
border:2px solid #000000;
padding:10px;
font:24px normal verdana, helvetica, arial, sans-serif;
}
</style>
<script language=”JavaScript” type=”text/javascript”>
function getXMLHTTPRequest() {
try {
req = new XMLHttpRequest();
} catch(err1) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);
} catch (err2) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);
} catch (err3) {
req = false;

}
}

}
return req;
}

var http = getXMLHTTPRequest();

function getServerTime() {
var myurl = ‘telltimeXML.php’;
myRand = parseInt(Math.random()*999999999999999);
var modurl = myurl+”?rand=”+myRand;
http.open(“GET”, modurl, true);
http.onreadystatechange = useHttpResponse;
http.send(null);

12_0672329603_ch11.qxd 5/7/07 10:49 PM Page 107

1 1 : Our First Ajax Application

108

LISTING 11.3 Continued
}

function useHttpResponse() {
if (http.readyState == 4) {
if(http.status == 200) {

var timeValue = http.responseXML
➥.getElementsByTagName(“timenow”)[0];

document.getElementById(‘showtime’).innerHTML
➥ = timeValue.childNodes[0].nodeValue;

}
} else {
document.getElementById(‘showtime’).innerHTML

➥ = ‘’;
}

}
</script>
</head>
<body style=”background-color:#cccccc”
➥ onLoad=”getServerTime()”>
<center>
<h1>Ajax Demonstration</h1>
<h2>Getting the server time without page refresh</h2>
<form>
<input type=”button” value=”Get Server Time”
➥ onClick=”getServerTime()”>
</form>
<div id=”showtime” class=”displaybox”></div>
</center>
</body>
</html>

Loading the page into our browser, we can see that the server time is
displayed in the <div> container, indicating that the onLoad event han-
dler for the <body> of the page has fired when the page has loaded.

User Feedback
Note also that we have provided user feedback via the line

document.getElementById(‘showtime’).innerHTML
➥ = ‘’;

12_0672329603_ch11.qxd 5/7/07 10:49 PM Page 108

Putting It All Together

109

which executes on each change to the value readyState until the con-
dition

readyState == 4

is satisfied. This line loads into the time display element an animated
GIF with a rotating pattern, indicating that a server request is in
progress, as shown in Figure 11.2. This technique was described in more
detail in Lesson 10.

TIP: If you have a fast server and a good Internet connection, it may be
difficult to see this user feedback in action because the time display is
updated virtually instantaneously. To demonstrate the operation of the
animated GIF image, we can slow down the server script to simulate the
performance of a more complex script and/or an inferior connection, by
using PHP’s sleep() command:

<?php
header(‘Content-Type: text/xml’);
sleep(3);
echo “<?xml version=\”1.0\” ?><clock1><timenow>”
➥.date(‘H:i:s’).”</timenow></clock1>”;
?>

The line

sleep(x);

Forces the server to pause program execution for x seconds.

FIGURE 11.2 An animated image provides user feedback.

12_0672329603_ch11.qxd 5/7/07 10:49 PM Page 109

1 1 : Our First Ajax Application

110

Now, each time we click on the Get Server Time button, the time dis-
play is updated. Figure 11.3 shows the completed application.

FIGURE 11.3 Our completed Ajax application.

Summary
In this lesson, we constructed a simple yet complete Ajax application
that does the following:

■ Creates an instance of the XMLHTTPRequest object

■ Reacts to JavaScript event handlers built into an HTML page

■ Constructs and sends asynchronous server requests

■ Parses XML received from the server using JavaScript DOM meth-
ods

■ Provides user feedback that a request is in progress

■ Updates the displayed page with the received data

This completes Part II of the book. Part III,“More Complex Ajax
Technologies,” investigates some more advanced Ajax techniques.

12_0672329603_ch11.qxd 5/7/07 10:49 PM Page 110

Returning Data as Text

In this lesson you will learn some more techniques for using the responseText prop-
erty to add functionality to Ajax applications.

Getting More from the responseText
Property
The lessons of Part II,“Introducing Ajax,”discussed the individual components that
make Ajax work, culminating in a complete Ajax application. In Part III,“More Complex
Ajax Technologies,”each lesson examines how you can extend what you know to
develop more sophisticated Ajax applications.

For this lesson, we’ll look a little more closely at the responseText property of the
XMLHTTPRequest object and see how we can give our application some extra
functionality via its use.

As you have seen in previous lessons, the XMLHTTPRequest object provides two
properties that contain information received from the server, namely
responseText and responseXML. The former presents the calling application with
the server data in string format, whereas the latter provides DOM-compatible XML
that can be parsed using JavaScript methods.

Although the responseXML property allows you to carry out some sophisticated
programming tasks, much can be achieved just by manipulating the value stored
in the responseText property.

12

13_0672329603_ch12.qxd 5/7/07 10:49 PM Page 111

1 2 : Returning Data as Text

112

Returning Text
The term text is perhaps a little misleading. The responseText property
contains a character string, the value of which you can assign to a
JavaScript variable via a simple assignment statement:

var mytext = http.responseText;

There is no rule saying that the value contained in such a string must be
legible text; in fact, the value can contain complete gibberish provided
that the string contains only characters that JavaScript accepts in a string
variable.

This fact allows a degree of flexibility in what sorts of information you
can transfer using this property.

Using Returned Text Directly in Page
Elements
Perhaps the simplest example is to consider the use of the value held in
responseText in updating the textual part of a page element, say a
<div> container. In this case you may simply take the returned string
and apply it to the page element in question.

Here’s a simple example. The following is the HTML code for an HTML
page that forms the basis for an Ajax application:

<html>
<head>
<title>My Ajax Application</title>

</head>
<body>
Here is the text returned by the server:

<div id=”myPageElement”></div>
</body>
</html>

Clearly this is a simple page that, as it stands, would merely output the
line “Here is the text returned by the server:” and nothing else.

Now suppose that we add to the page the necessary JavaScript rou-
tines to generate an instance of a XMLHTTPRequest object (in this case
called http) and make a server request in response to the onLoad()
event handler of the page’s <body> Element. Listing 12.1 shows the
source code for the revised page.

13_0672329603_ch12.qxd 5/7/07 10:49 PM Page 112

Getting More from the responseText Property

113

LISTING 12.1 A Basic Ajax Application Using the
responseText Property
<html>
<head>
<title>My Ajax Application</title>
<script Language=”JavaScript”>
function getXMLHTTPRequest() {
try {
req = new XMLHttpRequest();
} catch(err1) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);
} catch (err2) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);
} catch (err3) {
req = false;

}
}

}
return req;
}

var http = getXMLHTTPRequest();

function getServerText() {
var myurl = ‘textserver.php’;
myRand = parseInt(Math.random()*999999999999999);
var modurl = myurl+”?rand=”+myRand;
http.open(“GET”, modurl, true);
http.onreadystatechange = useHttpResponse;
http.send(null);

}

function useHttpResponse() {
if (http.readyState == 4) {
if(http.status == 200) {
var mytext = http.responseText;
document.getElementById(‘myPageElement’)

➥.innerHTML = mytext;
}

} else {
document. getElementById(‘myPageElement’)

➥.innerHTML = “”;
}

}

13_0672329603_ch12.qxd 5/7/07 10:49 PM Page 113

1 2 : Returning Data as Text

114

LISTING 12.1 Continued
</head>
<body onLoad=”getServerText()”>
Here is the text returned by the server:

<div id=”myPageElement”></div>
</body>
</html>

Most, and probably all, of this code will be familiar from previous
lessons. The part that interests us here is the callback function
useHttpResponse(), which contains these lines:

var mytext = http.responseText;
document.getElementById(‘myPageElement’).innerHTML =
mytext;

Here we have simply assigned the value received in responseText to
become the content of our chosen <div> container.

Running the preceding code with the simple server-side script

<?php
echo “This is the text from the server”;
?>

produces the screen display of Figure 12.1.

FIGURE 12.1 Displaying text in a page element via responseText.

13_0672329603_ch12.qxd 5/7/07 10:49 PM Page 114

Getting More from the responseText Property

115

Including HTML in responseText
Now let’s modify the code from the preceding example.

As you know from previous lessons, HTML markup is entirely composed
of tags written using text characters. If the value contained in the
responseText property is to be used for modifying the display of the
page from which the server request is being sent, there is nothing to
stop us having our server script include HTML markup in the informa-
tion it returns.

Suppose that we once again use the code of Listing 12.1 but with a
modified server script:

<?php
echo “<h3>Returning Formatted Text</h3>”;
echo “<hr />”;
echo “We can use HTML to format
➥ text before we return it!”;
?>

Figure 12.2 shows the resulting browser display.

FIGURE 12.2 Display showing HTML formatted at the server.

As a slightly more involved example, consider the case where the server
script generates more complex output. We want our application to take
this server output and display it as the contents of a table.

13_0672329603_ch12.qxd 5/7/07 10:49 PM Page 115

1 2 : Returning Data as Text

116

This time we’ll use our server-side PHP script to generate some tabular
information:

<?php
$days = array(‘Monday’,’Tuesday’,’Wednesday’,
➥’Thursday’,’Friday’,’Saturday’,’Sunday’);
echo “<table border=’2’>”;
echo “<tr><th>Day Number</th><th>Day Name</th></tr>”;
for($i=0;$i<7;$i++)
{
echo “<tr><td>”.$i.”</td><td>”.$days[$i].”</td></tr>”;

}
echo “</table>”;
?>

Once again using the code of Listing 12.1 to call the server-side script
via XMLHTTPRequest, we obtain a page as displayed in Figure 12.3.

FIGURE 12.3 Returning more complex HTML.

More Complex Formatted Data
So far we have demonstrated ways to return text that may be directly
applied to an element on a web page. So far, so good. However, if you
are willing to do a little more work in JavaScript to manipulate the
returned data, you can achieve even more.

13_0672329603_ch12.qxd 5/7/07 10:49 PM Page 116

Getting More from the responseText Property

117

Provided that the server returns a string value in the responseText
property of the XMLHTTPRequest object, you can use any data format
you may devise to encode information within it.

Consider the following server-side script, which uses the same data
array as in the previous example:

<?php
$days = array(‘Monday’,’Tuesday’,’Wednesday’,
➥’Thursday’,’Friday’,’Saturday’,’Sunday’);
$numdays = sizeof($days);
for($i=0;$i<($numdays - 1);$i++)
{
echo $days[$i].”|”;
}
echo $days[$numdays-1];
?>

The string returned in the responseText property now contains the
days of the week, separated—or delimited—by the pipe character |. If
we copy this string into a JavaScript variable mystring,

var mystring = http.responseText;

we will find that the variable mystring contains the string

Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday

We may now conveniently divide this string into an array using
JavaScript’s split() method:

var results = http.responseText.split(“|”);

TIP: The JavaScript split() method slices up a string, making each cut
wherever in the string it locates the character that it has been given as an
argument. That character need not be a pipe; popular alternatives are com-
mas or slashes.

We now have a JavaScript array results containing our data:

results[0] = ‘Monday’
results[1] = ‘Tuesday’
etc…

Rather than simply displaying the received data, we now can use it in
JavaScript routines in any way we want.

NOTE: Note the use of
the PHP sizeof() func-
tion to determine the num-
ber of items in the array. In
PHP, as in JavaScript, array
keys are numbered from 0
rather than 1.

TIP: For complex data for-
mats, XML may be a better
way to receive and handle
data from the server.
However, it is remarkable
how much can be done
just by using the
responseText property.

13_0672329603_ch12.qxd 5/7/07 10:49 PM Page 117

1 2 : Returning Data as Text

118

Summary
With little effort, the XMLHTTPRequest object’s responseText property
can be persuaded to do more than simply return some text to display
in a web page.

For all but the most complex data formats, it may prove simpler to
manipulate responseText than to deal with the added complexity of
XML.

In this lesson you saw several examples of this technique, ranging from
the simple update of text content within a page element, to the manip-
ulation of more complex data structures.

13_0672329603_ch12.qxd 5/7/07 10:49 PM Page 118

AHAH—Asynchronous
HTML and HTTP

In this lesson you will learn how to use AHAH (Asynchronous HTML and HTTP) to build
Ajax-style applications without using XML.

Introducing AHAH
You saw in Lesson 12,“Returning Data as Text,” just how much can be achieved
with an Ajax application without using any XML at all. Many tasks, from simply
updating the text on a page to dealing with complicated data structures, can be
carried out using only the text string whose value is returned in the
XMLHTTPRequest object’s responseText property.

It is possible to build complete and useful applications without any XML at all. In
fact, the term AHAH (Asynchronous HTML and HTTP) has been coined for just such
applications.

This lesson takes the concepts of Lesson 12 a little further, examining in more
detail where—and how—AHAH can be applied.

13

NOTE: This technique, a kind of subset of Ajax, has been given various acronyms.
These include AHAH (asynchronous HTML and HTTP), JAH (Just Asynchronous
HTML), and HAJ (HTML And JavaScript). In this book we’ll refer to it as AHAH.

14_0672329603_ch13.qxd 5/7/07 10:49 PM Page 119

1 3 : AHAH—Asynchronous HTML and HTTP

120

Why Use AHAH Instead of Ajax?
There is no doubt that XML is an important technology with diverse
and powerful capabilities. For complex Ajax applications with sophisti-
cated data structures it may well be the best—or perhaps the only—
option. However, using XML can sometimes complicate the design of
an application, including:

■ Work involved in the design of custom schemas for XML data.

■ Cross-browser compatibility issues when using JavaScript’s DOM
methods.

■ Performance may suffer from having to carry out processor-
intensive XML parsing.

Using AHAH can help you avoid these headaches, while offering a few
more advantages too:

■ Easy reworking of some preexisting web pages.

■ HTML can be easier to fault-find than XML.

■ Use of CSS to style the returned information, rather than having
to use XSLT.

Creating a Small Library for
AHAH
The Ajax applications examined in the last couple of lessons, although
complete and functional, involved embedding a lot of JavaScript code
into our pages. As you have seen, each application tends to contain
similar functions:

■ A method to create an instance of the XMLHTTPRequest object,
configure it, and send it

■ A callback function to deal with the returned text contained in
the responseText property

You can abstract these functions into simple JavaScript function calls,
especially in cases where you simply want to update a single page ele-
ment with a new value returned from the server.

NOTE: XSLT is a transfor-
mation language used to
convert XML documents
into other formats—for
example, into HTML suitable
for a browser to display.

In the following sections
we’ll package our AHAH
scripts into a neat external
JavaScript file that we can
call from our applications.

14_0672329603_ch13.qxd 5/7/07 10:49 PM Page 120

Creating a Small Library for AHAH

121

Introducing myAHAHlib.js
Consider Listing 13.1; most of this code will be instantly recognizable
to you.

LISTING 13.1 myAHAHlib.js
function callAHAH(url, pageElement, callMessage) {

document.getElementById(pageElement)
➥.innerHTML = callMessage;

try {
req = new XMLHttpRequest(); /* e.g. Firefox */
} catch(e) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);

/* some versions IE */
} catch (e) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);

/* some versions IE */
} catch (E) {
req = false;
}

}
}
req.onreadystatechange

➥ = function() {responseAHAH(pageElement);};
req.open(“GET”,url,true);
req.send(null);

}

function responseAHAH(pageElement) {
var output = ‘’;
if(req.readyState == 4) {

if(req.status == 200) {
output = req.responseText;
document.getElementById(pageElement)

➥.innerHTML = output;
}

}
}

The function callAHAH() encapsulates the tasks of creating an instance
of the XMLHTTPRequest object, declaring the callback function, and
sending the request.

14_0672329603_ch13.qxd 5/7/07 10:49 PM Page 121

1 3 : AHAH—Asynchronous HTML and HTTP

122

Note that instead of simply declaring

req.onreadystatechange = responseAHAH;

we instead used the JavaScript construct

req.onreadystatechange
➥ = function() {responseAHAH(pageElement);};

This type of declaration allows us to pass an argument to the declared
function, in this case identifying the page element to be updated.

callAHAH() also accepts an additional argument, callMessage. This
argument contains a string defining the content that should be dis-
played in the target element while we await the outcome of the server
request. This provides a degree of feedback for the user, indicating that
something is happening on the page. In practice this may be a line of
text, such as

‘Updating page; please wait a moment ….’

Once again, however, you may choose to embed some HTML code into
this string. Using an animated GIF image within an element pro-
vides an effective way of warning a user that a process is underway.

The callback function responseAHAH() carries out the specific task of
applying the string returned in the responseText property to the
innerHTML property of the selected page element pageElement:

output = req.responseText;
document.getElementById(pageElement).innerHTML = output;

This code has been packaged into a file named myAHAHlib.js, which you
can call from an HTML page, thus making the functions available to your
AHAH application. The next section shows some examples of its use.

Using myAHAHlib.js
In Lesson 4,“Client-Side Coding Using JavaScript,” we encountered the
concept of JavaScript functions being located in an external file that is
referred to within our page.

That’s how we’ll use our new file myAHAHlib.js, using a statement in this
form:

<SCRIPT language=”JavaScript” SRC=”myAHAHlib.js”></SCRIPT>

We will then be at liberty to call the functions within the script whenev-
er we want.

14_0672329603_ch13.qxd 5/7/07 10:49 PM Page 122

Using myAHAHlib.js

123

The following is the skeleton source code of such an HTML page:

<html>
<head>
<title>Another Ajax Application</title>
<SCRIPT language=”JavaScript” SRC=”myAHAHlib.js”></SCRIPT>
</head>
<body>
<form>
<input type=”button” onClick=
➥”callAHAH(‘serverscript.php?parameter=x’,
➥’displaydiv’, ‘Please wait – page updating …’)” >
This is the place where the server response
will be posted:

<div id=”displaydiv”></div>
</form>
</body>
</html>

In this simple HTML page, a button element is used to create the event that
causes the callAHAH() method to be called.This method places the text string

‘Please wait – page updating …’

in the <div> element having id displaydiv and sends the asynchronous
server call to the URL serverscript.php?parameter=x.

When responseAHAH() detects that the server has completed its response,
the <div> element’s content is updated using the value stored in
responseText; instead of showing the “please wait” message, the <div>
now displays whatever text the server has returned.

Applying myAHAHlib.js in a Project
We can demonstrate these techniques with a further simple Ajax applica-
tion. This time, we’ll build a script to grab the ‘keywords’ metatag informa-
tion from a user-entered URL.

NOTE: Metatags are optional HTML container elements in the <head> sec-
tion of an HTML page. They contain data about the web page that is useful
to search engines and indexes in deciding how the page’s content should be
classified. The ‘keywords’ metatag, where present, typically contains a
comma-separated list of words with meanings relevant to the site content.
An example of a ‘keywords’ metatag might look like this:

<meta name=”keywords” content=”programming, design,
➥ development, Ajax, JavaScript, XMLHTTPRequest,
➥script”>

14_0672329603_ch13.qxd 5/7/07 10:49 PM Page 123

1 3 : AHAH—Asynchronous HTML and HTTP

124

Listing 13.2 shows the HTML code.

LISTING 13.2 getkeywords.html
<html>
<head>
<title>A ‘Keywords’ Metatag Grabber</title>
<SCRIPT language=”JavaScript” SRC=”myAHAHlib.js”>
</SCRIPT>
</head>
<body>
<script type=”text/javascript” src=”ahahLib.js”>
</script>
<form>
<table>
<tr>
<td>
URL: http://

</td>

<td>
<input type=”text” id=”myurl” name=”myurl” size=30>
<input type=”button” onclick =

➥”callAHAH(‘keywords.php?url=’+document
➥.getElementById(‘myurl’).value,’displaydiv’,
➥ ‘Please wait; loading content …’)” value=”Fetch”>
</td>

</tr>
<tr><td colspan=2 height=50 id=”displaydiv”></td></tr>
</table>
</form>
</body>
</html>

Finally, consider the server-side script:

<?php
$tags = @get_meta_tags(‘http://’.$url);
$result = $tags[‘keywords’];
if(strlen($result) > 0)
{

echo $result;
} else {

echo “No keywords metatag is available”;
}
?>

14_0672329603_ch13.qxd 5/7/07 10:49 PM Page 124

Using myAHAHlib.js

125

We present the selected URL to the PHP method get_meta_tags() as
an argument:

$tags = @get_meta_tags(‘http://’.$url);

This method is specifically designed to parse the metatag information
from HTML pages in the form of an associative array. In this script, the
array is given the name $tags, and we can recover the ‘keywords’
metatag by examining the array entry $tags[‘keywords’]; we can
then check for the presence or absence of a ‘keywords’ metatag by
measuring the length of the returned string using PHP’s strlen()
method.

When the file getkeywords.html is first loaded into the browser, we are
presented with the display shown in Figure 13.1.

TIP: The @ character
placed before a PHP
method tells the PHP inter-
preter not to output an
error message if the method
should encounter a prob-
lem during execution.We
require it in this instance
because not all web pages
contain a ‘keywords’
metatag; in the cases where
none exists, we would prefer
the method to return an
empty string so that we can
add our own error handling.

FIGURE 13.1 The browser display after first loading the application.

Here we are invited to enter a URL. When we then click on the Fetch
button, callAHAH() is executed and sends our chosen URL as a para-
meter to the server-side script. At the same time, the message “Please
wait; loading content … “ is placed in the <div> container. Although
possibly only visible for a fraction of a second, we now have a display
such as that shown in Figure 13.2.

14_0672329603_ch13.qxd 5/7/07 10:49 PM Page 125

1 3 : AHAH—Asynchronous HTML and HTTP

126

Finally, when the server call has concluded, the contents of the
responseText property are loaded into the <div> container, producing
the display of Figure 13.3.

FIGURE 13.2 Awaiting the server response.

FIGURE 13.3 The keywords are successfully returned.

14_0672329603_ch13.qxd 5/7/07 10:49 PM Page 126

Summary

127

Extending myAHAHlib.js
As it stands, myAHAHlib.js is a simple implementation of AHAH. There
are many ways it could be improved and extended, depending on how
it is to be used. Rather than cover these in this lesson, we’ll leave these
for your own experimentation. Here’s a few suggestions to get you
started:

■ Currently only GET requests are supported. How might the func-
tions be modified to allow POST requests too?

■ Much of the user feedback discussed in Lesson 11,“Our First Ajax
Application,” is not yet implemented in responseAHAH().

■ Is it possible for callAHAH() to be modified to accept an array
of page elements for updating and (with the aid of a suitable
server-side script) process them all at once?

TIP: One option we haven’t yet considered is the idea of passing back
JavaScript code within responseText. Because JavaScript source code
(like everything else in an HTML page) is made up of statements written
in plain text, you can return JavaScript source from the server in the
responseText property.

You can then execute this JavaScript code using JavaScript’s eval()
method:

eval(object.responseText);

Consider the situation where your server script returns the string:

“alert(‘Hello World!);”

In this case the eval() method would execute the content as a
JavaScript statement, creating a dialog saying ‘Hello World!’ with an OK
button.

Summary
It will hopefully have become clear, in the course of this lesson and
Lesson 12, that Ajax can achieve a lot of functionality without using any
XML at all.

By carefully using combinations of client-side coding in JavaScript and
server-side scripting in your chosen language, you can create data
schemes of high complexity.

14_0672329603_ch13.qxd 5/7/07 10:49 PM Page 127

1 3 : AHAH—Asynchronous HTML and HTTP

128

In simpler applications, where all you want to do is update the text of
page elements, the XMLHTTPRequest object’s functionality may be
abstracted into a JavaScript function library and called from an HTML
page via straightforward methods.

For some tasks, however, you need to leverage the power of XML. We’ll
look at this subject in Lesson 14,“Returning Data as XML.”

14_0672329603_ch13.qxd 5/7/07 10:49 PM Page 128

Returning Data as XML

In this lesson you will learn to use XML data returned from the server via the
responseXML property of the XMLHTTPRequest object.

Adding the “x” to Ajax
Lesson 12,“Returning Data as Text,” and Lesson 13,“AHAH—Asynchronous HTML
and HTTP,” dealt at some length with the string value contained in responseText
and looked at several techniques for using this information in applications. These
examples ranged from simple updates of page element text to applications using
more sophisticated data structures encoded into string values that can be stored
and transferred in the responseText property.

The X in Ajax does, of course, stand for XML, and there are good reasons for using
the power of XML in your applications. This is particularly true when you need to
use highly structured information and/or perform complex translations between
different types of data representation.

As discussed previously, the XMLHTTPRequest object has a further property called
responseXML, which can be used to transfer information from the server via XML,
rather than in text strings.

You saw in Lesson 11,“Our First Ajax Application,” how JavaScript’s document
object model (DOM) methods can help you process this XML information. This les-
son looks at these techniques in a little more detail and hopefully gives you a taste
of what Ajax applications can achieve when leveraging the power of XML.

14

15_0672329603_ch14.qxd 5/7/07 10:48 PM Page 129

1 4 : Returning Data as XML

130

The responseXML Property
Whereas the responseText property of the XMLHTTPRequest object
contains a string, responseXML can be treated as if it were an XML doc-
ument.

CAUTION: You need to
make sure that your server
presents valid and well-
formed XML to be returned
via the responseXML prop-
erty. In situations where XML
cannot be correctly parsed
by the XMLHTTPRequest
object, perhaps due to well-
formedness errors or prob-
lems with unsupported
character encoding, the con-
tent of the responseXML is
unpredictable and also likely
to be different in different
browsers.

NOTE: Like the responseText property, the value stored in
responseXML is read-only, so you cannot write directly to this property;
to manipulate it you must copy the value to another variable:

var myobject = http.responseXML;

The complete structure and data contained in the XML document can now
be made available by using JavaScript’s DOM methods. Later in the lesson
we’ll demonstrate this with another working Ajax application, but first let’s
revisit the JavaScript DOM methods and introduce a few new ones.

More JavaScript DOM Methods
You met some of the JavaScript DOM methods, such as getElementById
and getElementsByTagName, in previous lessons. In those cases, we were
mostly concerned with reading the values of the nodes to write those
values into HTML page elements.

This lesson looks at the DOM methods that can be used to actually cre-
ate elements, thereby changing the structure of the page.

The Document Object Model can be thought of as a treelike structure of
nodes. As well as reading the values associated with those nodes, you
can create and modify the nodes themselves, thereby changing the
structure and content of your document.

To add new elements to a page, you need to first create the elements
and then attach them to the appropriate point in your DOM tree. Let’s
look at a simple example using the following HTML document:

<html>
<head>
<title>Test Document</title>

</head>
<body>
We want to place some text here:

<div id=”displaydiv></div>
</body>
</html>

15_0672329603_ch14.qxd 5/7/07 10:49 PM Page 130

The responseXML Property

131

In this example, we want to add the text “Hello World!” to the <div>
container in the document body. We’ll put our JavaScript routine into a
function that we’ll call from the body’s onLoad() event handler.

First, we’ll use the JavaScript DOM method createTextNode() to, well,
create a text node:

var textnode = createTextNode(‘Hello World!’);

We now need to attach textnode to the DOM tree of the document at
the appropriate point.

You first learned about child nodes in Lesson 4,“Client-Side Coding
Using JavaScript”; hopefully, you recall that nodes in a document are
said to have children if they contain other document elements.
JavaScript has an appendChild() method, which allows us to attach
our new text node to the DOM tree by making it a child node of an
existing document node.

In this case, we want our text to be inside the <div> container having
the id displaydiv:

var textnode = document.createTextNode(‘Hello World!);
document.getElementById(‘displaydiv’).appendChild(textn-
ode);

Let’s look at the complete source of the page, after wrapping up this
JavaScript code into a function and adding the onLoad() event handler
to execute it:

<html>
<head>
<title>Test Document</title>
<script Language=”JavaScript”>
function hello()
{
var textnode = document.createTextNode(‘Hello World!’);
document.getElementById(‘displaydiv’).appendChild(textn-

ode);
}
</script>
</head>
<body onLoad=”hello()”>
We want to place some text here:

<div id=”displaydiv”></div>
</body>
</html>

Figure 14.1 shows the browser display after loading this page.

NOTE: Compare this
DOM-based method of
writing content to the page
with the innerHTML
method used in the project
in Lesson 11.

NOTE: If you display the
source code of this docu-
ment in your browser, you
won’t see the ‘Hello
World!’ text inside the
<div> container. The
browser builds its DOM
representation of the HTML
document and then uses
that model to display the
page. The amendments
made by your code are
made to the DOM, not to
the document itself.

15_0672329603_ch14.qxd 5/7/07 10:49 PM Page 131

1 4 : Returning Data as XML

132

When you want to create other page elements besides text nodes, you
can do so using the createElement() method, which works pretty
much like createTextNode(). We could, in fact, have used
createElement() to create the <div> container itself, prior to adding
our ‘Hello World!’ text node:

var newdiv = document.createElement(“div”);

In general, you simply pass the type of the required page element as an
argument to createElement() to generate the required type of ele-
ment.

An Overview of DOM Methods
This book is about Ajax, not just about JavaScript DOM techniques, so
we’re not going to reproduce here a comprehensive guide to all the
available methods and properties. However, Table 14.1 itemizes some of
the more useful ones.

TABLE 14.1 Some JavaScript DOM Properties and Methods

NODE PROPERTIES

childNodes Array of child nodes

firstChild The first Child node

lastChild The last Child node

FIGURE 14.1 The DOM says “Hello World!”

TIP: If you need a more
comprehensive account of
the JavaScript DOM meth-
ods and properties, Andrew
Watt gives a useful list in
his excellent book Sams
Teach Yourself XML in 10
Minutes, which is on the
Ajax Starter Kit CD.

15_0672329603_ch14.qxd 5/7/07 10:49 PM Page 132

Project—An RSS Headline Reader

133

NODE PROPERTIES

nodeName Name of the node

nodeType Type of node

nodeValue Value contained in the node

nextSibling Next node sharing the same parent

previousSibling Previous node sharing same parent

parentNode Parent of this node

NODE METHODS

AppendChild Add a new child node

HasChildNodes True if this node has children

RemoveChild Deletes a child node

DOCUMENT METHODS

CreateAttribute Make a new attribute for an element

CreateElement Make a new document element

CreateTextNode Make a text item

GetElementsByTagName Create an array of tagnames

GetElementsById Find an element by its ID

Project—An RSS Headline Reader
Let’s now take what we’ve learned about returning XML data from the
server and use these techniques to tackle a new project.

XML data is made available on the Internet in many forms. One of the
most popular is the RSS feed, a particular type of XML source usually
containing news or other topical and regularly updated items. RSS
feeds are available from many sources on the Web, including most
broadcast companies and newspaper publishers, as well as specialist
sites for all manner of subjects.

We’ll write an Ajax application to take a URL for an RSS feed, collect the
XML, and list the titles and descriptions of the news items contained in
the feed.

The following is part of the XML for a typical RSS feed:

<rss version=”0.91”>
<channel>
<title>myRSSfeed.com</title>

15_0672329603_ch14.qxd 5/7/07 10:49 PM Page 133

1 4 : Returning Data as XML

134

<link>http://www.********.com/</link>
<description>My RSS feed</description>
<language>en-us</language>
<item>
<title>New Store Opens</title>
<link>http://www.**********.html</link>
<description>A new music store opened today in Canal Road.
➥The new business, Ajax Records, caters for a wide range of
➥musical tastes.</description>
</item>
<item>
<title>Bad Weather Affects Transport</title>
<link>http://www.***********.html</link>
<description>Trains and buses were disrupted badly today
➥due to sudden heavy snow. Police advised people not to
➥travel unless absolutely necessary.</description>
</item>
<item>
<title>Date Announced for Mayoral Election</title>
<link>http://www.*********.html</link>
<description>September 4th has been announced as the date
➥for the next mayoral election. Watch local news for more
➥details.</description>
</item>
</channel>
</rss>

From the first line

<rss version=”0.91”>

we see that we are dealing with RSS version 0.91 in this case. The ver-
sions of RSS differ quite a bit, but for the purposes of our example we
only care about the <title>, <link>, and <description> elements for
the individual news items, which remain essentially unchanged from
version to version.

The HTML Page for Our Application
Our page needs to contain an input field for us to enter the URL of the
required RSS feed and a button to instruct the application to collect the
data. We also will have a <div> container in which to display our parsed
data:

<html>
<head>
<title>An Ajax RSS Headline Reader</title>

15_0672329603_ch14.qxd 5/7/07 10:49 PM Page 134

Project—An RSS Headline Reader

135

</head>
<body>
<h3>An Ajax RSS Reader</h3>
<form name=”form1”>
URL of RSS feed: <input type=”text” name=”feed” size=”50”
➥value=”http://”><input type=”button” value=”Get Feed”>

<div id=”news”><h4>Feed Titles</h4></div>
</form>
</html>

If we save this code to a file rss.htm and load it into our browser, we see
something like the display shown in Figure 14.2.

FIGURE 14.2 Displaying the base HTML document for our RSS headline reader.

Much of the code for our reader will be familiar by now; the means of
creating an instance of the XMLHTTPRequest object, constructing and
sending a server request, and checking when that request has been
completed are all carried out much as in previous examples.

This time, however, instead of using responseText we will be receiving
data in XML via the responseXML property. We’ll use that data to modify
the DOM of our HTML page to show the news items’ titles and descrip-
tions in a list within the page’s <div> container. Each title and descrip-
tion will be contained in its own paragraph element (which we’ll also
construct for the purpose) and be styled via a style sheet to display as
we want.

15_0672329603_ch14.qxd 5/7/07 10:49 PM Page 135

1 4 : Returning Data as XML

136

The Code in Full
Let’s jump right in and look at the code, shown in Listing 14.1.

LISTING 14.1 Ajax RSS Headline Reader
<html>
<head>
<title>An Ajax RSS Headline Reader</title>
</head>
<style>
.title {
font: 16px bold helvetica, arial, sans-serif;
padding: 0px 30px 0px 30px;
text-decoration:underline;
}
.descrip {
font: 14px normal helvetica, arial, sans-serif;
text-decoration:italic;
padding: 0px 30px 0px 30px;
background-color:#cccccc;
}
.link {
font: 9px bold helvetica, arial, sans-serif;
padding: 0px 30px 0px 30px;
}
.displaybox {
border: 1px solid black;
padding: 0px 50px 0px 50px;
}
</style>
<script language=”JavaScript” type=”text/javascript”>
function getXMLHTTPRequest() {
try {
req = new XMLHttpRequest(); /* e.g. Firefox */
} catch(e) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);
/* some versions IE */
} catch (e) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);
/* some versions IE */
} catch (E) {
req = false;

}
}

15_0672329603_ch14.qxd 5/7/07 10:49 PM Page 136

Project—An RSS Headline Reader

137

}
return req;
}

var http = getXMLHTTPRequest();

function getRSS() {
var myurl = ‘rssproxy.php?feed=’;
var myfeed = document.form1.feed.value;
myRand = parseInt(Math.random()*999999999999999);
// cache buster

var modurl = myurl+escape(myfeed)+”&rand=”+myRand;
http.open(“GET”, modurl, true);
http.onreadystatechange = useHttpResponse;
http.send(null);

}

function useHttpResponse() {
if (http.readyState == 4) {
if(http.status == 200) {

// first remove the childnodes
// presently in the DM
while (document.getElementById(‘news’)

➥.hasChildNodes())
{

document.getElementById(‘news’).removeChild(document
➥.getElementById(‘news’).firstChild);

}
var titleNodes = http.responseXML

➥.getElementsByTagName(“title”);
var descriptionNodes = http.responseXML

➥.getElementsByTagName(“description”);
var linkNodes = http.responseXML

➥.getElementsByTagName(“link”);
for(var i =1;i<titleNodes.length;i++)
{
var newtext = document

➥.createTextNode(titleNodes[i]
➥.childNodes[0].nodeValue);

var newpara = document.createElement(‘p’);
var para = document.getElementById(‘news’)

➥.appendChild(newpara);
newpara.appendChild(newtext);
newpara.className = “title”;

var newtext2 = document

15_0672329603_ch14.qxd 5/7/07 10:49 PM Page 137

1 4 : Returning Data as XML

138

LISTING 14.1 Continued
➥.createTextNode(descriptionNodes[i]
➥.childNodes[0].nodeValue);

var newpara2 = document.createElement(‘p’);
var para2 = document

➥.getElementById(‘news’).appendChild(newpara2);
newpara2.appendChild(newtext2);
newpara2.className = “descrip”;
var newtext3 = document

➥.createTextNode(linkNodes [i]
➥.childNodes[0].nodeValue);

var newpara3 = document.createElement(‘p’);
var para3 = document.getElementById(‘news’)

➥.appendChild(newpara3);
newpara3.appendChild(newtext3);
newpara3.className = “link”;

}
}

}
}
</script>
<body>
<center>
<h3>An Ajax RSS Reader</h3>
<form name=”form1”>
URL of RSS feed: <input type=”text” name=”feed”
➥size=”50” value=”http://”><input type=”button”
➥onClick=”getRSS()” value=”Get Feed”>

<div id=”news” class=”displaybox”>
➥<h4>Feed Titles</h4></div>
</form>
</center>
</html>

Mostly we are concerned with describing the workings of the callback
function useHttpResponse().

The Callback Function
In addition to the usual duties of checking the XMLHTTPRequest
readyState and status properties, this function undertakes for us the
following tasks:

■ Remove from the display <div> any display elements from previ-
ous RSS listings.

15_0672329603_ch14.qxd 5/7/07 10:49 PM Page 138

Project—An RSS Headline Reader

139

■ Parse the incoming XML to extract the title, link, and description
elements.

■ Construct DOM elements to hold and display these results.

■ Apply CSS styles to these elements to change how they are dis-
played in the browser.

To remove the DOM elements installed by previous news imports
(where they exist), we first identify the <div> element by using its ID
and then use the hasChildNodes() DOM method, looping through and
deleting the first child node from the <div> element each time until
none remain:

while (document.getElementById(‘news’).hasChildNodes())
{
document.getElementById(‘news’)
➥.removeChild(document.getElementById(‘news’).firstChild);
}

The following explanation describes the processing of the title ele-
ments, but, as can be seen from Listing 14.1, we repeat the process
identically to retrieve the description and link information too.

To parse the XML content to extract the item titles, we build an array
titleNodes from the XML data stored in responseXML:

var titleNodes
➥ = http.responseXML.getElementsByTagName(“title”);

We can then loop through these items, processing each in turn:

for(var i =1;i<titleNodes.length;i++)
{ … processing instructions … }

For each title, we need to first extract the title text using the nodeValue
property:

var newtext = document.createTextNode(titleNodes[i]
➥.childNodes[0].nodeValue);

We can then create a paragraph element:

var newpara = document.createElement(‘p’);

append the paragraph as a child node of the <div> element:

var para = document.getElementById(‘news’)
➥.appendChild(newpara);

15_0672329603_ch14.qxd 5/7/07 10:49 PM Page 139

1 4 : Returning Data as XML

140

and apply the text content to the paragraph element:

newpara.appendChild(newtext);

Finally, using the className property we can define how the paragraph
is displayed. The class declarations appear in a <style> element in the
document head and provide a convenient means of changing the look
of the RSS reader to suit our needs.

newpara.className = “title”;

Each time we enter the URL of a different RSS feed into the input field
and click the button, the <div> content is updated to show the items
belonging to the new RSS feed. This being an Ajax application, there is
of course no need to reload the whole page.

The Server-Side Code
Because of the security constraints built into the XMLHTTPRequest
object, we can’t call an RSS feed directly; we must use a script having a
URL on our own server, and have this script collect the remote XML file
and deliver it to the Ajax application.

In this case, we do not require that the server-side script rssproxy.php
should modify the XML file but simply route it back to us via the
responseXML property of the XMLHTTPRequest object. We say that the
script is acting as a proxy because it is retrieving the remote resource
on behalf of the Ajax application.

Listing 14.2 shows the code of the PHP script.

LISTING 14.2 Server Script for the RSS Headline Reader
<?php
$mysession = curl_init($_GET[‘feed’]);
curl_setopt($mysession, CURLOPT_HEADER, false);
curl_setopt($mysession, CURLOPT_RETURNTRANSFER, true);
$out = curl_exec($mysession);
header(“Content-Type: text/xml”);
echo $out;
curl_close($mysession);
?>

The script uses the cURL PHP library, a set of routines for making
Internet file transfer easier to program. A full description of cURL would
not be appropriate here; suffice to say that this short script first receives
the URL of the required RSS feed by referring to the feed variable sent

15_0672329603_ch14.qxd 5/7/07 10:49 PM Page 140

Summary

141

by the Ajax application. The two lines that call the curl_setopt() func-
tion declare, respectively, that we don’t want the headers sent with the
remote file, but we do want the file contents. The curl_exec() function
then makes the data transfer.

After that it’s simply a matter of adding an appropriate header by using
the familiar PHP header() command and returning the data to our Ajax
application.

Figure 14.3 shows the RSS reader in action, in this case displaying con-
tent from a CNN newsfeed.

TIP: For a full description
of using cURL with PHP, see
the PHP website at
http://uk2.php.net/curl
and/or the cURL site at
http://curl.haxx.se/.

FIGURE 14.3 The Ajax RSS reader in action.

Summary
The JavaScript DOM methods, when used with the XMLHTTPRequest
object and XML data, provide a powerful means of transferring, organiz-
ing, and either displaying or otherwise processing data that has a sophisti-
cated structure.

In this lesson you saw how DOM elements can be added, deleted, and
manipulated to restructure an application’s DOM in accordance with
XML data received in the XMLHTTPRequest object’s responseXML prop-
erty.

15_0672329603_ch14.qxd 5/7/07 10:49 PM Page 141

15_0672329603_ch14.qxd 5/7/07 10:49 PM Page 142

Web Services and the
REST Protocol

In this lesson you will learn the basics of web services and how to implement them
using the REST (Representational State Transfer) protocol.

Introduction to Web Services
So far you have seen several example applications in which we have called server-
side scripts to carry out tasks. In each case we devised data structures to transfer
the information and written routines to handle data transfer both to and from the
server.

Suppose, though, that you wanted to make your server-side programs more gen-
erally available. Perhaps you can imagine that several different web applications
might interface with such scripts for their own purposes. As well as browsers
requesting pages directly, perhaps other applications (for example Ajax applica-
tions operating via XMLHTTPRequest calls) might also make data requests and
expect to receive, in response, data that they can understand and manipulate.

In such cases it would be beneficial to have some form of standardization in the
interfaces that your program makes available. This principle provides the basis of
what have come to be known as web services.

As an example, suppose that our server application produces XML-
formatted weather forecast data in response to a request containing geographical
information.

15

16_0672329603_ch15.qxd 5/7/07 10:48 PM Page 143

1 5 : Web Services and the REST Protocol

144

The nature of this type of service makes it broadly applicable; such an
application might have a wide variety of “clients” ranging from simple
web pages that present weather forecasts in their local area to complex
aviation or travel planning applications that require the data for more
demanding uses.

This type of service is just one small example of what a web service
might be capable of doing. Thousands of web services are active on the
Internet, providing a mind-boggling array of facilities including user
authentication, payment processing, content syndication, messaging,
and a host of others.

In general, a web service makes available an application programming
interface (API), which allows client applications to build interfaces to
the service. Although any Internet protocol might be used to create
web services, XML and HTTP are popular options.

A number of protocols and techniques have emerged that help you to
create and utilize web services. This lesson looks at perhaps the sim-
plest of those, called REST (Representational State Transfer), and Lesson
16,“Web Services Using SOAP,” discusses another protocol, this time
called SOAP (the Simple Object Access Protocol). Each lesson highlights in
particular how they may be useful in Ajax applications.

REST—Representational State
Transfer
REST is centered on two main principles for generalized network
design:

■ Resources are represented by URLs—A resource can be thought
of as a “noun” and refers to some entity we want to deal with in
the API of a web service; this could be a document, a person, a
meeting, a location, and so on. Each resource in a REST applica-
tion has a unique URL.

■ Operations are carried out via standard HTTP methods—HTTP
methods such as GET, POST, PUT, and DELETE are used to carry out
operations on resources. In this way we can consider such opera-
tions as “verbs” acting on resources.

16_0672329603_ch15.qxd 5/7/07 10:48 PM Page 144

REST—Representational State Transfer

145

A Hypothetical REST Example
To understand how and why we might apply these ideas, let’s look at a
hypothetical example.

Suppose that we have a web service that allows writers to submit, edit,
and read articles. Applying so-called RESTful principles to the design of
this application, the following occurs:

■ Each submitted article has a unique URL, for example:

http://somedomain.com/articles/173

We only require that the URL be unique for each article; for
instance

http://somedomain.com/articles/list.php?id=173

also fulfils this requirement.

■ To retrieve an article to read or edit, our client application would
simply use an HTTP GET request to the URL of the article in ques-
tion.

■ To upload a new article, a POST request would be used, contain-
ing information about the article. The server would respond with
the URL of the newly uploaded article.

■ To upload an edited article, a PUT request would be used, con-
taining the revised content.

■ HTTP DELETE would be employed to delete a particular article.

In this way, the web service is using an interface familiar to anyone who
has used the World Wide Web. We do not need to devise a library of API
methods for sending or retrieving information; we already have them in
the form of the standard HTTP methods.

Query Information Using GET
An important issue concerning the use of the HTTP GET request in a
RESTful application is that it should never change the server state. To
put it another way: We only use GET requests to ask for information
from the server, never to add or alter information already there.

POST, PUT, and DELETE calls can all change the server status in some
way.

TIP: Although REST
requires that URLs be
unique, it does not follow
that each resource must
have a corresponding phys-
ical page. In many cases the
resource is generated by
the web service at the time
of the request—for exam-
ple, by reference to a data-
base.

NOTE: The World Wide
Web itself is a REST applica-
tion.

16_0672329603_ch15.qxd 5/7/07 10:48 PM Page 145

1 5 : Web Services and the REST Protocol

146

Stateless Operation
All server exchanges within a RESTful application should be stateless. By
stateless we mean that the call itself must contain all the information
required by the server to carry out the required task, rather than depend-
ing on some state or context currently present on the server.We cannot,
for example, require the server to refer to information sent in previous
requests.

Using REST in Practice
Let’s expand on the example quoted earlier involving our articles web
service.

Reading a List of Available Articles
The list of available articles is a resource. Because the web service con-
forms to REST principles, we expect the service to provide a URL by
which we can access this resource, for instance:

http://somedomain.com/articles/list.php

Because we are querying information, rather than attempting to
change it, we simply use an HTTP GET request to the preceding URL.
The server may return, for example, the following XML:

<articles>
<article>

<id>173</id>
<title>New Concepts in Ajax</title>
<author>P.D. Johnstone</author>

</article>
<article>

<id>218</id>
<title>More Ajax Ideas</title>
<author>S.N. Braithwaite</author>

</article>
<article>

<id>365</id>
<title>Pushing the Ajax Envelope</title>
<author>Z.R. Lawson</author>

</article>
</articles>

16_0672329603_ch15.qxd 5/7/07 10:48 PM Page 146

Using REST in Practice

147

Retrieving a Particular Article
Because this is another request for information, we are again required
to submit an HTTP GET request. Our web service might perhaps allow us
to make a request to

http://somedomain.com/articles/list.php?id=218

and receive in return

<article>
<id>218</id>
<title>More Ajax Ideas</title>
<author>S.N. Braithwaite</author>

</article>

Uploading a New Article
In this instance we need to issue a POST request rather than a GET
request. In cases similar to the hypothetical one outlined previously, it is
likely that the server will assign the id value of a new article, leaving us
to encode parameter and value pairs for the title and author ele-
ments:

var articleTitle = ‘Another Angle on Ajax’;
var articleAuthor = ‘K.B. Schmidt’;
var url = ‘/articles/upload.php’;
var poststring = “title=”+encodeURI(articleTitle)
➥+”&author=”+encodeURI(articleAuthor);
http.onreadystatechange = callbackFunction();
http.open(‘POST’, url, true);
http.setRequestHeader(“Content-type”,
➥”application/x-www-form-urlencoded”);
http.setRequestHeader(“Content-length”, poststring.length);
http.send(poststring);

Real World REST—the Amazon REST API
Leading online bookseller Amazon.com makes available a set of REST
web services to help developers integrate Amazon browsing and shop-
ping facilities into their web applications.

By first creating a URL containing parameter/value pairs for the required
search parameters (such as publisher, sort order, author, and so on) and
then submitting a GET request to this URL, the Amazon web service can
be persuaded to return an XML document containing product details.
We may then parse that XML to create DOM objects for display in a web

NOTE: Amazon.com often
refers to the REST protocol
as XML-over-HTTP or
XML/HTTP.

16_0672329603_ch15.qxd 5/7/07 10:48 PM Page 147

1 5 : Web Services and the REST Protocol

148

page or to provide data for further processing as required by our appli-
cation.

TIP: Amazon requires that you obtain a developer’s token to develop
client applications for its web services. You will need this token in con-
structing REST requests to Amazon’s web services. You can also obtain an
Amazon Associate’s ID to enable you to earn money by carrying Amazon
services on your website. See http://www.amazon.com for details.

Let’s see this in practice by developing a REST request to return a list of
books. Many types of searches are possible, but in this example, we
request a list of books published by Sams.

We start to construct the GET request with the base URL:

$url = ‘http://xml.amazon.com/onca/xml3’;

We then need to add a number of parameter/value pairs to complete
the request:

$assoc_id = “XXXXXXXXXX”; // your Amazon Associate’s ID
$dev_token = “ZZZZZZZZZZ”; // Your Developer Token
$manuf = “Sams”;
$url = “http://xml.amazon.com/onca/xml3”;
$url .= “?t=”.$assoc_id;
$url .= “&dev-t=”.$dev_token;
$url .= “&ManufacturerSearch=”.$ manuf;
$url .= “&mode=books”;
$url .= “&sort=+salesrank”;
$url .= “&offer=All”;
$url .=”&type=lite”;
$url .= “&page=1”;
$url .= “&f=xml”;

Submitting this URL, we receive an XML file containing details of all
matching books. I won’t reproduce the whole file here (there are more
than 5,000 titles!), but Listing 15.1 shows an extract from the XML file,
including the first book in the list.

LISTING 15.1 Example of XML Returned by Amazon Web

Service
<?xml version=”1.0” encoding=”UTF-8” ?>
<ProductInfo xmlns:xsi=”http://www.w3.org/

➥2001/XMLSchema-instance”
➥ xsi:noNamespaceSchemaLocation

16_0672329603_ch15.qxd 5/7/07 10:48 PM Page 148

Using REST in Practice

149

➥=”http://xml.amazon.com/schemas3/dev-lite.xsd”>
<Request>
<Args>
<Arg value=”Mozilla/4.0 (compatible; MSIE 6.0;

➥Windows NT 5.1; SV1; .NET CLR 1.1.4322)”
➥ name=”UserAgent” />
<Arg value=”0G2CGCT7MRWB37PXAS4B” name=”RequestID” />
<Arg value=”All” name=”offer” />
<Arg value=”us” name=”locale” />
<Arg value=”1” name=”page” />
<Arg value=”ZZZZZZZZZZZ” name=”dev-t” />
<Arg value=”XXXXXXXXXXX” name=”t” />
<Arg value=”xml” name=”f” />
<Arg value=”books” name=”mode” />
<Arg value=”Sams” name=”ManufacturerSearch” />
<Arg value=”lite” name=”type” />
<Arg value=”salesrank” name=”sort” />
</Args>
</Request>
<TotalResults>5051</TotalResults>
<TotalPages>506</TotalPages>
<Details url=”http://www.amazon.com/exec/obidos/ASIN/

➥0672327236/themousewhisp-20?dev-t=
➥1WPTTG90FS816BXMNFG2%26camp=2025%26link_code=xm2”>
<Asin>0672327236</Asin>
<ProductName>Sams Teach Yourself Microsoft SharePoint

➥2003 in 10 Minutes (Sams Teach Yourself
➥in 10 Minutes)</ProductName>
<Catalog>Book</Catalog>
<Authors>
<Author>Colin Spence</Author>
<Author>Michael Noel</Author>
</Authors>
<ReleaseDate>06 December, 2004</ReleaseDate>
<Manufacturer>Sams</Manufacturer>
<ImageUrlSmall>http://images.amazon.com/images/P/

➥0672327236.01.THUMBZZZ.jpg</ImageUrlSmall>
<ImageUrlMedium>http://images.amazon.com/images/P/

➥0672327236.01.MZZZZZZZ.jpg</ImageUrlMedium>
<ImageUrlLarge>http://images.amazon.com/images/P/

➥0672327236.01.LZZZZZZZ.jpg</ImageUrlLarge>
<Availability>Usually ships in 24 hours</Availability>
<ListPrice>$14.99</ListPrice>
<OurPrice>$10.19</OurPrice>
<UsedPrice>$9.35</UsedPrice>
</Details>

16_0672329603_ch15.qxd 5/7/07 10:48 PM Page 149

1 5 : Web Services and the REST Protocol

150

Clearly we can now process this XML document in any way we want.
For example, Lesson 14,“Returning Data as XML,” discussed how to use
JavaScript DOM methods to select information from the XML docu-
ment and place it in page elements added to the DOM of our docu-
ment.

REST and Ajax
You know already that the XMLHTTPRequest object has methods that
allow you to directly deal with HTTP request types and URLs.

Accessing RESTful web services is therefore simplified to a great extent.
Because you know that each resource exposed by the web service API
has a unique URL, and that the methods made available by the service
are standard HTTP methods, it becomes a simple matter to construct
the required XMLHTTPRequest calls.

The prospect of being able to access a wide variety of web services
from within Ajax applications, and use the returned information within
those applications, is attractive—even more so if you can use a consis-
tent and simple interface protocol.

Summary
This lesson introduced the concept of web services and the principles
underlying the REST protocol.

REST requires that all resources be made accessible via unique URLs
and that all required actions can be carried out on those resources by
means of the standard HTTP methods. This makes RESTful web services
interface comfortably with Ajax applications, due to the
XMLHTTPRequest object having methods that directly reference URLs
and HTTP methods to create server requests.

Lesson 16 discusses a different style of web service using SOAP and
how it relates to Ajax development.

16_0672329603_ch15.qxd 5/7/07 10:48 PM Page 150

Web Services Using SOAP

In this lesson you will learn about using web services with the SOAP
protocol.

Introducing SOAP (Simple Object
Access Protocol)
In Lesson 15,“Web Services and the REST Protocol,” we discussed web services and
in particular saw how the REST (Representational State Transfer) protocol can be
used to provide a consistent application programming interface (API) to such ser-
vices.

REST is a good example of a protocol designed to operate with resource-oriented
services, those that provide a simple mechanism to locate a resource and a set of
basic methods that can manipulate that resource. In a resource-oriented service,
those methods normally revolve around creating, retrieving, modifying, and delet-
ing pieces of information.

In the case of REST, the methods are those specified in the HTTP specifications—
GET, POST, PUT, and DELETE.

In certain cases, however, we are more interested in the actions a web service can
carry out than in the resources it can control. We might perhaps call such services
action-oriented. In these situations the resources themselves may have some
importance, but the key issues concern the details of the activities undertaken by
the service.

Perhaps the most popular and widely used protocol for designing action-oriented
web services is SOAP, the Simple Object Access Protocol.

16

17_0672329603_ch16.qxd 5/7/07 10:48 PM Page 151

1 6 : Web Services Using SOAP

152

This lesson looks at SOAP, comparing and contrasting it where appropri-
ate with the REST protocol discussed in Lesson 15.

The Background of the SOAP Protocol
SOAP began in the late 1990s when XML was itself a fledgling web tech-
nology and was offered to the W3C in 2000. SOAP and another XML-
based web service protocol, called XML-RPC, had a joint upbringing.

SOAP was designed essentially as a means of packaging remote proce-
dure calls (requests to invoke programs on remote machines) into XML
wrappers in a standardized way.

Numerous enterprises contributed to the early development of SOAP,
including IBM, Microsoft, and Userland. The development of SOAP later
passed to the XML Protocols Working Group of the W3C.

The SOAP Protocol
SOAP is an XML-based messaging protocol. A SOAP request is an XML
document with the following main constituents:

■ An envelope that defines the document as a SOAP request

■ A body element containing information about the call and the
expected responses

■ Optional header and fault elements that carry supplementary
information

Let’s look at a skeleton SOAP request:

<?xml version=”1.0”?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle=
➥”http://schemas.xmlsoap.org/soap/encoding/”>
<SOAP-ENV:Header>
... various commands . . .

</SOAP-ENV:Header>
<SOAP-ENV:Body>
... various commands . . .
<SOAP-ENV:Fault>

... various commands . . .
</SOAP-ENV:Fault>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

NOTE: The full name
Simple Object Access
Protocol has been dropped
in the later versions of the
SOAP specifications, as it
was felt that the direction of
the project had shifted and
the name was no longer
appropriate. The protocol
continues to be referred to
as SOAP.

TIP: You can get the latest
information on the SOAP
specification from the W3C
website at http://www.w3.
org/2000/xp/Group/.

17_0672329603_ch16.qxd 5/7/07 10:48 PM Page 152

The SOAP Protocol

153

Note that the SOAP request is an XML file, which has as its root the
Envelope element.

The first line of the Envelope is

<SOAP-ENV:Envelope xmlns:SOAP-EN =
➥”http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle=
➥”http://schemas.xmlsoap.org/soap/encoding/”>

This line declares the xmlns:soap namespace, which must always have the
value xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”.

The encodingStyle attribute contains information defining the data
types used in the message.

Next appears the Header element, which is optional but must, if present, be
the first element in the message. Attributes defined in the Header element
define how the message is to be processed by the receiving application.

The body element of the SOAP message contains the message intended
for the final recipient.

The serialized method arguments are contained within the SOAP
request’s body element. The call’s XML element must immediately follow
the opening XML tag of the SOAP body and must have the same name
as the remote method being called.

The body may also contain a Fault element (but no more than one).
This element is defined in the SOAP specification and is intended to
carry information about any errors that may have occurred. If it exists, it
must be a child element of the body element. The Fault element has
various child elements including faultcode, faultstring, and detail,
which contain specific details of the fault condition.

Code Example of a SOAP Request
Let’s see how a typical SOAP request might look:

<?xml version=”1.0”?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=
➥”http://schemas.xmlsoap.org/soap/envelope/” SOAP
➥ENV:encodingStyle=”http://schemas.xmlsoap.org/
➥soap/encoding/”>
<SOAP-ENV:Body>

<m:GetInvoiceTotal xmlns:m=
➥”http://www.somedomain.com/invoices”>

<m:Invoice>77293</m:Invoice>
</m:GetInvoiceTotal>

TIP: A namespace is an
identifier used to uniquely
group a set of XML ele-
ments or attributes, provid-
ing a means to qualify their
names, so that names in
other schemas do not con-
flict with them.

17_0672329603_ch16.qxd 5/7/07 10:48 PM Page 153

1 6 : Web Services Using SOAP

154

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In the preceding example, the m:GetInvoiceTotal and m:Invoice elements
are specific to the particular application, and are not part of SOAP itself.
These elements constitute the message contained in the SOAP envelope.

Let’s see what the SOAP response from the web service might look like:

<?xml version=”1.0”?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=
➥”http://schemas.xmlsoap.org/soap/envelope/” SOAP
➥ENV:encodingStyle=”http://schemas.xmlsoap.org/
➥soap/encoding/”>
<SOAP-ENV:Body>

<m:ShowInvoiceTotal xmlns:m=
➥”http://www.somedomain.com/invoices”>

<m:InvoiceTotal>3295.00</m:InvoiceTotal>
</m:ShowInvoiceTotal>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sending the SOAP Request Via HTTP
A SOAP message may be transmitted via HTTP GET or HTTP POST. If sent
via HTTP POST, the SOAP message requires at least one HTTP header to be
set; this defines the Content-Type:

Content-Type: text/xml

After a successful SOAP exchange, you would expect to receive the SOAP
response preceded by an appropriate HTTP header:

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: yyy
<?xml version=”1.0”?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=
➥”http://schemas.xmlsoap.org/soap/envelope/” SOAP-
ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encod-
ing/”>
<SOAP-ENV:Body>

<m:ShowInvoiceTotal xmlns:m=
➥”http://www.somedomain.com/invoices”>

<m:InvoiceTotal>3295.00</m:InvoiceTotal>
</m:ShowInvoiceTotal>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

17_0672329603_ch16.qxd 5/7/07 10:48 PM Page 154

Using Ajax and SOAP

155

Using Ajax and SOAP
To use SOAP with Ajax, you need to perform a number of separate steps:

1. Create the SOAP envelope.

2. Serialize the application-specific information into XML.

3. Create the SOAP body containing a serialized version of your
application-specific code.

4. Send an HTTP request via the XMLHTTPRequest object, containing
the SOAP message as a payload.

The callback function then needs to be responsible for unpacking the
SOAP response and parsing the XML contained inside it.

Code Example
How might the resulting code look? Let’s see an example using the ficti-
tious SOAP web service of the previous example:

var invoiceno = ‘77293’;
http.open(“POST”, “http://somedomain.com/invoices”,true);
http.onreadystatechange=function() {
if (http.readyState==4) {
if(http.status==200) {
alert(‘The server said: ‘+ http.responseText)
}

}
}
http.setRequestHeader(“Content-Type”, “text/xml”)
var mySOAP = ‘<?xml version=”1.0”?>’
+ ‘<SOAP-ENV:Envelope xmlns:SOAP-ENV=

➥”http://schemas.xmlsoap.org/soap/envelope/”’
+ ‘ SOAP-ENV:encodingStyle=

➥”http://schemas.xmlsoap.org/soap/encoding/”>’
+ ‘<SOAP-ENV:Body>’
+ ‘<m:GetInvoiceTotal xmlns:m=

➥”http://www.somedomain.com/invoices”>’
+

‘<m:Invoice>’+invoiceno+’</m:Invoice></m:GetInvoiceTotal>’
+ ‘</SOAP-ENV:Body></SOAP-ENV:Envelope>’;

http.send(mySOAP);

Here we have constructed the entire SOAP envelope in a JavaScript
string variable, before passing it to the send() function of the
XMLHTTPRequest object.

17_0672329603_ch16.qxd 5/7/07 10:48 PM Page 155

1 6 : Web Services Using SOAP

156

The value returned from the server needs to be parsed first to remove
the SOAP response wrapper and then to recover the application data
from the body section of the SOAP message.

Reviewing SOAP and REST
Over the course of this lesson and Lesson 15, we’ve looked at the REST
and SOAP approaches to using web services.

Although other web services protocols exist, a significant REST versus
SOAP argument has been waged among developers over the last cou-
ple of years.

I don’t intend to join that argument in this book. Instead, let’s summa-
rize the similarities and differences between the two approaches:

■ REST leverages the standard HTTP methods of PUT, GET, POST, and
DELETE to create remote procedure calls having comparable
functions. Web service implementations using the REST protocol
seem particularly suited toward resource-based services, where
the most-used methods generally involve creating, editing,
retrieving, and deleting information. On the downside, REST
requires a little more knowledge about the HTTP protocol.

■ The SOAP protocol adds substantial complexity, with the necessi-
ty to serialize the remote call and then construct a SOAP envelope
to contain it. Further work arises from the need to “unpack” the
returned data from its SOAP envelope before parsing the data.
These extra steps can also have an impact on performance, with
SOAP often being a little slower in operation than REST for a simi-
lar task. SOAP does, however, make a more complete job of sepa-
rating the remote procedure call from its method of transport, as
well as add a number of extra features and facilities, such as the
Fault element and type checking via namespaces.

Summary
In this lesson we considered SOAP, the Simple Object Access Protocol.
SOAP is a popular web service protocol with a rather different
approach to the REST protocol utilized in Lesson 15.

Either style of web service can be used via XMLHTTPRequest requests,
though they differ somewhat in the complexity of the code involved.

17_0672329603_ch16.qxd 5/7/07 10:48 PM Page 156

A JavaScript Library for
Ajax

In this lesson you will learn how to encapsulate some of the techniques studied up to
now into a small JavaScript library that you can call from your applications.

An Ajax Library
Through the lessons and code examples up to now, we have developed a number
of JavaScript code techniques for implementing the various parts of an Ajax appli-
cation. Among these methods are:

■ A method for generating an instance of the XMLHTTPRequest object, which
works across the range of currently popular browsers

■ Routines for building and sending GET and POST requests via the
XMLHTTPRequest object

■ Techniques for avoiding unwanted caching of GET requests

■ A style of callback function that checks for correct completion of the
XMLHTTPRequest call prior to carrying out your wishes

■ Methods of providing user feedback

■ Techniques for dealing with text data returned in responseText

■ Techniques for dealing with XML information returned in responseXML

17

18_0672329603_ch17.qxd 5/7/07 10:48 PM Page 157

1 7 : A JavaScript Library for Ajax

158

In addition, you saw in Lesson 13,“AHAH—Asynchronous HTML and
HTTP,” how some of these methods could be abstracted into a small
JavaScript “library” (in that case containing only two functions).

This lesson extends that idea to build a more fully featured library that
allows Ajax facilities to be added simply to an HTML page with minimal
additional code.

Of necessity, our Ajax library will not be as complex or comprehensive
as the open source projects described later on; however, it will be com-
plete enough to use in the construction of functional Ajax applications.

Reviewing myAHAHlib.js
Listing 17.1 shows the code of myAHAHlib.js, reproduced from Lesson 13.

LISTING 17.1 myAHAHlib.js
function callAHAH(url, pageElement, callMessage) {

document.getElementById(pageElement).innerHTML
➥ = callMessage;

try {
req = new XMLHttpRequest(); /* e.g. Firefox */
} catch(e) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);
/* some versions IE */
} catch (e) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);
/* some versions IE */
} catch (E) {
req = false;
}

}
}
req.onreadystatechange =

➥function() {responseAHAH(pageElement);};
req.open(“GET”,url,true);
req.send(null);

}

function responseAHAH(pageElement) {
var output = ‘’;
if(req.readyState == 4) {

if(req.status == 200) {

18_0672329603_ch17.qxd 5/7/07 10:48 PM Page 158

Implementing Our Library

159

output = req.responseText;
document.getElementById(pageElement).innerHTML

➥ = output;
}

}
}

Let’s consider how we may extend the capabilities of this library:

■ There is currently support only for HTTP GET requests. It would be
useful to be able to support at least the HTTP POST request too,
especially if you intend to build applications using the REST pro-
tocol (as described in Lesson 15,“Web Services and the REST
Protocol”).

■ The library currently only deals with text information returned via
responseText and has no means to deal with responseXML.

Implementing Our Library
Having identified what needs to be done, we’ll now put together a
more capable Ajax library.

Creating XMLHTTPRequest Instances
Let’s turn our attention first to the routine for creating instances of the
XMLHTTPRequest object.

Currently this function is coupled tightly with the routine for construct-
ing and sending HTTP GET requests. Let’s decouple the part responsible
for the creation of the XMLHTTPRequest instance and put it into a func-
tion of its own:

function createREQ() {
try {

req = new XMLHttpRequest(); /* e.g. Firefox */
} catch(err1) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);
/* some versions IE */
} catch (err2) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);
/* some versions IE */
} catch (err3) {

18_0672329603_ch17.qxd 5/7/07 10:48 PM Page 159

1 7 : A JavaScript Library for Ajax

160

req = false;
}

}
}
return req;

}

We can now create XMLHTTPRequest object instances by simply calling
the following function:

var myreq = createREQ();

HTTP GET and POST Requests
We’ll start with the GET request because we already support that type
of request:

function requestGET(url, query, req) {
myRand=parseInt(Math.random()*99999999);
req.open(“GET”,url+’?’+query+’&rand=’+myRand,true);
req.send(null);
}

To this request we must pass as arguments the URL to which the
request will be sent and the identity of the XMLHTTPRequest object
instance.

We could exclude the query argument because, in a GET request, it’s
encoded into the URL. We keep the two arguments separate here to
maintain a similar interface to the function for making POST requests.

The query argument must be suitably encoded prior to calling the
function, though the cache-busting random element is added by the
function.

Next, the POST function:

function requestPOST(url, query, req) {
req.open(“POST”, url,true);
req.setRequestHeader(‘Content-Type’,
➥’application/x-www-form-urlencoded’);
req.send(query);
}

18_0672329603_ch17.qxd 5/7/07 10:48 PM Page 160

Implementing Our Library

161

The Callback Function
How do we deal with the callback function? We are going to add a fur-
ther function:

function doCallback(callback,item) {
eval(callback + ‘(item)’);
}

This function uses JavaScript’s eval() function to execute another
function whose name is passed to it as an argument, while also passing
to that function an argument of its own, via item.

Let’s look at how these functions might interact when called from an
event handler:

function doAjax(url,query,callback,reqtype,getxml) {
// create the XMLHTTPRequest object instance
var myreq = createREQ();
myreq.onreadystatechange = function() {
if(myreq.readyState == 4) {

if(myreq.status == 200) {
var item = myreq.responseText;
if(getxml==1) {

item = myreq.responseXML;
}

doCallback(callback, item);
}

}
}
if(reqtype==’post’) {
requestPOST(url,query,myreq);
} else {
requestGET(url,query,myreq);
}
}

Our function doAjax now takes five arguments:

■ url—The target URL for the Ajax call

■ query—The encoded query string

■ callback—Identity of the callback function

■ reqtype—’post’ or ‘get’

■ getxml—1 to get XML data, 0 for text

Listing 17.2 shows the complete JavaScript source code.

18_0672329603_ch17.qxd 5/7/07 10:48 PM Page 161

1 7 : A JavaScript Library for Ajax

162

LISTING 17.2 The Ajax Library myAJAXlib.js
function createREQ() {
try {

req = new XMLHttpRequest(); /* e.g. Firefox */
} catch(err1) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);

➥ /* some versions IE */
} catch (err2) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);

➥ /* some versions IE */
} catch (err3) {
req = false;
}

}
}
return req;

}

function requestGET(url, query, req) {
myRand=parseInt(Math.random()*99999999);
req.open(“GET”,url+’?’+query+’&rand=’+myRand,true);
req.send(null);
}

function requestPOST(url, query, req) {
req.open(“POST”, url,true);
req.setRequestHeader(‘Content-Type’, ‘application/
➥x-www-form-urlencoded’);
req.send(query);
}

function doCallback(callback,item) {
eval(callback + ‘(item)’);
}

function doAjax(url,query,callback,reqtype,getxml) {
// create the XMLHTTPRequest object instance
var myreq = createREQ();

myreq.onreadystatechange = function() {
if(myreq.readyState == 4) {

if(myreq.status == 200) {
var item = myreq.responseText;
if(getxml==1) {

18_0672329603_ch17.qxd 5/7/07 10:48 PM Page 162

Using the Library

163

item = myreq.responseXML;
}
doCallback(callback, item);

}
}

}
if(reqtype==’post’) {
requestPOST(url,query,myreq);
} else {
requestGET(url,query,myreq);
}
}

Using the Library
To demonstrate the use of the library, we’re going to start with another
simple HTML page, the code for which is shown here:

<html>
<head>
</head>
<body>
<form name=”form1”>
<input type=”button” value=”test”>
</form>
</body>
</html>

This simple page displays only a button labeled “Test”. All the functional-
ity on the form will be created in JavaScript, using our new Ajax library.

The steps required to “Ajaxify” the application are

1. Include the Ajax library myAJAXlib.js in the <head> area of the
page.

2. Write a callback function to deal with the returned information.

3. Add an event handler to the page to invoke the server call.

We’ll start by demonstrating a GET request and using the information
returned in the responseText property. This is similar to the situation
we faced when dealing with AHAH in Lesson 13.

Including the Ajax library is straightforward:

<head>
<script Language=”JavaScript” src=”myAJAXlib.js”></script>

18_0672329603_ch17.qxd 5/7/07 10:48 PM Page 163

1 7 : A JavaScript Library for Ajax

164

Next, we need to define our callback function to deal with the value
stored in the responseText property. For these examples, we’ll simply
display the returned text in an alert:

<head>
<script Language=”JavaScript” src=”myAJAXlib.js”></script>
<script Language=”JavaScript”>
function cback(text) {
alert(text);
}
</script>

Finally, we need to add an event handler call to our button:

onClick=”doAjax(‘libtest.php’,’param=hello’,
➥’cback’,’get’,’0’)”

Our server-side script libtest.php simply echoes back the parameter
sent as the second argument:

<?php
echo “Parameter value was “.$param;
?>

Meanwhile the remaining parameters of the function call declare that
the callback function is called cback, that we want to send an HTTP GET
request, and that we expect the returned data to be in responseText.
Listing 17.3 shows the complete code of our revised HTML page.

LISTING 17.3 HTML Page Rewritten to Call myAJAXlib.js
<html>
<head>
<script Language=”JavaScript” src=”myAJAXlib.js”>
➥</script>
<script Language=”JavaScript”>
function cback(text) {
alert(text);
}
</script>
</head>
<body>
<form name=”form1”>
<input type=”button” value=”test” onClick=
➥”doAjax(‘libtest.php’,’param=hello’,
➥’cback’,’get’,’0’)”>
</form>
</body>
</html>

18_0672329603_ch17.qxd 5/7/07 10:48 PM Page 164

Using the Library

165

Figure 17.1 shows the result of running the program.

FIGURE 17.1 Returning text following an HTTP GET request.

To use the same library to retrieve XML data, we’ll once again use the
server-side script of Lesson 11,“Our First Ajax Application,” which you
may recall delivers the current server time in a small XML document:

<?php
header(‘Content-Type: text/xml’);
echo “<?xml version=\”1.0\” ?><clock1><timenow>”
➥.date(‘H:i:s’).”</timenow></clock1>”;
?>

Our callback function must be modified because we now need to
return the parsed XML. We’ll use some DOM methods that should by
now be familiar:

<script>
function cback(text) {
var servertime = text.getElementsByTagName(“timenow”)[0]
➥.childNodes[0].nodeValue;
alert(‘Server time is ‘+servertime);
}
</script>

The only other thing we need to change is the call to our doAjax()
function:

onClick=”doAjax(‘telltimeXML.php’,’’,’cback’,’post’,’1’)”

Here we have decided to make a POST request. Our server-side script
telltimeXML.php does not require a query string, so in this case the
second argument is left blank. The final parameter has been set to ‘1’
indicating that we expect the server to respond with XML in the prop-
erty responseXML.

Figure 17.2 shows the result of running the program.

18_0672329603_ch17.qxd 5/7/07 10:48 PM Page 165

1 7 : A JavaScript Library for Ajax

166

Extending the Library
The current library might be improved in a number of ways. These will
be left as an exercise for the reader, though in many cases the tech-
niques have been covered elsewhere in the book.

User feedback, for example, has not been addressed; we previously dis-
cussed how the display of suitable text or a graphic image can alert the
user that a request is currently in progress. It would be useful to revise
the library to include the techniques discussed in Lesson 11 and else-
where.

Error handling, too, has been excluded from the code and would prove
a useful addition. For example, it should not be too difficult to modify
the library to detect XMLHTTPRequest status properties other than 200
and output a suitable error message to the user.

Feel free to experiment with the code and see what you can achieve.

Summary
This lesson combined many of the techniques discussed to date to pro-
duce a compact and reusable JavaScript library that can be called sim-
ply from an HTML page.

The code supports both HTTP GET and HTTP POST requests and can
deal with data returned from the server as text or XML.

Using such a library allows Ajax to be introduced to web pages using
relatively small additions to the HTML markup. This not only keeps the
code clean and easy to read but also simplifies the addition of Ajax
facilities to upgrade legacy HTML.

In Lesson 18,“Ajax ‘Gotchas,’” the last lesson of Part III, we’ll discuss
some potential problems and pitfalls awaiting the programmer in
developing Ajax applications.

FIGURE 17.2 Returning the server time in XML via a POST request.

18_0672329603_ch17.qxd 5/7/07 10:48 PM Page 166

Ajax “Gotchas”

In this lesson you’ll learn about some of the common Ajax mistakes and how to avoid
them.

Common Ajax Errors
Ajax has some common pitfalls waiting to catch the unwary developer. In this les-
son, the last lesson of Part III, we’ll review some of these pitfalls and discuss possi-
ble approaches to finding solutions.

The list is not exhaustive, and the solutions offered are not necessarily appropriate
for every occasion. They should, however, provide some food for thought.

The Back Button
All browsers in common use have a Back button on the navigation bar. The brows-
er maintains a list of recently visited pages in memory and allows you to step back
through these to revisit pages you have recently seen.

Users have become used to the Back button as a standard part of the surfing
experience, just as they have with the other facets of the page-based web para-
digm.

Ajax, as you have learned, does much to shake off the idea of web-based informa-
tion being delivered in separate, page-sized chunks; with an Ajax application, you
may be able to change page content over and over again without any thought of
reloading the browser display with a whole new page.

18

19_0672329603_ch18.qxd 5/7/07 10:48 PM Page 167

1 8 : Ajax “Gotchas”

168

What then of the Back button?

This issue has caused considerable debate among developers recently.
There seem to be two main schools of thought:

■ Create a means of recording state programmatically, and use that
to re-create a previous state when the Back button is pressed.

■ Persuade users that the Back button is no longer necessary.

Artificially re-creating former states is indeed possible but adds a great
deal of complexity to Ajax code and is therefore somewhat the
province of the braver programmer!

Although the latter option sounds a bit like it’s trying to avoid the issue,
it does perhaps have some merit. If you use Ajax to re-create desktop-
like user interfaces, it’s worthy of note that desktop applications gener-
ally don’t have—or need—a Back button because the notion of sepa-
rate “pages” never enters the user’s head!

Bookmarking and Links
This problem is not unrelated to the Back button issue.

When you bookmark a page, you are attempting to save a shortcut to
some content. In the page-based metaphor, this is not unreasonable;
although pages can have some degree of dynamic content, being able
subsequently to find the page itself usually gets us close enough to
seeing what we saw on our previous visit.

Ajax, however, can use the same page address for a whole application,
with large quantities of dynamic content being returned from the serv-
er in accordance with a user’s actions.

TIP: JavaScript has its own equivalent of the Back button written into
the language. The statements

onClick = “history.back()”

and

onClick = “history.go(-1)”

both mimic the action of clicking the Back button once.

19_0672329603_ch18.qxd 5/7/07 10:48 PM Page 168

Making Ajax Degrade Elegantly

169

What happens when you want to bookmark a particular screen of infor-
mation and/or pass that link to a friend or colleague? Merely using the
URL of the current page is unlikely to produce the results you require.

Although it may be difficult to totally eradicate this problem, it may be
possible to alleviate it somewhat by providing permanent links to spe-
cially chosen states of an application.

Telling the User That Something
Is Happening
This is another issue somewhat related to the change of interface style
away from separate pages.

The user who is already familiar with browsing web pages may have
become accustomed to program activity coinciding with the loading of
a new or revised page.

Many Ajax applications therefore provide some consistent visual clue
that activity is happening; perhaps a stationary graphic image might be
replaced by an animated version, the cursor style might change, or a
pop-up message appear. Some of these techniques have been men-
tioned in some of the lessons in this book.

Making Ajax Degrade Elegantly
The lessons in this book have covered the development of Ajax applica-
tions using various modern browsers. It is still possible, though, that a
user might surprise you by attempting to use your application with a
browser that is too old to support the necessary technologies.
Alternatively, a visitor’s browser may have JavaScript and/or ActiveX dis-
abled (for security or other reasons).

It is unfortunate if an Ajax application should break down under these
conditions.

At the least, the occurrence of obvious errors (such as a failure to create
an instance of the XMLHTTPRequest object) should be reported to the
user. If the Ajax application is so complex that it cannot be made to
automatically revert to a non-Ajax mode of operation, perhaps the user
can at least be redirected to a non-Ajax version of the application.

19_0672329603_ch18.qxd 5/7/07 10:48 PM Page 169

1 8 : Ajax “Gotchas”

170

Dealing with Search Engine
Spiders
Search engines gather information about websites through various means,
an important one being the use of automated programs called spiders.

Spiders, as their name suggests,“crawl the web” by reading web pages
and following links, building a database of content and other relevant
information about particular websites. This database, better known as
an index, is queried by search engine visitors using their key words and
phrases and returns suggestions of relevant pages for them to visit.

This can create a problem for highly dynamic sites, which rely on user
interaction (rather than passive surfing) to invoke the loading of new
content delivered on-demand by the server. The visiting spider may not
have access to the content that would be loaded by dynamic means
and therefore never gets to index it.

The problem can be exacerbated further by the use of Ajax, with its ten-
dency to deliver even more content in still fewer pages.

It would seem wise to ensure that spiders can index a static version of
all relevant content somewhere on the site. Because spiders follow links
embedded in pages, the provision of a hypertext linked site map can be
a useful addition in this regard.

Pointing Out Active Page
Elements
Without careful design, it may not be apparent to users which items on
the page they can click on or otherwise interface with to make some-
thing happen.

TIP: You can detect whether JavaScript is unavailable by using the

<noscript> … </noscript> tags in your HTML page. Statements

between these tags are evaluated only if JavaScript is NOT available:

<noscript>
JavaScript is not available in this browser.

Please go HERE for
the HTML-only version.

</noscript>

19_0672329603_ch18.qxd 5/7/07 10:48 PM Page 170

Don’t Use Ajax Where It’s Inappropriate

171

It is worth trying to use a consistent style throughout an application to
show which page elements cause server requests or some other
dynamic activity. This is somewhat reminiscent of the way that hyper-
text links in HTML pages tend to be styled differently than plain text so
that it’s clear to a user that they perform an additional function.

At the expense of a little more coding effort, instructions and informa-
tion about active elements can be incorporated in ToolTip-style pop-
ups. This is, of course, especially important when a click on an active link
can have a major effect on the application’s state. Figure 18.1 shows an
example of such a pop-up information box.

FIGURE 18.1 Pop-up information helps users to understand interfaces.

Don’t Use Ajax Where It’s
Inappropriate
Attractive as Ajax undoubtedly is for improving web interfaces, you
need to accept that there are many situations where the use of Ajax
detracts from the user experience instead of adding to it.

This is especially true where the page-based interface metaphor is per-
fectly adequate for, perhaps even of greater relevance to, the content and
style of the site.Text-based sites with subjects split conveniently into
chapter-styled pages can often benefit as much from intelligently
designed hyperlinking as they can from the addition of Ajax functionality.

19_0672329603_ch18.qxd 5/7/07 10:48 PM Page 171

1 8 : Ajax “Gotchas”

172

Small sites in particular may struggle to get sufficient benefit from an
Ajax interface to balance the associated costs of additional code and
added complexity.

Security
Ajax does not itself seem to present any security issues that are not
already present when designing web applications. It is notable, howev-
er, that Ajax-enhanced applications tend to contain more client-side
code than they did previously.

Because the content of client-side code can be viewed easily by any user
of the application, it is important that sensitive information not be
revealed within it. In this context, sensitive information is not limited to
such things as usernames and passwords (though they are, of course,
sensitive), but also includes business logic. Make the server-side scripts
responsible for carrying out such issues as database connection. Validate
data on the server before applying it to any important processing.

Test Code Across Multiple
Platforms
It will be clear from the content of this book that the various browsers
behave differently in their implementation of JavaScript. The major dif-
ference in the generation of XMLHTTPRequest object instances between
Microsoft and non-Microsoft browsers is a fundamental example, but
there is a host of minor differences, too.

The DOM, in particular, is handled rather differently, not only between
browsers but also between different versions of the same browser. CSS
implementation is another area where minor differences still proliferate.

Although it has always been important to test new applications on vari-
ous browsers, this is perhaps more important than ever when faced
with the added complexity of Ajax applications.

Hopefully browsers will continue to become more standards-compliant,
but until then test applications on as many different platforms and with
as many different browsers as possible.

19_0672329603_ch18.qxd 5/7/07 10:48 PM Page 172

Some Programming Gotchas

173

Ajax Won’t Cure a Bad Design
All the dynamic interactivity in the world won’t correct a web applica-
tion with a design that is fundamentally flawed.

All the tenets of good web design still apply to Ajax applications:

■ Write for multiple browsers and validate your code.

■ Comment and document your code well so that you can debug it
later.

■ Use small graphics wherever possible so that they load quickly.

■ Make sure that your choices of colors, backgrounds, font sizes,
and styles don’t make pages difficult to read.

Some Programming Gotchas
Some of these have been alluded to in various lessons, but it’s worth
grouping them here. These are probably the most common program-
ming issues that Ajax developers bump up against at some time or
other!

Browser Caching of GET Requests
Making repeated GET requests to the same URL can often lead to the
response coming not from the server but from the browser cache. This
problem seems especially significant when using Internet Explorer.

Although in theory this can be cured with the use of suitable HTTP
headers, in practice the cache can be stubborn.

An effective way of sidestepping this problem is to add a random ele-
ment to the URL to which the request is sent; the browser interprets
this as a request to a different page and returns a server page rather
than a cached version.

In the text we achieved this by adding a random number. Another
approach favored by many is to add a number derived from the time,
which will of course be different every time:

var url = “serverscript.php”+”?rand=”+new Date().getTime();

TIP: The W3C offers a
free online validator at
http://validator.w3.org/.

19_0672329603_ch18.qxd 5/7/07 10:48 PM Page 173

1 8 : Ajax “Gotchas”

174

Permission Denied Errors
Receiving a Permission Denied error usually means that you have fallen
foul of the security measure preventing cross-domain requests from
being made by an XMLHTTPRequest object.

Calls must be made to server programs existing in the same domain as
the calling script.

Escaping Content
When constructing queries for GET or POST requests, remember to
escape variables that could contain spaces or other nontext characters.
In the
following code, the value idValue has been collected from a text input
field on a form, so we escape it to ensure correct encoding:

http.open(“GET”, url + escape(idValue) + “&rand=” +
myRandom, true);

Summary
Ajax undoubtedly has the potential to greatly improve web interfaces.
However, the paradigm change from traditional page-based interfaces
to highly dynamic applications has created a few potholes for develop-
ers to step into. In this lesson we’ve tried to round up a few of the
better-known ones.

Some of these issues have already been encountered in the other
lessons, whereas others will perhaps not become apparent until you
start to develop real-world applications.

This lesson concludes Part III,“More Complex Ajax Technologies.” If you
have followed the lessons through to this point, you will by now have a
good grip on the fundamentals of the XMLHTTPRequest object,
JavaScript, XML, and the Document Object Model, and be capable of
creating useful Ajax applications from first principles.

Fortunately, you don’t have to always work from first principles. Many
open source and commercial projects on the Internet offer a wide vari-
ety of Ajax frameworks, tools, and resources.

Part IV,“Commercial and Open Source Ajax Resources,” concludes our
journey through Ajax development by looking at some of these
resources and their capabilities.

CAUTION: Be careful
that the domain is written
in exactly the same way.
Somedomain.com may be
interpreted as referring to
a different domain from
www.somedomain.com,
and permission will be
denied.

19_0672329603_ch18.qxd 5/7/07 10:48 PM Page 174

The prototype.js Toolkit

In this lesson you will learn about the prototype.js JavaScript library and how it can
reduce the work required for building capable Ajax applications.

Introducing prototype.js
Part IV,“Commercial and Open Source Ajax Resources,” looks at some available
code libraries and frameworks for Ajax development.

We begin this lesson with Sam Stephenson’s prototype.js, a popular JavaScript
library containing an array of functions useful in the development of cross-brows-
er JavaScript routines, and including specific support for Ajax. You’ll see how your
JavaScript code can be simplified by using this library’s powerful support for DOM
manipulation, HTML forms, and the XMLHTTPRequest object.

The latest version of the prototype.js library can be downloaded from http://
prototype.conio.net/.

Including the library in your web application is simple, just include in the <head>
section of your HTML document the line:

<script src=”prototype.js” Language=”JavaScript”
➥type=”text/javascript”></script>

19

20_0672329603_ch19.qxd 5/7/07 10:47 PM Page 175

1 9 : The prototype.js Toolkit

176

prototype.js contains a broad range of functions that can make writing
JavaScript code quicker, and the resulting scripts cleaner and easier to
maintain.

The library includes general-purpose functions providing shortcuts to
regular programming tasks, a wrapper for HTML forms, an object to
encapsulate the XMLHTTPRequest object, methods and objects for sim-
plifying DOM tasks, and more.

Let’s take a look at some of these tools.

The $() Function
$() is essentially a shortcut to the getElementById() DOM method.
Normally, to return the value of a particular element you would use an
expression such as

var mydata = document.getElementById(‘someElementID’);

The $() function simplifies this task by returning the value of the ele-
ment whose ID is passed to it as an argument:

var mydata = $(‘someElementID’);

Furthermore, $() (unlike getElementById()) can accept multiple ele-
ment IDs as an argument and return an array of the associated element
values. Consider this line of code:

mydataArray = $(‘id1’,’id2’,’id3’);

In this example:

■ mydataArray[0] contains value of element with ID id1.

■ mydataArray[1] contains value of element with ID id2.

■ mydataArray[2] contains value of element with ID id3.

The $F() Function
The $F() function returns the value of a form input field when the
input element or its ID is passed to it as an argument. Look at the fol-
lowing HTML snippet:

<input type=”text” id=”input1” name=”input1”>
<select id=”input2” name=”input2”>
<option value=”0”>Option A</option>
<option value=”1”>Option B</option>
<option value=”2”>Option C</option>
</select>

ON THE CD: Version
1.5.1 of Prototype is includ-
ed on the Ajax Starter Kit
CD. If you download a dif-
ferent version, check the
documentation to see
whether there are differ-
ences between your ver-
sion and the one described
here.

20_0672329603_ch19.qxd 5/7/07 10:47 PM Page 176

Introducing prototype.js

177

Here we could use

$F(‘input1’)

to return the value in the text box and

$F(‘input2’)

to return the value of the currently selected option of the select box.
The $F() function works equally well on check box and text area input
elements, making it easy to return the element values regardless of the
input element type.

The Form Object
prototype.js defines a Form object having several useful methods for
simplifying HTML form manipulation.

You can return an array of a form’s input fields by calling the
getElements() method:

inputs = Form.getElements(‘thisform’);

The serialize() method allows input names and values to be format-
ted into a URL-compatible list:

inputlist = Form.serialize(‘thisform’);

Using the preceding line of code, the variable inputlist would now
contain a string of serialized parameter and value pairs:

field1=value1&field2=value2&field3=value3…

Form.disable(‘thisform’) and Form.enable(‘thisform’) each do
exactly what it says on the tin.

The Try.these() Function
Previous lessons discussed the use of exceptions to enable you to catch
runtime errors and deal with them cleanly. The Try.these() function
provides a convenient way to encapsulate these methods to provide a
cross-browser solution where JavaScript implementation details differ:

return Try.these(function1(),function2(),function3(), …);

The functions are processed in sequence, operation moving on to the
next function when an error condition causes an exception to be
thrown. Operation stops when any of the functions completes success-
fully, at which point the function returns true.

20_0672329603_ch19.qxd 5/7/07 10:47 PM Page 177

1 9 : The prototype.js Toolkit

178

Applying this function to the creation of an XMLHTTPRequest instance
shows the simplicity of the resulting code:

return Try.these(
function() {return new ActiveXObject(‘Msxml2.XMLHTTP’)},
function() {return new ActiveXObject(‘Microsoft.XML-

HTTP’)},
function() {return new XMLHttpRequest()}
)

Wrapping XMLHTTPRequest—the
Ajax Object
prototype.js defines an Ajax object designed to simplify the develop-
ment of your JavaScript code when building Ajax applications. This
object has a number of classes that encapsulate the code you need to
send server requests, monitor their progress, and deal with the
returned data.

Ajax.Request

Ajax.Request deals with the details of creating an instance of the
XMLHTTPRequest object and sending a correctly formatted request.
Calling it is straightforward:

var myAjax = new Ajax.Request(url, {method: ‘post’,
➥parameters: mydata, onComplete: responsefunction});

In this call, url defines the location of the server resource to be called,
method may be either post or get, mydata is a serialized string contain-
ing the request parameters, and responsefunction is the name of the
callback function that handles the server response.

The onComplete parameter is one of several options corresponding to
the possible values of the XMLHTTPRequest readyState properties, in
this case a readyState value of 4 (Complete). You might instead specify
that the callback function should execute during the prior phases
Loading, Loaded, or Interactive, by using the associated parameters
onLoading, onLoaded, or onInteractive.

There are several other optional parameters, including

asynchronous:false

to indicate that a server call should be made synchronously. The default
value for the asynchronous option is true.

NOTE: You may want to
compare this code snippet
with Listing 8.1 to see just
how much code complexi-
ty has been reduced and
readability improved.

TIP: The second argument
is constructed using a nota-
tion often called JSON
(JavaScript Object Notation).
The argument is built up
from a series of parameter:
value pairs, the whole con-
tained within braces.The
parameter values them-
selves may be JSON objects,
arrays, or simple values.

JSON is popular as a data
interchange protocol due to
its ease of construction, ease
of parsing, and language
independence.You can find
out more about it at
http://www.json.org.

20_0672329603_ch19.qxd 5/7/07 10:47 PM Page 178

Wrapping XMLHTTPRequest—the Ajax Object

179

Ajax.Updater

On occasions when you require the returned data to update a page ele-
ment, the Ajax.Updater class can simplify the task. All you need to do is
to specify which element should be updated:

var myAjax = new Ajax.Updater(elementID, url, options);

The call is somewhat similar to that for Ajax.Request but with the addi-
tion of the target element’s ID as the first argument. The following is a
code example of Ajax.Updater:

<script>
function updateDIV(mydiv)
{

var url = ‘http://example.com/serverscript.php’;
var params = ‘param1=value1¶m2=value2’;
var myAjax = new Ajax.Updater

(
mydiv,
url,
{method: ‘get’, parameters: params}
);

}
</script>
<input type=”button” value=”Go”
onclick=”updateDIV(targetDiv)”>
<div id=”targetDiv”></div>

Once again, several additional options may be used when making the
call. A noteworthy one is the addition of

evalscripts:true

to the options list. With this option added, any JavaScript code returned
by the server will be evaluated.

Ajax.PeriodicalUpdater

The Ajax.PeriodicalUpdater class can be used to repeatedly create an
Ajax.Updater instance. In this way you can have a page element updat-
ed after a certain time interval has elapsed. This can be useful for such
applications as a stock market ticker or an RSS reader because it ensures
that the visitor is always viewing reasonably up-to-date information.

Ajax.PeriodicalUpdater adds two further parameters to the
Ajax.Updater options:

20_0672329603_ch19.qxd 5/7/07 10:47 PM Page 179

1 9 : The prototype.js Toolkit

180

■ frequency—The delay in seconds between successive updates.
Default is two seconds.

■ decay—The multiplier by which successive delays are increased if
the server should return unchanged data. Default value is 1, which
leaves the delay constant.

Here’s an example call to Ajax.PeriodicalUpdater:

var myAjax = new Ajax.PeriodicalUpdater(elementID, url,
➥{frequency: 3.0, decay: 2.0});

Here we elected to set the initial delay to 3 seconds and have this delay
double in length each time unchanged data is returned by the server.

Example Project—Stock Price
Reader
Let’s use the prototype.js library to build a simple reader that updates period-
ically to show the latest value returned from the server. In this example, we’ll
use a simple server-side script rand.php to simulate a changing stock price:

<?php
srand ((double) microtime()*1000000);
$price = 50 + rand(0,5000)/100;
echo “$price”;
?>

This script first initializes PHP’s random number routine by calling the
srand() function and passing it an argument derived from the current
time. The rand(0,5000) function is then used to generate a random num-
ber that is manipulated arithmetically to produce phony “stock prices” in
the range 50.00 to 100.00.

Now let’s build a simple HTML page to display the current stock price. This
page forms the basis for our Ajax application:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
Transitional//EN”
➥“http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<script src=”prototype.js” Language=”JavaScript”
➥type=”text/javascript”></script>
<title>Stock Reader powered by Prototype.js</title>
</head>

20_0672329603_ch19.qxd 5/7/07 10:47 PM Page 180

Example Project—Stock Price Reader

181

<body>
<h2>Stock Reader</h2>
<h4>Powered by Prototype.js</h4>
<p>Current Stock Price:</p>
<div id=”price”></div>
</body>
</html>

Note that we included the prototype.js library by means of a <script>
tag in the document head. We also defined a <div> with id set to
“price”, which will be used to display the current stock price.

We now need to implement the Ajax.PeriodicalUpdater class, which
we’ll attach to the document body element’s onLoad event handler.
Listing 19.1 shows the complete script.

LISTING 19.1 Ajax Stock Price Reader Using prototype.js
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
➥ Transitional//EN”
➥”http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<script src=”prototype.js” Language=”JavaScript”
➥type=”text/javascript”></script>
<script>
function checkprice()
{
var myAjax = new Ajax.PeriodicalUpdater(‘price’,
➥’rand.php’, {method: ‘post’, frequency: 3.0,
➥ decay: 1});
}
</script>
<title>Stock Reader powered by Prototype.js</title>
</head>
<body onLoad=”checkprice()”>
<h2>Stock Reader</h2>
<h4>Powered by Prototype.js</h4>
<p>Current Stock Price:</p>
<div id=”price”></div>
</body>
</html>

Look how simple the code for the application has become through
using prototype.js. Implementing the application is merely a matter of
defining a one-line function checkprice() to instantiate our repeating
Ajax call and calling that function from the body element’s onLoad
event handler.

20_0672329603_ch19.qxd 5/7/07 10:47 PM Page 181

1 9 : The prototype.js Toolkit

182

From the arguments passed to Ajax.PeriodicalUpdater, you’ll see that
a 3-second repeat interval has been specified. This period does not
change with subsequent calls because the decay value has been set to 1.

Figure 19.1 shows the application running. What cannot be seen from
the figure, of course, is the stock price updating itself every 3 seconds to
show a new value.

FIGURE 19.1 Ajax stock reader.

This simple example does not come close to showing off the power
and versatility of the prototype.js library. Rather, it is intended to get
you started with your own experiments by offering an easy point of
access to this great resource.

Summary
In this first lesson in Part IV, we discussed the use of the powerful and
elegant prototype.js JavaScript library.

The functions made available by this library greatly simplify some of
the trickier programming tasks when developing Ajax applications.

The library offers good support for the XMLHTTPRequest object, along
with time-saving shortcuts for DOM handling, HTML forms, and many
other techniques relevant to Ajax development.

20_0672329603_ch19.qxd 5/7/07 10:47 PM Page 182

Using Rico

In this lesson you will learn the basics of using Rico, a powerful Ajax and user interface
development framework.

Introducing Rico
In Lesson 19,“The prototype.js Toolkit,” we looked at prototype.js, a powerful and
useful JavaScript library that simplifies many of the programming tasks facing the
Ajax developer.

In this lesson we’ll take a look at using Rico, a sophisticated Ajax framework
employing the prototype.js library.

Rico is an open source library that extends the capabilities of prototype.js to pro-
vide a rich set of interface development tools. In addition to the Ajax development
techniques discussed so far, Rico offers a whole range of tools such as drag-and-
drop, cinematic effects, and more.

Tip Rico is the Spanish word for rich, which seems appropriate for a toolkit designed
for building rich user interfaces!

Using Rico in Your Applications
To start using Rico to build applications with rich user interfaces, you need to
include both Rico and prototype.js libraries in the <head>…</head> section of your
web pages.

<script src=”scripts/prototype.js”></script>
<script src=”scripts/rico.js”></script>

20

21_0672329603_ch20.qxd 5/7/07 10:47 PM Page 183

2 0 : Using Rico

184

Rico’s AjaxEngine
The inclusion of rico.js causes an instance called ajaxEngine of an
AjaxEngine object to be created automatically ready for you to use.
The AjaxEngine is Rico’s mechanism for adding Ajax capabilities to
your web pages.

The AjaxEngine requires a three-step process to update page elements
via Ajax:

1. Register the request handler. Registering the request handler
associates a unique name with a particular URL to be called via
Ajax.

2. Register the response handler. Rico can deal with the return of
both HTML data and JavaScript code within the XML returned
from the server. In the former case, the response handler identi-
fies a page element that is to be updated using the returned
data; in the latter case, a JavaScript object that handles the server
response.

3. Make the Ajax call from the page by using an appropriate event
handler.

We first register our request handler by making a call to the
registerRequest() method of ajaxEngine:

ajaxEngine.registerRequest(‘getData’,’getData.php’);

We have now associated the name getData with a request to the server
routine getData.php. That server-side routine is required to return a
response in well-formed XML. The following is an example of a typical
response:

<ajax-response>
<response type=”element” id=”showdata”>
<div class=”datadisplay”>
The cat sat on the mat

</div>
</response>

</ajax-response>

Such responses always have a root element <ajax-response>. The
<response> element it contains in this example has two attributes, type
element and id showdata. These signify, respectively, that the response
contains HTML, and that this HTML is to be used to update the page
element having id showdata. This element is updated via its innerHTML
property.

TIP: Rico is capable of
updating multiple page
elements from one
request. To achieve this, the
<ajax-response> ele-
ment may contain multiple
<response> elements.

21_0672329603_ch20.qxd 5/7/07 10:47 PM Page 184

Introducing Rico

185

The other form of response that Rico can return is a JavaScript object.
Here’s an example:

<ajax-response>
<response type=”object” id=”myHandler”>
<sentence>The cat sat on the mat.</sentence>

</response>
</ajax-response>

Here the type has been set to object, indicating that the content is to
be dealt with by a JavaScript object, the identity of which is contained
in the id value (here myHandler). The content of the response is always
passed to the ajaxUpdate method of this object.

How the response handler is registered depends on which type of
response we are dealing with. For responses of type element, you can
simply call:

ajaxEngine.registerAjaxElement(‘showdata’);

In the case of responses containing a JavaScript object, you will need:

ajaxEngine.registerAjaxObject(‘myHandler’, new
myHandler());

Whereas responses of type element are simply intended for the updat-
ing of HTML page elements, responses of type object can have han-
dlers to process responses in any way they want. This allows Rico appli-
cations to be built ranging from simple to sophisticated.

A Simple Example
We can see Rico in action by using the simple script of Listing 20.1. This
application updates two HTML elements with a single call to Rico’s
ajaxEngine object. The script for the application is in Listing 20.1.

LISTING 20.1 A Simple Rico Application
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
➥ Transitional//EN”
➥”http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<title>Testing OpenRico</title>
<script src=”prototype.js”></script>
<script src=”rico.js”></script>
<script type=”text/javascript”>
function callRICO()
{
ajaxEngine.registerRequest(‘myRequest’, ‘ricotest.php’);

21_0672329603_ch20.qxd 5/7/07 10:47 PM Page 185

2 0 : Using Rico

186

LISTING 20.1 Continued
ajaxEngine.registerAjaxElement(‘display’);
ajaxEngine.registerAjaxElement(‘heading’);
}
</script>
</head>
<body onload=” callRICO();”>
<div id=”heading”><h3>Demonstrating Rico</h3></div>
<input type=”button” value=”Get Server Data”
➥ onclick=”ajaxEngine.sendRequest(‘myRequest’);”/>
<div id=”display”><p>This text should be replaced with
➥server data ...</p></div>
</body>
</html>

You will see from the code that the single function callRICO() is used
to register both the single request handler myRequest and two
response handlers. The response handlers are used to update two
<div> containers; one of these contains the page’s heading, the other a
short text message. On making the Rico request, the contents of both
are updated, leaving the page with a new title and now displaying
some server information instead of the previous text message. Figure
20.1 shows before and after screenshots.

FIGURE 20.1 Updating multiple page elements with Rico.

The server routine is a simple PHP script that outputs the required XML
data. The script uses PHP’s $_SERVER[‘SERVER_SIGNATURE’] global
variable. Note that the script constructs and returns two separate

21_0672329603_ch20.qxd 5/7/07 10:47 PM Page 186

Rico’s Other Interface Tools

187

<response> elements, each responsible for updating a particular ele-
ment in the HTML page.

Listing 20.2 shows the server script.

LISTING 20.2 The Server Script for Generating

<ajax-response>
<?php
header(“Content-Type:text/xml”);
header(“Cache-Control:no-cache”);
header(“Pragma:no-cache”);
echo “<ajax-response><response type=\”element\”
➥id=\”display\”><p>”
➥.$_SERVER[‘SERVER_SIGNATURE’]
➥.”</p></response>
➥<response type=\”element\” id=\”heading\”>
➥<h3>Some Information about the Server</h3>
➥</response></ajax-response>”;
?>

TIP: Lesson 9,“Talking with the Server,” discussed problems that can
occur due to the browser cache. In that lesson we used a workaround
involving adding a parameter of random value to the URL of the server
resource that we wanted to call.

This script example uses another technique, including the header com-
mands

header(“Cache-Control:no-cache”);
header(“Pragma:no-cache”);

instructing the browser not to cache this page, but to collect a new
copy from the server each time.

CAUTION: PHP’s $_SERVER global array variable was introduced in
PHP 4.1.0. If you have an older version of PHP installed, you’ll need the
global variable $HTTP_SERVER_VARS instead.

Rico’s Other Interface Tools
Rico’s capabilities aren’t limited to aiding the development of Ajax
applications. Let’s now look at some other capabilities you can add to
your user interfaces using the Rico toolkit. Although these techniques
do not themselves use Ajax, it takes little imagination to realize what
they might achieve when combined with Rico’s Ajax tools.

21_0672329603_ch20.qxd 5/7/07 10:47 PM Page 187

2 0 : Using Rico

188

Drag-and-Drop
Both desktop applications and the operating systems on which they
run make widespread use of drag-and-drop to simplify the user inter-
face. The JavaScript techniques required to implement drag-and-drop
can be tricky to master, not least because of the many cross-browser
issues that arise.

Drag-and-drop using Rico, however, is simple.

Including the rico.js file in your application automatically causes the
creation of an object called dndMgr, Rico’s Drag and Drop Manager.
Using the dndMgr object is much like using AjaxEngine; this time,
though, we need to register not Ajax requests and responses, but drag-
gable items and drop zones (page elements that can receive dragged
items).

These tasks are carried out via the registerDraggable and
registerDropZone methods:

dndMgr.registerDraggable(new Rico.Draggable(‘test’,
➥’dragElementID’));
dndMgr.registerDropZone(new Rico.Dropzone
➥(‘dropElementID’));

These two simple commands declare, respectively, a page element with
ID dragElementID as being draggable, and another element with ID
dropElementID as a drop zone. The argument ‘test’ of the
registerDraggable() method defines a type for the draggable item,
which can be tested and used by subsequent code, if required.

Example of a Drag-and-Drop Interface
Listing 20.3 shows how simple it is to implement drag-and-drop using
Rico. The displayed HTML page is shown in Figure 20.2.

LISTING 20.3 Simple Drag-and-Drop Using Rico
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
➥ Transitional//EN”
➥”http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<script src=”prototype.js”></script>
<script src=”rico.js”></script>
<style>
body {
font: 10px normal arial, helvetica, verdana;
background-color:#dddddd;

21_0672329603_ch20.qxd 5/7/07 10:47 PM Page 188

Rico’s Other Interface Tools

189

}

div.simpleDropPanel {
width : 260px;
height : 180px;
background-color: #ffffff;
padding : 5px;
border : 1px solid #333333;
}

div.box {
width : 200px;
cursor : hand;
background-color: #ffffff;
-moz-opacity : 0.6;
filter : alpha(Opacity=60);
border: 1px solid #333333;
}
</style>

</head>
<body>
<table width=”550”>
<tr>
<td><h3>Drag and Drop</h3>
<p>Drag and drop data items into the target fields

➥using the left mouse button in the usual way.
➥Note how available target fields change colour
➥during the drag operation.</p>
<p>Reload the page to start again.</p>
<div class=”box” id=”draggable1”>This is a piece

➥of draggable data</div>
<div class=”box” id=”draggable2”>

➥This is another</div>
<div class=”box” id=”draggable3”>

➥And this is a third</div>

<table>
<tr>
<td>
<div id=”droponme” class=”simpleDropPanel”>

Drop Zone 1
A simple text area
</div>

</td>
<td>
Drop Zone 2

A form text entry field.
<form><textarea name=”dropzone” id=”droponme2”

➥ rows=”6” cols=”30”></textarea></form>

21_0672329603_ch20.qxd 5/7/07 10:47 PM Page 189

2 0 : Using Rico

190

LISTING 20.3 Continued
</td>
</tr>
</table>
</td>

</tr>
</table>
<script>

dndMgr.registerDraggable(new
➥Rico.Draggable(‘foo’,’draggable1’));

dndMgr.registerDraggable(new
➥Rico.Draggable(‘foo’,’draggable2’));

dndMgr.registerDraggable(new Rico.
➥Draggable(‘foo’,’draggable3’));

dndMgr.registerDropZone(new Rico.Dropzone
➥(‘droponme’));

dndMgr.registerDropZone(new Rico.Dropzone
➥(‘droponme2’));
</script>
</body>
</html>

FIGURE 20.2 The simple drag-and-drop application.

The two JavaScript libraries rico.js and prototype.js are included in the
<head> of the document along with style definitions for various page
elements.

21_0672329603_ch20.qxd 5/7/07 10:47 PM Page 190

Rico’s Other Interface Tools

191

Note that two page elements in particular, a <div> container and a
<textarea> input field, have been given IDs of dropzone1 and drop-
zone2. Further down the listing, these two elements are defined as drop
zones for our drag-and-drop operations by the lines

dndMgr.registerDropZone(new Rico.Dropzone(‘droponme’));
dndMgr.registerDropZone(new Rico.Dropzone(‘droponme2’));

You’ll see too that three small <div> containers have been defined in
the page and given IDs of draggable1, draggable2, and draggable3. As
you have no doubt guessed, they are to become draggable page ele-
ments and are defined as such by the following code lines:

dndMgr.registerDraggable(new Rico.Draggable(‘foo’,
➥’draggable1’));
dndMgr.registerDraggable(new Rico.Draggable(‘foo’,
➥’draggable2’));
dndMgr.registerDraggable(new Rico.Draggable(‘foo’,
➥’draggable3’));

That’s all there is to it! Rico takes care of all the details, even changing
the look of the available drop zones while something is being dragged,
as shown in Figure 20.3.

FIGURE 20.3 Drop zones highlighted during drag operation.

When released above an available drop zone, draggable items position
themselves inline with the HTML code of the drop zone element, as can
be seen in Figure 20.4.

21_0672329603_ch20.qxd 5/7/07 10:47 PM Page 191

2 0 : Using Rico

192

FIGURE 20.4 After completing the drag-and-drop.

Cinematic Effects
In addition to Ajax and drag-and-drop tools, Rico also makes available a
host of user interface gadgets known collectively as cinematic effects.

NOTE: Rico’s cinematic effects are extensions to the Effect class found
in prototype.js.

These effects include animation of page elements (changing their sizes
and/or shapes), fading effects (altering the opacity of page elements),
applying rounded corners to objects, and manipulating object colors.

Used alongside the interface techniques previously discussed, these
effects can help you to build sophisticated, eye-catching, and user-
friendly interfaces much more reminiscent of desktop applications than
of web pages.

Summary
Following our examination of the prototype.js library in the Lesson 19,
this lesson moved on to experiment with Rico. Rico is an open source
framework based on prototype.js that offers a simple way to integrate
Ajax, along with drag-and-drop and other visual effects, into user inter-
face designs.

Finally, in Lesson 21,“Using XOAD,” we will look into an Ajax framework
that uses an alternative approach—the server-side, PHP-based XOAD.

21_0672329603_ch20.qxd 5/7/07 10:47 PM Page 192

Using XOAD

In this lesson you will learn about XOAD, a server-side framework with Ajax support
written by Stanimir Angeloff.

Introducing XOAD
So far in this part of the book we have looked at the prototype.js and Rico libraries
and how they can help you to develop Ajax applications. Unlike these client-side
libraries, which are written in JavaScript, XOAD is a server-side Ajax toolkit written
in PHP.

This lesson discusses some of the concepts behind XOAD and the basics of its use.

All our work so far has concentrated on the use of JavaScript to handle both the
server request and the returned data in Ajax applications. XOAD is a server-based
solution written in PHP that takes a slightly different approach.

XOAD applications make server-based PHP functions available to the client-side
JavaScript interpreter by passing serialized versions of them as JavaScript objects.

Downloading and Installing XOAD
XOAD is made up of many PHP and supporting scripts and can be downloaded as an
archive file from http://sourceforge.net/projects/xoad.To install XOAD success-
fully, you need FTP access to a web server that supports PHP and (to use the more
advanced features of XOAD) the MySQL database. Detailed instructions for installing
XOAD can be found in the downloaded material, and there is a public forum at
http://forums.xoad.org/.

21

22_0672329603_ch21.qxd 5/7/07 10:47 PM Page 193

2 1 : Using XOAD

194

A Simple XOAD Page
Let’s take a look at an example of the simplest XOAD page. Suppose
that you have a PHP class that you want to use in your XOAD applica-
tion. This class is stored in the PHP file myClass.class.php:

<?php
class myClass {
function stLength($mystring) {

return strlen($mystring);
}

function xoadGetMeta() {
XOAD_Client::mapMethods($this, array(‘stLength’));
XOAD_Client::publicMethods($this, array(‘stLength’));

}
}
?>

This simple class has only one function, stLength(), which merely
returns the length of a string variable. We also added some metadata to
the class in the form of the function xoadGetMeta(). This information
tells XOAD which methods from the class are available to be exported
to the main application. In this case there is just one, stLength().

Now you need to start constructing the main application script
xoad.php.

Listing 21.1 shows the XOAD application. This is a fairly pointless pro-
gram that simply returns the length of a string,“My XOAD Application”.
Nevertheless, it demonstrates the concept of methods from server-side
PHP classes being made available on the client side as JavaScript
objects.

LISTING 21.1 A Simple XOAD Application
<?php
require_once(‘myClass.class.php’);
require_once(‘xoad.php’);
XOAD_Server::allowClasses(‘myClass’);
if (XOAD_Server::runServer()) {
exit;
}

?>

CAUTION: It is not
absolutely necessary to
include metadata in the
class, but it is recommend-
ed. Without metadata, all
methods will be public, and
method names will be con-
verted to lowercase.

TIP: The Ajax applications
developed in previous
lessons were HTML files
with file extensions .htm or
.html. Because our XOAD
application contains PHP
code, it must have a suit-
able file extension. Most
web server and PHP imple-
mentations will accept a
file extension of .php, and
some will allow other
extensions such as .php4
or .phtml.

ON THE CD: All the
needed tools—XOAD, PHP,
MySQL, and Apache—are
included on the Ajax
Starter Kit CD.

22_0672329603_ch21.qxd 5/7/07 10:47 PM Page 194

Introducing XOAD

195

<?= XOAD_Utilities::header(‘.’) ?>
<script type=”text/javascript”>
var myobj = <?= XOAD_Client::register(new myClass()) ?>;
var mystring = ‘My XOAD Application’;
myobj.onStLengthError = function(error) {
alert(error.message);
return true;
}

myobj.stLength(mystring, function(result) {
document.write(‘String: ‘ + mystring

➥ + ‘
Length: ‘ + result);
});

</script>

On loading the preceding document into a browser, the page simply
says:

String: My XOAD Application
Length: 19

I won’t go into much detail about how the PHP code works; this is after
all about Ajax, not advanced PHP. It’s important, though, to understand
the concepts that underpin the code, so let’s step through Listing 21.1
and try to understand what’s happening:

<?php
require_once(‘myClass.class.php’);
require_once(‘xoad.php’);
XOAD_Server::allowClasses(‘myClass’);
if (XOAD_Server::runServer()) {
exit;
}

?>
<?= XOAD_Utilities::header(‘.’) ?>

The first part of the script includes both xoad.php and the required
class file myClass.class.php, and informs XOAD which classes it may
access (in this case only one).

The XOAD function runServer() checks whether the XOAD request is a
client callback, and if so handles it appropriately. The header() function
is used to register the client header files.

Now let’s look at the remainder of the script:

<script type=”text/javascript”>
var myobj = <?= XOAD_Client::register(new myClass()) ?>;
var mystring = ‘My XOAD Application’;

22_0672329603_ch21.qxd 5/7/07 10:47 PM Page 195

2 1 : Using XOAD

196

myobj.onStLengthError = function(error) {
alert(error.message);
return true;
}

myobj.stLength(mystring, function(result) {
document.write(‘String: ‘ + mystring

➥+ ‘
Length: ‘ + result);
});

</script>

See how the remainder of the script is a <script>…</script> element?
The line

var myobj = <?= XOAD_Client::register(new myClass()) ?>;

exports the public methods declared in myClass.class.php to a
JavaScript object.We now have a JavaScript object with a method
stLength() that allows us to use the method of the same name from the
PHP class myClass.

XOAD HTML
XOAD HTML is an extension that allows for the easy updating of
HTML page elements using XOAD. The following examples show
the use of the XOAD_HTML::getElementByID() and XOAD_HTML::
getElementsByTagName() methods, which do exactly the same thing as
their equivalent JavaScript DOM methods.

XOAD_HTML::getElementById()

You will recognize the layout of the code in Listing 21.2 as being similar
in structure to the basic XOAD program discussed earlier.

Rather than include an external class file, in this example we have
defined a class, Updater, within the application itself. The class contains
a single function, change().

The first line in that function uses XOAD_HTML::getElementById() to iden-
tify the page element with and ID of display. Subsequent program lines
proceed to change the text and background color of the page element.

The function change() is made available as a method of the JavaScript
object myobj and can then be called like any other JavaScript method:

<a href=”#server” onclick=”myobj.change();
➥return false;”>Change It!

22_0672329603_ch21.qxd 5/7/07 10:47 PM Page 196

XOAD HTML

197

Figure 21.1 shows the program’s operation.

LISTING 21.2 Application to Use

XOAD_HTML::getElementById
<?php
class Updater
{

function change()
{
$mytext =& XOAD_HTML::getElementById(‘display’);
$mytext->style[‘backgroundColor’] = ‘yellow’;
$mytext->innerHTML = ‘My background

➥ color has changed.’;
}

}
define(‘XOAD_AUTOHANDLE’, true);
require_once(‘xoad.php’);
?>
<?= XOAD_Utilities::header(‘.’) ?>
<div id=”display”>My background color is white.</div>
<script type=”text/javascript”>
var myobj = <?= XOAD_Client::register(new Updater()) ?>;
</script>
<a href=”#server” onclick=”myobj.change();
➥return false;”>Change It!

FIGURE 21.1 Using XOAD_HTML::getElementById().

22_0672329603_ch21.qxd 5/7/07 10:47 PM Page 197

2 1 : Using XOAD

198

XOAD_HTML::getElementsByTagName()

The XOAD_HTML::getElementsByTagName() method, like its JavaScript
equivalent, returns an array of elements with a certain element type.
Listing 21.3 identifies all page elements of type <div> and changes
some of their style attributes.

LISTING 21.3 Changing All Page Elements of a Given Type
<?php
class Updater
{

function change()
{

$mydivs =& XOAD_HTML::getElementsByTagName(‘div’);
$mydivs->style[‘height’] = ‘60’;
$mydivs->style[‘width’] = ‘350’;
$mydivs->style[‘backgroundColor’] = ‘lightgreen’;

$mydivs->innerHTML =
➥’Size and color changed by XOAD’;

}
}
define(‘XOAD_AUTOHANDLE’, true);
require_once(‘xoad.php’);
?>
<?= XOAD_Utilities::header(‘.’) ?>
<script type=”text/javascript”>
var myobj = <?= XOAD_Client::register(new Updater()) ?>;
</script>
<style>
div {
border:1px solid black;
height:80;
width:150
}
</style>
<div>Div 1</div>

<div>Div 2</div>

<div>Div 3</div>
<a href=”#server” onclick=”myobj.change();
➥return false;”>Update All Divs

The three <div> elements in the page are identified by XOAD_HTML::
getElementsByTagName() and have their styles and sizes changed.

22_0672329603_ch21.qxd 5/7/07 10:47 PM Page 198

Advanced Programming with XOAD

199

Figure 21.2 shows the program in operation.

FIGURE 21.2 Selecting multiple page elements with XOAD_HTML.

Advanced Programming with
XOAD
XOAD has a range of advanced capabilities over and above those dis-
cussed in this lesson. In case you want to investigate the limits of what
is possible using XOAD, here is an overview of the currently supported
techniques.

XOAD Events
The XOAD framework also has support for events. A XOAD event insti-
gated on one client’s computer can be stored on the server and subse-
quently detected by other clients, making it possible to build complex
applications in which users can interact. Such applications might, for
instance, include chat, groupware, or similar collaborative tools.

TIP: XOAD_HTML has many
other capabilities. Details of
all the functions available
within XOAD_HTML are in
the XOAD download.

22_0672329603_ch21.qxd 5/7/07 10:47 PM Page 199

2 1 : Using XOAD

200

Cache Handling with XOAD
XOAD allows for the caching on the server using the XOAD_Cache class.
Caching results gives significant performance improvements, especially
when server-side routines are time-intensive (such as sorting a large
data set or performing queries on a sizeable database table).

XOAD Controls
You can define custom client controls in XOAD using the XOAD_
Controls class.

Summary
This lesson examined a server-side implementation of an Ajax toolkit, in
the form of XOAD.

XOAD allows the methods contained within PHP classes stored on the
server to be made available to client programs using JavaScript. This
forms an interesting contrast in approach compared to the client-side
techniques discussed in Lessons 19 and 20.

This concludes Part IV. You should now have a good understanding of
Ajax application architecture and the coding techniques on which it is
based.

Good luck with your experiments in Ajax!

TIP: At the time of writ-
ing, the current version of
XOAD is 0.6.0.0. If the ver-
sion you download is dif-
ferent, consult the docu-
mentation included in the
download.

22_0672329603_ch21.qxd 5/7/07 10:47 PM Page 200

201

SYMBOLS
@ characters, PHP methods, 125
$ SERVER global array variable, 187
$() function, 176
$F() function, 176-177
<ajax-response> elements, Rico, 184, 187
<div>…<div> elements, 102
<div> containers, 105
<response> elements, Rico, 184, 187
<script>…<script> elements, 103

A
abort method, 78
active page elements, designing, 171
AHAH (Asynchronous HTML and HTTP). See also

HTML; HTTP
advantages of, 120
callAHAH() functions, 121-123
myAHAHlib.js, 121-123

metatag information, retrieving from URL,
124-125

responseText property, 127
responseAHAH() functions, 122-123

Ajax
application examples, Google Suggest, 64-65
application flow diagram, 68
client-server interaction, 61-64

objects
Ajax.PeriodicalUpdater class, 179-180
Ajax.request class, 178
Ajax.Updater class, 179

using, inappropriate situations for, 171
Ajax Engines, 64
Ajax.PeriodicalUpdater class, 179-180
Ajax.request class, 178
Ajax.Updater class, 179
AjaxEngine objects, instances in Rico, 184-185
alt attribute (image tags), 19
Amazon.com REST API, 147-150
anchor tags (HTML), 20
Apache Web Server website, 9
AppendChild method, 131-133
applications

designing, 101, 171
callback functions, 105-106
completed application, 107-108
event handlers, 106
HTML document, 102
PHP scripts, 104-105
server requests, 104
troubleshooting, 173
user feedback, 109-110
XMLHTTPRequest objects, 103-104

flow diagrams, 68
prototype.js, adding to, 175
Rico, adding to, 183

arguments (JavaScript), 37, 42

INDEX

23_0672329603_index.qxd 5/7/07 10:47 PM Page 201

articles

202

articles, REST
lists of available articles, reading, 146
particular articles, retrieving, 147
uploading, 147

ASCII text, server responses, 67
asynchronous servers

communications, 64
requests, 66, 81-86

ATTLIST declarations (XML), 57

B
Back button, 167
bandwidth, defining, 62
body tags (HTML), 16-18
bookmarks, troubleshooting, 168-169
browser caches

callAjax() functions, 84-86
GET requests, 173
server requests, 84-86

browsers
availability of, 11
defining, 10
graphical browsers, 10
HTML documents, loading, 15
text-based browsers, 10
unsupported browsers, troubleshooting,

169-170
web server interaction, 7

C
caches (browser)

GET requests, 173
server requests, 84-86

callAHAH() functions, 121-123
callAjax() function, 83

browser caches, 84-86
launching, 89-90

callback functions, 86-88
AHAH, 122-123
basic application creation example, 105-106
JavaScript libraries, 161-162
launching, 89-90
myAJAXlib.js, 164
RSS headline readers, creating, 138-140

callRICO() function, 186
center tags (HTML), 21
change() function, 196-197
character strings, split() method, 117
charAt method, responseText property, 93
child nodes, adding to DOM, 131
childNodes property, 132
cinematic effects (Rico), 192
client-server interactions, traditional interactions

verus Ajax, 61-62
client-side programming, defining, 11
code, troubleshooting, 172
color, HTML, 18
comments (HTML), 17
constructors, creating instances, 72
CreateAttribute method, 133
CreateElement method, 132-133
CreateTextNode method, 131-133

D
data() function, 105
date command (PHP), 50
DELETE requests, 145
design applications, troubleshooting, 173
developer’s tokens, 148
DNS (Domain Name Service) servers, 12
doAjax function, 161, 164-165
DOCTYPE declarations (XML), 55-56
DOCTYPE elements, 15-16
document elements (XML), 55
DOM (Document Object Model), 72-73

appendChild() method, 131
child nodes, adding to, 131

23_0672329603_index.qxd 5/7/07 10:47 PM Page 202

functions

203

createElement() method, 132
createTextNode() method, 131
document methods table, 133
elements, deleting, 139
getAttribute method, 59
getElementByID method, 130
getElementsByTagName method, 130
node methods table, 133
node properties table, 132
nodes, 58-59
tagname properties, 59
text properties, 59

DTD (Document Type Definitions) versus
DOCTYPE declarations, 55

E
ELEMENT declarations (XML), 56
Engines (Ajax), 64
error handling

application design, 173
Back button codes, 167
bookmarks, 168-169
browser caches, 173
code, platform tests, 172
GET requests, 173-174
JavaScript libraries, 166
links, 168-169
page design, 171
Permission Denied errors, 174
POST requests, 174
security, 172
spiders, 170
unsupported browsers, 169-170
user feedback, 169

eval() function, JavaScript libraries, 161-162
event handlers

basic application creation example, 106
JavaScript functions, calling, 43
myAJAXlib.js, calls for, 164

onChange event handler, 44
onClick event handler, 38-39, 44
onLoad event handler, 44
onMouseOut event handler, 44
onMouseOver event handler, 41-44
onSubmit event handler, 44-46

F
feedback (user)

basic application creation example, 109-110
JavaScript libraries, 166
server requests, 97
troubleshooting, 169

file extensions, PHP files, 48
firstChild property, 132
for loops, 52
Form objects, prototype.js, 177
form tags (HTML), 28-30
form validation example (JavaScript), 45-46
Frameworks (Ajax), 64
functions

$(), 176
$F(), 176-177
callAHAH(), 121-123
callAjax, 83

browser caches, 84-86
launching, 89-90

callback, 86-88
AHAH, 122-123
basic application creation example, 105-106
JavaScript libraries, 161-162
launching, 89-90
myAJAXlib.js, 164
RSS headline readers, creating, 138-140

callRICO(), 186
change(), 196-197
date(), 105
doAjax, 161, 164-165

23_0672329603_index.qxd 5/7/07 10:47 PM Page 203

functions

204

eval(), JavaScript libraries, 161-162
header(), 195
JavaScript

arguments, passing to, 42
calling, 41
event handlers, calling from, 43
numcheck, 46
structure of, 40

responseAHAH(), 122-123
responseAjax(), 83, 88
runServer(), 195
sizeof(), 117
Try.these(), 177

G
GET requests, 83

browser caches, 84-86, 173
HTTP requests, 29-31
JavaScript libraries, 160
myAJAXlib.js, 163
query strings, 29
REST, 145-147
troubleshooting, 174

getAllResponseHeaders method, 78
getAttribute method (DOM), 59
getElementByID method, 98, 106, 130
getElementByTagname method, 105-106
getElements() method, prototype.js, 177
GetElementsById method, 133
getElementsByTagName method, 95-96, 130, 133
getResponseHeader method, 78
gmail web mail service (Google), 65
Google Maps, 65
Google Suggest, 64-65
graphics web browsers, 10

H
HasChildNodes method, 133
head tags (HTML), 16

header lines (HTTP)
requests, 27
responses, 28

header() function, 195
headers, outputing prior to issuing PHP scripts, 94
Hello World example, printing in PHP, 48
hexadecimal numbering system, HTML color

values, 18
HTML (Hypertext Markup Language), 13. See also

AHAH
<div>…<div> elements, 102
<div> containers, 105
<script>…<script> elements, 103
advanced document example, 20-21
basic application creation example, 102
basic document example, 14

body tags, 16-17
DOCTYPE elements, 15
head tags, 16
HTML tags, 16
tags, adding attributes to, 18
title tags, 16

color values, 18
comments, 17
defining, 14
DOCTYPE elements, 15-16
forms

attributes, 30
attributes methods, 30
parameter values, 31
processing, 30
simple form example, 30-31
special characters, transmitting, 31
tags, 28-30
variables, 30

GET requests, 29-31
hyperlinks, 19-20
JavaScript, 34-37
loading documents, 15
metatags

keywords, 123-125
myAHAHlib.js, 124-125

23_0672329603_index.qxd 5/7/07 10:47 PM Page 204

JavaScript

205

myAJAXlib.js, 164
PHP, 48
POST requests, 29-31
responseText property, 115-116
RSS headline readers, creating, 134
saving documents, 15
script tags, 34
seville.html document example, 20-21
styles, 23

inline styles, 24
style sheet rules, setting, 24

tags, 14
adding attributes to, 18
anchor tags, 20
as containers, 17
body tags, 16-17
body tags, adding attributes to, 18
center tags, 21
common tags table, 22-23
head tags, 16
images tags, 19
table tags, 19-21
title tags, 16

testpage.html document example, 14
body tags, 16-17
body tags, adding attributes to, 18
DOCTYPE elements, 15-16
head tags, 16
HTML tags, 16
loading, 15
saving, 15
title tags, 16

tool requirements, 14
word processors, 14
XML, similarities to, 54
XOAD, 199

change() function, 196-197
XOAD HTML::getElementByID() method,

196-197
XOAD HTML::getElementByTagName()

method, 198

HTTP (Hypertext Transfer Protocol), 25. See also
AHAH

requests, 7
GET requests, 29-31
header lines, 27
opening lines, 26
POST requests, 29-31

responses
header lines, 28
reason phrases, 27
status lines, 27

server response status codes, 87
SOAP requests, sending, 154
versions (HTTP requests), 26

hyperlinks, HTML, 19-20

I - J
id values, 98
if statements (PHP), 51
image tags (HTML), 19
images, defining pixels, 19
indexOf method, responseText property, 93
inline styles, 24
instances (objects), creating, 72-77
Internet, HTTP requests, 7
Internet Explorer (MS), Jscript, 34
IP addresses, defining, 12

JavaScript, 33
arguments, 37, 42
Back button codes, 167
case sensitivity, 35
commands, execution order, 37
enabling, 34
form validation example, 45-46
functions

arguments, passing to, 42
calling, 41

23_0672329603_index.qxd 5/7/07 10:47 PM Page 205

JavaScript

206

event handlers, calling from, 43
numcheck, 46
structure of, 40

HTML pages, adding to, 35-37
methods, 37-42
objects, 37, 45, 57-58
script tags, 34
variables, 44
XML, 57-59

JavaScript libraries, 158
callback functions, 161-162
doAjax functions, 161, 164-165
error handling, 166
eval() function, 161-162
GET requests, 160
myAJAXlib.js, 158-162

callback functions, 164
event handler calls, 164
GET requests, 163
HTML pages, 164
PHP scripts, 164
responseText properties, 164
usage example, 163-165
XML data, retrieving, 165

POST requests, 160, 165
prototype.js

$() function, 176
$F() function, 176-177
Ajax.PeriodicalUpdater class, 179-180
Ajax.request class, 178
Ajax.Updater class, 179
download website, 175
Form objects, 177
getElements() method, 177
Rico, 183-192
serialize() method, 177
Stock Price Reader build example, 180-182
Try.these() function, 177
web applications, adding to, 175

user feedback, 166
XMLHTTPRequest instances, creating, 159-160

Jscript, 34
JSON (JavaScript Object Notation) website, 178

K - L
keywords metatag, 123-125

lastChild property, 132
lastIndexOf method, responseText property, 93
libraries (JavaScript)

callback functions, 161-162
doAjax functions, 161, 164-165
error handling, 166
eval() function, 161-162
GET requests, 160
myAHAHlib.js, 158-159
myAJAXlib.js, 161-162

callback functions, 164
event handler calls, 164
GET requests, 163
HTML pages, 164
PHP scripts, 164
responseText properties, 164
usage example, 163-165
XML data, retrieving, 165

POST requests, 160, 165
prototype.js

$() function, 176
$F() function, 176-177
Ajax.PeriodicalUpdater class, 179-180
Ajax.request class, 178
Ajax.Updater class, 179
download website, 175
Form objects, 177
getElements() method, 177
Rico, 183-192
serialize() method, 177
Stock Price Reader build example, 180-182

23_0672329603_index.qxd 5/7/07 10:47 PM Page 206

myAJAXlib.js

207

Try.these() function, 177
web applications, adding to, 175

user feedback, 166
XMLHTTPRequest instances, creating, 159-160

libraries (open source), Rico, 183
<response> elements, 184, 187
AjaxEngine instances, 184-185
callRICO() function, 186
cinematic effects, 192
drag-and-drop, 188-191
multiple page element updates, 184
usage example, 185-186
web applications, adding to, 183

links, troubleshooting, 168-169
loading HTML documents, 15
loop constructs (PHP), 52
Lynx text-based web browsers, 10

M
markup elements (HTML). See tags, HTML
Math.random() method, 84
metatags

keywords, 123-125
myAHAHlib.js, retrieving metatag information,

124-125
methods, 71

abort, 78
AppendChild, 131-133
charAt, responseText property, 93
CreateAttribute, 133
CreateElement, 132-133
CreateTextNode, 131-133
getAllResponseHeaders, 78
getElementByID, 98, 106, 130
getElementByTagname, 105-106
getElements(), protoype.js, 177
GetElementsById, 133
getElementsByTagName, 95-96, 130, 133

getResponseHeader, 78
HasChildNodes, 133
HTTP requests, 26-27
indexOf, responseText property, 93
JavaScript, event handlers, 37

onClick event handler, 38-39
onMouseOver event handler, 41-42

lastIndexOf, responseText property, 93
Math.random(), 84
open, 78-79
registerDraggable, 188
registerDropZone, 188
RemoveChild, 133
send, 78-79
serialize(), protoype.js, 177
setRequestHeader, 78-79
split(), 117
substring, responseText property, 93
toLowerCase(), responseText property, 93
toUpperCase(), responseText property, 93
XMLHTTPRequest object, list of, 78
XOAD HTML::getElementByID(), 196-197
XOAD HTML::getElementByTagName(), 198

multiplatform code tests, 172
myAHAHlib.js, 121-123, 158-159

metatag information, retrieving from URL,
124-125

responseText property, 127
myAJAXlib.js, 161-162

callback functions, 164
event handler calls, 164
GET requests, 163
HTML pages, 164
PHP scripts, 164
responseText properties, 164
usage example, 163-165
XML data, retrieving, 165

23_0672329603_index.qxd 5/7/07 10:47 PM Page 207

namespaces

208

N - O
namespaces, SOAP, 153
native objects, 72
nextSibling property, 133
nodeName property, 133
nodes

child nodes, adding to DOM, 131
DOM, 58-59

DOM document methods table, 133
DOM node methods table, 133
DOM node properties table, 132

nodeType property, 133
nodeValue property, 133
numcheck function (JavaScript), 46
numeric arrays, 51

objects
Ajax

Ajax.PeriodicalUpdater class, 179-180
Ajax.request class, 178
Ajax.Updater class, 179

AjaxEngine, instances in Rico, 184-185
constructors, 72
DOM, 72-73
Form, protoype.js, 177
instances, creating, 72-77
JavaScript, 45

methods, 37
XML, 57-58

methods, 71
native objects, 72
properties, 71
XMLHTTPRequest

basic application creation example, 103-104
callAjax() function, 83
instances, creating, 74-77
JavaScript libraries, creating, 159-160
methods

open, 78-79
send, 79

methods, list of, 78
properties, list of, 77
responseAjax() function, 83
server requests, browser caches, 84-86
server requests, callback functions, 88-90
server requests, sending, 81-83
server requests, status monitoring, 86-87
server requests, timestamps, 86
status property, 88
statusText property, 88
uses of, 73

XMLHTTPRequest, readyState property, 86-87
onBlur event handler, 89-90
onChange event handler, 44
onClick event handler, 38-39, 44
onLoad event handler, 44, 106
onMouseOut event handler, 44
onMouseOver event handler, 41-44
onreadystatechange property, 77
onSubmit event handler, 44-46
open method, 78-79
open source libraries

Rico, 183
<response> elements, 184, 187
AjaxEngine instances, 184-185
callRICO() function, 186
cinematic effects, 192
drag-and-drop, 188-191
multiple page element updates, 184
usage example, 185-186
web applications, adding, 183

opening lines (HTTP requests)
HTTP versions, 26
methods, 26-27
server resources, 26

23_0672329603_index.qxd 5/7/07 10:47 PM Page 208

properties

209

P
page design, troubleshooting, 171
page elements, designing, 171
parentNode property, 133
parsing, responseXML property, 96
Permission Denied errors, troubleshooting, 174
PHP, 47

$ SERVER global array variable, 187
date command, 50
file extensions, 48
Hello World example, printing, 48
HTML, 48
if statements, 51
loop constructs, 52
methods, @ characters, 125
php tags, 48
program flow, controlling, 51-52
resource websites, 48
scripts

basic application creation example, 104-105
header() instructions, outputing prior to

issues, 94
myAJAXlib.js, 164
quotes, escaping, 94

tags, 48
variables

arrays, 50
case sensitivity, 49
naming conventions, 49
numbers, 50
strings, 50
values, assigning, 49

XOAD
cache handling, 200
client controls, customizing, 200
downloading/installing, 193
events, 199
header() function, 195
runServer() function, 195

simple page example, 194-196
XOAD Controls class, 200
XOAD HTML, 196-199

PHP interpreter, @ characters, 125
pixels, defining, 19
platform code tests, 172
pop-ups, 171
POST requests, 145-147, 165

HTTP requests, 29-31
JavaScript libraries, 160
message bodies, 29
troubleshooting, 174

previousSibling property, 133
programmer’s editors, HTML, 14
prologs (XML), 55
properties, 71

childNodes, 132
DOM document methods table, 133
DOM node methods table, 133
DOM node properties table, 132
firstChild, 132
lastChild, 132
nextSibling, 133
nodeName, 133
nodeType, 133
nodeValue, 133
onreadystatechange, 77
parentNode, 133
previousSibling, 133
readystate, 77, 86-87
responseText, 78, 111

character strings, 112-114
formatted data, 117
HTML, 115-116
manipulation methods list, 93-94
myAHAHlib.js, 127
myAJAXlib.js, 164
null values, 92
returned text, 112-114
values, displaying, 92-93
values, manipulating, 93

23_0672329603_index.qxd 5/7/07 10:47 PM Page 209

properties

210

responseXML, 78, 94-95, 130
parsing, 96
stored values, 130
web pages, adding elements to, 130-132

status, 78, 88
statusText, 78, 88
XMLHTTPRequest object, list of, 77

prototype.js
$() function, 176
$F() function, 176-177
Ajax objects

Ajax.PeriodicalUpdater class, 179-180
Ajax.request class, 178
Ajax.Updater class, 179

download website, 175
Form objects, 177
getElements() method, 177
Rico

<response> elements, 184, 187
AjaxEngine instances, 184-185
callRICO() function, 186
cinematic effects, 192
drag-and-drop, 188-191
multiple page element updates, 184
usage example, 185-186
web applications, adding to, 183

serialize() method, 177
Stock Price Reader build example, 180-182
Try.these() function, 177
web applications, adding to, 175

PUT requests, 145

Q - R
query strings, GET requests, 29
quotes, escaping in PHP scripts, 94

readystate property, 77, 86-87
reason phrases (HTTP responses), 27
registerDraggable method, 188

registerDropZone method, 188
RemoveChild method, 133
requests (HTTP), opening lines

GET requests, 29-31
header lines, 27
HTTP versions, 26
methods, 26-27
POST requests, 29-31
server resources, 26

responseAHAH() functions, 122-123
responseAjax() function, 83, 88
responses (HTTP)

header lines, 28
reason phrases, 27
status lines, 27

responseText property, 78, 111
character strings, using in page elements,

112-114
formatted data, 117
HTML, 115-116
manipulation methods list, 93-94
myAHAHlib.js, 127
myAJAXlib.js, 164
null values, 92
returned text, using in page elements, 112-114
values

displaying, 92-93
manipulating, 93

responseXML property, 78, 94-95
parsing, 96
stored values, 130
web pages, adding elements to, 130-132

REST (Representational State Transfer)
Amazon.com REST API, 147-150
articles, uploading, 147
DELETE requests, 145
example of, 145
GET requests, 145-147
lists of available articles, reading, 146
particular articles, retrieving, 147

23_0672329603_index.qxd 5/7/07 10:47 PM Page 210

style sheets

211

POST requests, 145-147
principles of, 144
PUT requests, 145
SOAP versus, 156
stateless operations, 146

Rico
<response> elements, 184, 187
AjaxEngine instances, 184-185
callRICO() function, 186
cinematic effects, 192
drag-and-drop, 188-191
multiple page element updates, 184
usage example, 185-186
web applications, adding to, 183

RSS feeds, 133
RSS headline readers, creating, 133, 136-137

callback functions, 138-140
HTML page, 134
server scripts, 140-141

runServer() function, 195

S
saving HTML documents, 15
script tags (HTML), 34
search engine spiders, troubleshooting, 170
security

troubleshooting, 172
XMLHTTPRequest objects, 66

send method, 78-79
serialize() method, prototype.js, 177
server-side programming, defining, 10
server-side scripts, 67
servers

asynchronous communications, 64
requests

asynchronous requests, 66
basic application creation example, 104
browser caches, 84-86
callback functions, 86

GET requests, 83
in progress notifications, 97
readyState property, 86-87
sending, XMLHTTPRequest objects, 81-86
status, monitoring, 86-87
timestamps, 86
user feedback, 97

resources (HTTP requests), 26
responses, 67

getElementsByTagName() method, 95
in progress notifications, 97
responseText property, 92-93
responseXML property, 94-96
user feedback, 97

scripts
RSS headline readers, creating, 140-141
server-side scripts, 67

setRequestHeader method, 78-79
seville.html document example, 20-21
sizeof() function, 117
SOAP (Simple Object Access Protocol), 151

development of, 152
namespaces, 153
requests

Ajax usage example, 155
code example, 153-154
components of, 152-153
HTTP, sending via, 154

REST versus, 156
specification information website, 152

spiders, troubleshooting, 170
split() method, 117
src attribute (image tags), 19
status codes table (HTTP responses), 27
status lines (HTTP responses), 27
status property, 78, 88
statusText property, 78, 88
Stock Price Reader build example, 180-182
style sheets, setting rules, 24

23_0672329603_index.qxd 5/7/07 10:47 PM Page 211

styles

212

styles
HTML documents, 23
inline styles, 24
style sheet rules, setting, 24

substring method, responseText property, 93

T
table tags (HTML), 19-21
tagname properties (DOM), 59
tags

HTML, 14-15
adding attributes to, 18
anchor tags, 20
as containers, 17
body tags, 16-18
center tags, 21
common tags table, 22-23
head tags, 16
image tags, 19
table tags, 19-21
title tags, 16

XML, 54
testpage.html document example, 14

body tags, 16-18
DOCTYPE elements, 15-16
head tags, 16
HTML tags, 16
loading, 15
saving, 15
title tags, 16

text editors, HTML, 14
text properties (DOM), 59
text-based web browsers, 10
timestamps, server requests, 86
title tags (HTML), 16
toLowerCase() method, responseText property, 93
toUpperCase() method, responseText property, 93
troubleshooting

application design, 173
Back button codes, 167

bookmarks, 168-169
browser caches, 173
code, platform tests, 172
GET requests, 173-174
links, 168-169
page design, 171
Permission Denied errors, 174
POST requests, 174
security, 172
spiders, 170
unsupported browsers, 169-170
user feedback, 169

Try.these() function, 177

U - V
unsupported browsers, troubleshooting, 169-170
URL

RSS headline readers, creating, 133, 136-138
callback functions, 138-140
HTML page, 134
server scripts, 140-141

user feedback
basic application creation example, 109-110
JavaScript libraries, 166
server requests, 97
troubleshooting, 169

valid XML documents, defining, 57
variables

JavaScript, 44
PHP

arrays, 50
case sensitivity, 49
naming conventions, 49
numbers, 50
strings, 50
values, assigning, 49

23_0672329603_index.qxd 5/7/07 10:47 PM Page 212

XMLHTTPRequest object

213

W
W3C validator website, 173
W3C website, 152
Web (World Wide), HTTP requests, 7
web browsers

availability of, 11
defining, 10
graphical web browsers, 10
HTML documents, loading, 15
text-based web browsers, 10
unsupported browser, troubleshooting,

169-170
web server interaction, 7

web pages
defining, 8
elements, adding to via responseXML property,

130-132
HTTP requests, 7
id values, 98

web servers
Apache Web Server website, 9
defining, 9
web browser interaction, 7

web services
example of, 144
REST

Amazon.com REST API, 147-150
articles, uploading, 147
DELETE requests, 145
example of, 145
GET requests, 145-147
lists of available articles, reading, 146
particular articles, retrieving, 147
POST requests, 145-147
principles of, 144
PUT requests, 145
SOAP versus, 156
stateless operations, 146

SOAP, 151
development of, 152
namespaces, 153

requests, Ajax usage example, 155
requests, code example, 153-154
requests, components of, 152-153
requests, sending via HTTP, 154
REST versus, 156
specification information website, 152

while loops, 52
word processors, HTML, 14

X - Y - Z
XML (eXtensible Markup Language), 53

ATTLIST declarations, 57
comments, displaying, 55
data, retrieving via myAJAXlib.js, 165
DOCTYPE declarations, 55-56
document elements, 55
ELEMENT declarations, 56
HTML, similarities to, 54
JavaScript, 57-59
prologs, 55
responseXML property, 130-132
RSS headline readers, creating, 133, 136-137

callback functions, 138-140
HTML page, 134
server scripts, 140-141

server responses, 67
tags, 54
valid documents, defining, 57

XMLHTTPRequest object
basic application creation example, 103-104
callAjax() function, 83
instances, creating, 74-77
JavaScript libraries, creating, 159-160
methods

list of, 78
open, 78-79
send, 79

23_0672329603_index.qxd 5/7/07 10:47 PM Page 213

XMLHTTPRequest object

214

properties
readyState, 86-87
status, 88
statusText, 88

responseAjax() function, 83
security, 66
server requests, 66

browser caches, 84-86
callback functions, 88-90
sending, 81-83
status, monitoring, 86-87
timestamps, 86

server-side scripts, 67
uses of, 73

XOAD (XMLHTTP Object-oriented Application
Development)

cache handling, 200
client controls, customizing, 200
downloading/installing, 193
events, 199
header() function, 195
runServer() function, 195
simple page example, 194-196
XOAD Controls class, 200
XOAD HTML, 196-199

XOAD Controls class, 200
XOAD HTML, 196

change() function, 196-197
XOAD HTML::getElementByID() method,

196-197
XOAD HTML::getElementByTagName() method,

198
XOAD HTML::getElementByID() method, 196-197
XOAD HTML::getElementByTagName() method,

198
XSLT, 120

23_0672329603_index.qxd 5/8/07 10:54 AM Page 214

23_0672329603_index.qxd 5/7/07 10:47 PM Page 215

23_0672329603_index.qxd 5/7/07 10:47 PM Page 216

23_0672329603_index.qxd 5/7/07 10:47 PM Page 217

23_0672329603_index.qxd 5/7/07 10:47 PM Page 218

HTML
in 10MinutesDeidre Hayes

Fourth Edition

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Teach
Yourself

Sams Teach Yourself HTML
in 10 Minutes
Fourth Edition
Copyright © 2006 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without written
permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although
every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omis-
sions. Nor is any liability assumed for damages resulting from the
use of the information contained herein.

International Standard Book Number: 0-672-32878-x

Library of Congress Catalog Card Number: 2005909313

Printed in the United States of America

First Printing: May 2006

09 08 07 06 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trade-
marks or service marks have been appropriately capitalized.
Sams Publishing cannot attest to the accuracy of this informa-
tion. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and
as accurate as possible, but no warranty or fitness is implied. The
information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from
the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when
ordered in quantity for bulk purchases or special sales. For more
information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

ACQUISITIONS EDITOR

Betsy Brown

DEVELOPMENT EDITOR

Songlin Qiu

MANAGING EDITOR

Charlotte Clapp

PROJECT EDITOR

Andy Beaster

COPY EDITOR

Ben Berg

INDEXER

Heather McNeill

PROOFREADER

Mike Henry

TECHNICAL EDITOR

Gary Rebholz

PUBLISHING
COORDINATOR

Vanessa Evans

INTERIOR DESIGNER

Gary Adair

COVER DESIGNER

Aren Howell

PAGE LAYOUT

TnT Design, Inc.

Contents

1 What’s It All About? 5
What Is the Internet? ..5
What Is HTML? ..6
Then, What’s XHTML? ..7
How Do They Work? ..7
Using Web Browsers ..8
Getting Connected ..9

2 Creating Your First Page 11
Getting Started ..11
Required Elements ..12
Saving and Viewing the Page ..13
XHTML Requirements ..14
Using Good Form ..17

3 Adding Text and More 19
Paragraphs ..19
Text Emphasis ..21
Headings ..23
Special Characters ..24
Math and Science Notations ..25
English Isn’t the Only Language ..26
Meta Tags ..27

4 Linking Text and Documents 32
What Is a URL? ..32
Hyperlinks ..33
Linking to Other Files and Email ..33
Linking Within the Same Page ..35

iv Sams Teach Yourself HTML in 10 Minutes

5 Adding Your Own Style 39
Style Sheets ..39
Defining the Rules ..40
Add a Little class ..41
Applying Styles ..43
Formatting Text with Styles ..46
Adding Lines ..52

6 Creating Lists 57
Types of Lists ..57
Bulleted (Unordered) Lists ..57
Numbered (Ordered) Lists ..59
Definition Lists ..62

7 Creating Tables 64
Simple Tables ..64
Formatting Tables ..65
Advanced Tables ..68
Using Tables for Layout ..68

8 Using Graphics 71
Adding Images ..71
Adding Alternate Text ..73
Image Attributes ..75
Using Images as Links ..78
Image Etiquette ..79

9 Mapping Images 82
What Are Image Maps? ..82
Creating Client-Side Image Maps ..86
Adding Text Links for Older Browsers ..87

10 Creating Frames 89
Simple Frames ..89
Nested Frames ..95
Linking Between Frames ..98
The Two Biggest Problems with Frames ..100
Using Frames Effectively ..103

vContents

11 Building Online Forms 105
Creating Forms ..105
Form Fields ..108
Receiving Form Data ..114

12 Making It Sing: Sound and Video 116
Adding Sound and Video ..116
Finding Plug-ins ..120

13 Designing with HTML 122
Design Basics ..122
Layout, Content, and Navigation ..124
Fonts and Colors ..126
Images ..129

14 Creating Active Web Pages 134
What Are Active Web Pages? ..134
DHTML ..135
Java and ActiveX ..137
JavaScript and VBScript ..138

15 Using Web Authoring Tools 142
Why Use a Tool? ..142
Microsoft FrontPage ..143
Macromedia Dreamweaver ..146
Other Popular Web Tools ..149

16 Making a Name for Yourself 151
Web Hosting ..151
Search Pages and Indexes ..152
Adding Your Web Site to the Search Engine155
Advertising ..157

17 Planning for the Future 158
The Future of the Internet ..158
What Is XML? ..158
Being Prepared ..163

A HTML/XHTML Quick Reference 169
Required Elements ..170
Text Phrases and Paragraphs ..173
Text Formatting Elements ..175
Lists ..176
Links <a>... ..177
Tables ..178
Frames ..180
Embedded Content ..182
Style <style>...</style> ..184
Forms ..184
Scripts ..189
Common Attributes and Events ..190

B Style Sheet Quick Reference 192
Text and Fonts ..193
Typography ..196
Colors and Backgrounds ..198
Borders and Tables ..201
List ..204
Layout ..205

C Special Characters 205
Symbol Entities ..205
Character Entities ..207
Greek Entities ..210
Other Entities ..213

Index 215

About the Author
Deidre Hayes is an information architect with a Web services group that
created and manages a very successful corporate intranet. She is continu-
ally looking for ways to increase productivity with online workflow tech-
nologies and has spoken to national audiences on her favorite Web-related
topics: information design and usability. She is a member of the Society
for Technical Communications, the Usability Professionals Association,
and the HTML Writers’ Guild.

Acknowledgments
I would like to thank my family—especially my beautiful daughter,
Alexandra—for their patience. Thanks to my friends and colleagues for
challenging me everyday. And, thanks also to the editing staff at Sams
Publishing for their dedicated help.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commen-
tator. We value your opinion and want to know what we’re doing right,
what we could do better, what areas you’d like to see us publish in, and
any other words of wisdom you’re willing to pass our way.

You can email or write me directly to let me know what you did or didn’t
like about this book—as well as what we can do to make our books
stronger.

Please note that I cannot help you with technical problems related to the
topic of this book, and that due to the high volume of mail I receive, I
might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as
well as your name and phone or email address. I will carefully review
your comments and share them with the author and editors who worked
on the book.

Email: webdev@samspublishing.com

Mail: Mark Taber
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at www.samspublishing.com/reg-
ister for convenient access to any updates, downloads, or errata that might
be available for this book.

www.samspublishing.com/

Introduction

If you’re reading this book, you must have some idea of what HTML is,
right? Maybe you already know that HTML is the language of the Internet
and that far from being a complex programming language requiring years to
perfect, HTML is actually a simple markup language that you can learn very
quickly. XHTML is the latest version of HTML. You’ll learn more about
how these two standards work together to create Web pages in later chapters.

You’re probably thinking that if you knew how to create documents in
HTML, you could help your company earn more money, or better yet,
help you earn more money.

What you probably don’t know is how to get started. How do you learn
that language and what’s it going to cost?

What You Need to Know Before
Using This Book
Guess what? You can create HTML documents on any computer system
because HTML works the same on any type of computer. Even better, you
can use software that you already own to do it. Any kind of text editor
(such as Microsoft Notepad) can be used.

Because we’re covering a lot in 10 minutes, it will certainly help as you
go through this book if you already have some basic computer skills
(including the ability to use a word processor, some understanding of how
to use directories and filenames on your computer system, and some
experience using a Web browser such as Netscape or Internet Explorer).

About the Sams Teach Yourself in 10
Minutes Series
Sams Teach Yourself HTML in 10 Minutes uses a series of lessons that
walk you through the basics of HTML, and then moves on to more
advanced features of the language. Each lesson is designed to take about

2 Sams Teach Yourself HTML in 10 Minutes

10 minutes and each is limited to a particular feature, or several related
features, of the HTML language. There are plenty of examples and screen
shots to show you what things look like. By the time you finish this book,
you should feel confident in creating your own HTML documents for the
World Wide Web. You can even use HTML to provide unique and valu-
able services to your organization, or to tell the world about yourself.

Special Sidebars
In addition to the explanatory text and other helpful tidbits in this book,
you will find icons that highlight special kinds of information.

Plain English sidebars appear whenever a new term is
defined. If you aren’t familiar with some of the terms
and concepts, watch for these flagged paragraphs.

Caution sidebars alert you to common mistakes and
tell you how to avoid them. These paragraphs also
explain how to undo certain features, and highlight
differences between HTML and XHTML.

Tip sidebars explain shortcuts (for example, key combi-
nations) for performing certain tasks.

Note sidebars present pertinent pieces of information
related to the surrounding discussion.

3Introduction

Conventions Used in This Book
The creation and editing of HTML documents can be done using any one
of a wide variety of editing tools. You’ll find many excerpts from HTML
documents that illustrate the points being made. These fragments look like
this:

<html>
<head><title>This is the Title of Your Page</title></head>
<body>This is the document text surrounded
by HTML tags.</body>
</html>

If you’re working along with the examples, you might want to enter the
HTML fragments into your own HTML documents as you move through
the lessons.

Web Browser Screen Shots
Web browsers (such as Internet Explorer and Netscape) are used to inter-
pret HTML documents for your computer. There are many different types
of Web browsers (some with more bells and whistles, some with less), but
they all do essentially the same thing. You’ll find out about some of these
differences (and how to avoid problems) as we move through the lessons
in this book. To avoid confusion, all the Web browser screen shots in this
book were taken from Internet Explorer.

This page intentionally left blank

LESSON 1
What’s It All
About?

In this lesson, you will learn how the Internet works and why HTML and
XHTML are so important.

What Is the Internet?
Like many inventions, the Internet began as the solution to a problem. It
began with the government’s need to find a way to link several computer
networks together so that files could be shared. In other words, it created
a network of networks. These computer networks were located all over
the world and sharing information the old-fashioned way took a long
time. Today, the idea of sharing files with people around the world doesn’t
sound like such a big deal when almost everyone has the modem, e-mail,
and dial-up connections that make Wide Area Networks (WANs) common-
place. Back then, however, no one had even considered the idea. So, how
did they do it? Well, researchers working for the Advanced Research
Projects Agency (ARPA) created ARPAnet, which became the first WAN.
Eventually, this led to an Internet Protocol (IP)—a common computer
language—enabling all computers to talk to each other.

Internet Protocol (IP) A predefined set of rules used
to enable computers to communicate with each other,
regardless of which operating system they are running.

This protocol and the new network of networks made exchanging informa-
tion much easier than ever before, but it still wasn’t simple. To find infor-
mation on the Internet, you had to know where it was stored. You first had
to understand how all the computers were connected, and then you had to
navigate through the network to find the data you were looking for.

6 Lesson 1

All that changed in the early 1990s. At that time, a new protocol was cre-
ated. That protocol, the Hypertext Transfer Protocol (HTTP), enabled
information on the Internet to be accessed from anywhere, by anyone. It’s
what allows you to jump from one Web page to another by pointing and
clicking. The code that makes up the HTTP was a breakthrough, but it
can’t do everything by itself. The information stored on the computers in
the network (the documents and data) must include its own set of commu-
nication tools so that the other computers in the network can interpret it.
In the case of the World Wide Web, the communication tool is HTML.

HTML Stands for Hypertext Markup Language. Most
documents that appear on the World Wide Web were
written in HTML.

What Is HTML?
In the Introduction, you learned that HTML is a markup language, not a
programming language. In fact, the term HTML is an acronym that stands
for Hypertext Markup Language. You can apply this markup language to
your pages to display text, images, sound and movie files, and almost any
other type of electronic information. You use the language to format docu-
ments and link them together, regardless of the type of computer with
which the file was originally created.

Why is that important? You know that if you write a document in your
favorite word processor and send it to a friend who doesn’t have that same
word processor, your friend can’t read the document, right? The same is
true for almost any type of file (including spreadsheets, databases, and
bookkeeping software). Rather than using some proprietary programming
code that can be interpreted by only a specific software program, HTML
is written as plain text that any Web browser or word processing software
can read. The software does this by identifying specific elements of a doc-
ument (such as heading, body, and footer), and then defining the way
those elements should behave. These elements, called tags, are created by
the World Wide Web Consortium (W3C). You’ll learn more about tags in
upcoming lessons.

7What’s It All About?

Then, What’s XHTML?
XHTML, an acronym for eXtensible Hypertext Markup Language, is the first
big change to HTML in years. With it, the W3C is trying to add the structure
and extensibility of XML to HTML pages. By adding a few simple structural
elements to existing HTML pages, you can be assured that your Web pages
are compatible with later versions of HTML, and even with XML. Lesson 2,
“Creating Your First Page,” has all the information you need to get started.

Tags These are elements of a Web page that are
used to define how those pages should behave. They
are most often used in pairs, which surround the ele-
ment they are defining.

World Wide Web Consortium (W3C) Members of this
group develop the protocols that make up the World
Wide Web. Currently, the W3C has 180 members from
commercial, academic, and governmental organiza-
tions worldwide.

XHTML Stands for eXtensible Hypertext Markup
Language. It is the next generation of HTML.

XML Stands for eXtensible Markup Language. It is
the newest language being developed by the W3C,
and is also the most flexible. You’ll learn more about
it in Lesson 17, “Planning for the Future.”

How Do They Work?
Markup languages such as HTML and XHTML serve another important
purpose when it comes to sharing information over long distances:
Information comes to you faster because your computer (using a Web
browser) does the work of interpreting the format of the information after
you receive the page. Sound confusing? Well, let’s look at it another way.

8 Lesson 1

Your computer has a Web browser, such as Internet Explorer or Netscape
Navigator, installed on it. When you are looking for information on the
Web, your browser has to find the computer that is storing that informa-
tion. It does this using the HTTP. The storage computer, or server, then
sends the new Web page (as a plain text file) back to your computer using
the same HTTP. Your browser sees the new Web page and interprets the
text and HTML tags to show you the formatting, graphics, and text that
appear on the page.

Tip HTTP isn’t the only protocol used on the
Internet. Each protocol is used for a specific network
service, such as electronic mail or file transfers.

Using Web Browsers
As great as Web browsers are, you should be aware of some limitations.
Although all HTML commands are the same, not all browsers interpret
the commands in the same way. Some browsers, such as Lynx, can dis-
play only text (even if the HTML author added images to the document).
Some older browsers do not understand the newer HTML commands and
might produce errors rather than text. What’s more, some of the newest
browsers enable viewers to determine which window display sizes, fonts,
and colors they prefer when viewing Web pages (even if those settings are
different from what you, the Web author, want them to see). Don’t
despair; there is good news. Most Web pages look the same, or almost the
same, on every browser regardless of the computer system: PC,
Macintosh, or UNIX. With each lesson in this book, you’ll find tips to
help ensure that your pages are viewed as you intended. Keep these tips in
mind as you create your own Web pages, and you’ll avoid the disappoint-
ment that many novice Web authors face as they realize that the page they
worked so hard on looks awful on another computer or browser.

9What’s It All About?

Getting Connected
This might be apparent, but sometimes it pays to state the obvious:
Although you can create Web page files in any plain text editor and view
them in any browser, you have to decide how you are going to store the
files. You already know that you can’t surf the Net without having an
Internet Service Provider (ISP). In the same way, you need a Web
Presence Provider (WPP)—or your own Web server—to store your pages
before they can be viewed from the Web. Other ways to view Web pages
also exist. Table 1.1 describes the methods you can use to store your files.

TABLE 1.1 Storing and Viewing Your Documents

If You Store Your They Can Be Viewed by People
Files On with Access To

Your own computer Your computer (or an intranet)

A disk or CD-ROM That disk or CD-ROM

A Web host server The World Wide Web

Tip The Web itself offers Web page designers the
opportunity to preview their pages on a number of
different browsers at one time. Web sites, such as
AnyBrowser (www.anybrowser.com), show you exactly
how each browser will interpret your page. You can
use this information to redesign your page and help
ensure that most people see it the way you intend.

www.anybrowser.com

10 Lesson 1

In this lesson, you’ve learned:

• HTML and XHTML are markup languages that define the
structure, rather than the format, of the text elements in your
documents.

• HTML is platform independent. As long as they have a browser,
your Web site visitors can see the same Web page on a PC, a
Macintosh, or a UNIX computer.

• XHTML, the latest version of HTML, requires more structure
than HTML.

• You need a Web server or a Web Presence Provider to store your
pages before they can be viewed from the Web.

Internet Service Provider (ISP) A company that pro-
vides you with access to the Internet.

Intranet This is like your own private Internet in that
it uses the same HTTP as the World Wide Web, but it is
accessible only by people within your own network.

Web Host A company that stores (hosts) information
that can be accessed from the Internet using the HTTP.
A Web host may also be called a Web Presence
Provider (WPP).

LESSON 2
Creating Your
First Page

In this lesson, you will learn to create, save, and view simple Web pages.

Getting Started
I think you’ll find that the best way to learn is to follow along with the
examples in this book and create your own Web pages as you read. As
you learned in the introduction of this book, you can create Web pages or
HTML documents with any text editor (including Microsoft Notepad,
DOS edit, Mac SimpleText, and UNIX vi). You probably already have at
least one of these editors installed on your computer, even if you have
never used it before.

Caution Although you can also create Web pages
using some word processors (such as Microsoft Word)
and some WYSIWYG programs (such as Microsoft
FrontPage), I suggest that you ignore these programs
for now and concentrate on learning HTML. HTML
authoring tools are discussed in Lesson 15, “Using
Web Authoring Tools.”

WYSIWYG An acronym for What You See Is What
You Get. It generally refers to software programs that
enable you to see what the page looks like without
seeing all the program’s formatting codes.

12 Lesson 2

Required Elements
To see what HTML looks like and learn the most basic HTML tags, let’s
look at a very simple HTML document. Figure 2.1 shows a simple Web
page in Microsoft Notepad. You can type the same text in your own editor
to follow along with the lesson.

FIGURE 2.1 The <html> and </html> tags are all you need to iden-
tify your file as an HTML file.

Every HTML document must begin with the <html> tag and end with its
complement, the </html> tag. In addition to the <html> tag, this docu-
ment includes three other pairs of tags that should be included in any
HTML document:

• The <head> and </head> tag pair is used to indicate any infor-
mation about the document itself. You’ll learn how to add some
of this information in later lessons.

• The <title> and </title> tags are used to add a title to your
browser’s Title bar. The Title bar is the colored band at the top
of any application that gives the name of the application.

• The <body> and </body> tags are used to surround any text that
appears in the HTML page.

All HTML documents are separated into two parts: the head and the body.
Because the title contains information about the document, the <title>
and </title> tags are placed within the <head> and </head> tags.

One More Page
If you were to create another simple HTML page, you would see that the
same four tags are present in this document as well. Only the text that
appears between tags is changed.

13Creating Your First Page

Saving and Viewing the Page
To view your own page in a browser, you must first save it. Because
you’ve created an HTML document, you want to save your file with an
.htm extension (first.htm, for example) so that you recognize it quickly.

Tip Most HTML tags come in pairs. You use the first
tag in the pair (for example, <html>) to tell the com-
puter to start applying the format. The second tag
(for example, </html>) requires a slash in front of the
tag name that tells the computer to stop applying the
format. The first tag is usually referred to by the name
within the bracket (for example, HTML). You can refer
to the second tag as the end, or the close, tag (for
example, end HTML).

Caution Some people prefer to name their HTML
files with an .html extension (for example, first.html).
Some older computer systems, however, still require
the file extension to be three characters or fewer and
might have trouble reading (or storing) a file with a
longer extension.

<html>
<head>
<title>My Second Web Page</title>
</head>
<body>
<p>This is my second Web page.</p>
</body>
</html>

You can preview any HTML file in your browser, even when that file is
stored on your computer rather than on a Web server. In Internet Explorer,
you can view your new file by selecting Open from the File menu. Figure
2.2 shows how Internet Explorer displays the first.htm file that you cre-
ated in Figure 2.1.

14 Lesson 2

FIGURE 2.2 My First Web Page as it appears in the Internet
Explorer browser. Notice that the Title bar contains the text
between the <title> and </title> tags and the body of the
browser contains the text between the <body> and </body> tags.

Tip Although you don’t see them, HTML commands
are sitting behind the scenes of every document that
you open in your Web browser. You can see the HTML
commands by selecting Source from the View menu of
Internet Explorer (other browsers might use different
menu commands). When you find a page on the Web
that you like, you can view the source code to learn
how you can use HTML to create something similar.

Caution Some Web pages use frames to display more
than one HTML page at the same time. (See Lesson
10, “Creating Frames.”) To view the source code for
this type of page, make sure that you use your mouse
to highlight some portion of the page you’re inter-
ested in before selecting Source from the View menu.

XHTML Requirements
XHTML, the latest revision of HTML, adds another required element to
your Web pages: the <!DOCTYPE> tag. This tag appears at the top of the
file and identifies the file as an HTML document conforming to the
XHTML requirements. If you were to create an XHTML-conforming doc-
ument, it would look like the following:

15Creating Your First Page

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”

xml:lang=”en” lang=”en”>
<head>
<title>My XHTML Page</title>
</head>
<body>
<p>This is my first XHTML page.</p>
</body>
</html>

The <!DOCTYPE> tag has three variations: Strict, Transitional, and
Frameset. You declare which one you are using in the top of the file.

• Strict Declare this variation when you are certain that your
viewers will be accessing your pages from newer browsers that
interpret style sheets correctly. You’ll learn more about style
sheets in Lesson 5, “Adding Your Own Style.” The Strict varia-
tion looks like this:

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

• Transitional Declare this variation when you are not certain
how your viewers will be accessing your pages.

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>

• Frameset Declare this variation when you are working in
frames. You will learn more about frames in Lesson 10.

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-
frameset.dtd”>

16 Lesson 2

You might have noticed one more change from the HTML required ele-
ments: The <html> tag has some new attributes: xmlns, xml:lang, and
lang. In HTML, you only have to include the <html> tag to identify the
document as an HTML file, but XHTML requires that you use the xmlns
attribute to link your document to the W3C’s definition of XHTML,
which continues to evolve. You will learn more about this evolution and
how to prepare for it in Lesson 17, “Planning for the Future.” For now,
just remember to include the <!DOCTYPE> tag and the full <html> tag
(shown in the following sample) in all your Web pages. Figure 2.3
demonstrates how the XHTML page, created previously, would appear in
the browser.

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

Caution This book uses the Transitional variation of
the <!DOCTYPE> tag throughout. It’s a good habit to
get into, allowing you to conform to W3C rules, but
offering more flexibility that the Strict variation.

FIGURE 2.3 Notice that adding the XHTML declaration does not
affect your page’s appearance.

Caution The <!DOCTYPE> tag is the only tag that
appears in uppercase. All other HTML tags should be
lowercase as explained in the next section.

17Creating Your First Page

Using Good Form
Tags aren’t the only things that make a good Web page. As you continue
through the lessons in this book, you’ll discover that while HTML was
very forgiving, XHTML must conform to the rules. Though current ver-
sions of the most popular browsers will recognize your intentions even if
you use incorrect tags (or enter the correct tags in the wrong order), later
versions will not. You’ll want to move beyond the novice level now and
follow some basic Web coding principles to conform to XHTML’s stan-
dards. Following is a brief list of those principles, but you’ll learn more in
later lessons:

• Include all the required XHTML elements that you learned in
this lesson You might want to create a template for yourself
that already includes these tags. You can use the XHTML docu-
ment created in the “XHTML Requirements” section as a tem-
plate. Whenever you create a new Web page; open your template
file, add your new text, and save the new file.

• Use lowercase for all tags To the browser, <HEAD>, <Head>, and
<head> all mean the same thing. (That won’t always be true.)
Use the same lowercase spelling for all your commands and you
won’t be caught having to recode your pages as the standard
evolves.

• Never use spaces in filenames Older computer systems have
trouble reading filenames that include spaces (for example, my
first page.htm). Instead, you can use a couple of file manage-
ment tricks to replace the spaces:

• Use an underscore (_) to represent spaces (for example,
my_first_page.htm).

• Use initial capital letters to indicate new words in a file-
name (for example, MyFirstPage.htm).

Table 2.1 shows a list of the tags that you learned in this lesson. A similar
table of new HTML tags appears at the end of other lessons.

18 Lesson 2

TABLE 2.1 HTML Tags Used in This Lesson

HTML Tag Closing Description of Use

<!DOCTYPE> Begins each XHTML document and
includes a reference to the Strict,
Transitional, or Frameset variation.

<html> </html> Surrounds all the text in an HTML file.
XHTML documents must include the
xmlns, xml:lang, and lang attributes.

<head> </head> Contains information about the docu-
ment. Must include the <title> tag.

<title> </title> Identifies the title of the page.

<body> </body> Surrounds the text of the page.

In this lesson, you’ve learned:

• Any text editor, including Microsoft Notepad, can be used to
create Web pages (or HTML documents).

• All HTML documents are separated into two parts: the head and
the body.

• Every HTML document must include the <html> tag and end
with its complement, the </html> tag.

• Every XHTML document must include a valid variation of the
<!DOCTYPE> tag before the <html> tag.

• All HTML tags (except the <!DOCTYPE> tag) should be typed in
lowercase.

LESSON 3
Adding Text
and More

In this lesson, you will learn how to use HTML to add text and headings in
your Web pages. You’ll also learn how to add mathematical notations, infor-
mation about your Web page, and special characters (such as ampersands).

Paragraphs
You might not realize it, but you already learned how to create an HTML
paragraph in Lesson 2, “Creating Your First Page.” In HTML, a paragraph
is created whenever you insert text between the <p> tags. Look at the code
from Lesson 2 again:

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

<head>
<title>My XHTML Page</title>
</head>
<body>
<p>This is my first XHTML page.</p>
</body>
</html>

Web browsers see that you want text and they display it. Web browsers
don’t pay any attention to how many blank lines you put in your text; they
only pay attention to the HTML tags. In the following HTML code, you
see several lines of text and even a blank line, but the browser only recog-
nizes paragraphs surrounded by the <p> and </p> tags (or paragraph tags).
The <p> tag tells the browser to add a blank line before displaying any
text that follows it, as shown in Figure 3.1.

20 Lesson 3

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

<head>
<title>Typing Paragraphs in HTML</title>
</head>
<body>
<p>This is the first line.

But is this the second?</p>
<p>No, this is.</p>
</body>
</html>

FIGURE 3.1 The browser ignores the blank line that I inserted and
puts the line break before the <p> tag instead.

Web browsers do something else with paragraph text that you should be
aware of: They wrap the text at the end of the browser window. In other
words, when the text in your Web page reaches the edge of the browser
window, it automatically continues on the next line regardless of where
the <p> is located.The <p> tag always adds a blank line, but you might not
always want a blank line between lines of text. Sometimes you just want
your text to appear on the next line (such as the lines of an address or a
poem). You can use a new tag for this—the line break, or
 tag,
shown in Figure 3.2.

This new tag forces the browser to move any text following the tag to the
next line of the browser, without adding a blank line in between. Figure
3.3 shows how the browser uses these two tags to format your text.

21Adding Text and More

FIGURE 3.2 The <p> and
 tags help to separate your text
into lines and paragraphs.

FIGURE 3.3 The browser inserts line breaks and blank paragraph
separators only where you place the correct HTML tags.

Text Emphasis
So far you’ve learned how to add text, but here you will learn how to for-
mat it. You will occasionally want to add emphasis to your text to make it
stand out. HTML enables you to quickly apply some standard formats,
such as boldface and italic, using a predefined set of tags. All these tags
occur in pairs (corresponding opening and closing tags) and must sur-
round the text that they are emphasizing. Use the code that follows in
your own Web page to see how each of these tags appears in the browser.

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>

22 Lesson 3

<html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

<head>
<title>Emphasizing Text</title>
</head>
<body>
<p>Make your text one size larger with the

<big>big tag.</big></p>
<p>Try the bold tag or the strong tag

to make an impact.</p>
<p>The <i>italics tag</i> and the emphasis tag
create a different impact.</p>

<p>Use the <tt>teletype tag</tt> to imitate a typewriter.</p>
<p>Make your text one size smaller with the

<small>small tag.</small></p>
</body>
</html>

Caution Other formatting tags exist in HTML, but
their use is discouraged in HTML and deprecated in
XHTML in favor of style sheets. The World Wide Web
Consortium (W3C) has determined that HTML should
be used to identify types of information (text, head-
ings, tables, and so on), but should not be used to for-
mat that information.

Deprecated Some older HTML tags, specifically
related to formatting, have been replaced by the for-
matting capabilities of style sheets.

Style Sheets Web developers use style sheets to
specify formatting instructions for a single document
or a group of documents.

You’ll learn how to create style sheets in Lesson 5, “Adding Your Own
Style.” Throughout the book, however, you’ll see how styles can enhance
your Web pages.

23Adding Text and More

Headings
Separating your text into paragraphs isn’t the only way to format your
Web pages. HTML enables you to add six different heading tags to your
pages by using the tags <h1>–<h6>. These tags are very simple to use.
Look at the following line of code:

<h1>This is Heading 1</h1>

The closing heading tags also create an automatic paragraph break. In
other words, all headings automatically include a blank line to separate
them from the text. Heading 1, the <h1> tag, has the largest font of the
heading tags and Heading 6, the <h6> tag, has the smallest. In fact, you
usually only see Web page authors use the <h1>–<h3> tags because the
remaining tags, <h4>–<h6>, are actually smaller than normal text. Figure
3.4 shows a sample of all the heading tags compared to normal text.

FIGURE 3.4 Notice that HTML’s Heading 4 is the same size as
normal text, but Headings 5 and 6 are actually smaller.

Tip Unless you or the people viewing your pages
have adjusted the browser’s default settings, normal
HTML body text appears in 12 point Times New
Roman font on most computer systems.

24 Lesson 3

Special Characters
You might find that you sometimes need to use symbols on your Web
pages. Symbols (such as +, –, %, and &) are used frequently in our every-
day writing, so it’s easy to understand that they would appear on a Web
page as well. Unfortunately, not all Web browsers display these symbols
correctly. HTML uses a little computer shorthand, either using a numeri-
cal code or a text code (called an entity character reference) to tell the
browser how to interpret these symbols. Table 3.1 shows some of the most
frequently used codes.

TABLE 3.1 Special Character Codes

Char Code Description

& & Ampersand

< < Less than

> > Greater than

© © Copyright

® ® Registered trademark

± &plusmin; Plus or minus

2 ² Superscript 2

3 ³ Superscript 3

´ ´ Acute accent

` ` Grave accent

Number

% % Percent

Appendix C, “Special Characters,” contains a more complete list of the
characters supported by HTML. You can see how many of these symbols
are easy to understand (for example, & for the ampersand and >
for the greater than symbol). Some of the characters, such as number and

25Adding Text and More

percent, require that you memorize numbered codes. Yuck. The best thing
you can do is to make sure that you preview your Web pages in a variety
of browsers before publishing them.

Tip Here’s a special character that you should
remember: . The symbol stands for nonbreak-
ing space and is used to insert a space inside an HTML
document. Because HTML ignores extra spaces
between words and tags, you’ll need to have a way of
including extra spaces. You can do that with the
 character.

Math and Science Notations
Although HTML was first designed and used by scientists, it has yet to
support mathematical and scientific notation with any degree of complex-
ity. HTML does give you two tags to help write simple equations.
Together with the codes for special characters, the <sub> (subscript) and
<sup> (superscript) tags go a long way toward creating equations, as
shown in Table 3.2.

TABLE 3.2 <sup> and <sub> Tags

You Type The Browser Displays

A² + B² A2 + B2 = C2

= C²

CO₂ = Carbon Dioxide CO
2
= Carbon Dioxide

If you are looking to write more complex equations, you need to be a lit-
tle more creative. The obvious answer is to write your equation in the pro-
gram that you usually use, and then use a graphics program to turn it into
an image. You can insert that image into any HTML page, as you’ve
already learned. That works, but the solution is limited. Because the equa-
tion is graphical, you are not able to index or search for text within the
equation. That’s a big drawback, but so is the fact that images slow down

26 Lesson 3

your page’s load time and the fact that your equation cannot be viewed by
nongraphical Web browsers.

Tip Some commercial products are available to help
you notate mathematical expressions. You can see a
list of them on the W3C Web site (www.w3.org/Math/).

English Isn’t the Only Language
You can use HTML even if you don’t write in English. URLs, hyperlinks,
HTML tags, and document formatting elements are language neutral, but
text requires a specification all its own. If you write in standard U.S.
English, you don’t need to make any changes to the way you create your
HTML documents. If you are writing text in any other language, however,
you should specify the language for the browser. The following HTML
samples show the designations for German and French.

<html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”de” lang=”de”>

and

<html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”fr” lang=”fr”>

The language attributes (xml:lang and lang) support the same values as
ISO, the International Standards Organization. You can see the full list of
supported languages and their codes at www.loc.gov/standards/iso639-
2/langcodes.html.

Tip Why is language important? Browsers do not
recognize the language you type unless you use the
lang attribute. Some search engines use the lang
attribute to return only pages written in a specific lan-
guage. Speech synthesizers use this information to aid
in pronunciation. Even some spelling checkers can use
the information to recognize misspellings.

www.w3.org/Math/
www.loc.gov/standards/is0639-2/langcodes.html
www.loc.gov/standards/iso639-2/langcodes.html

27Adding Text and More

Mixing Languages in a Single Page
Although the preceding example shows the lang attribute used as part of
the <html> tag at the top of your document, it’s possible that you would
want to include text of one language within a document of another
language—for example, including a paragraph in French within a docu-
ment in English. You can assign the lang attribute to the <p> tag to solve
this problem. Look at the following sample:

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

<head>
<title>Multi-Language Document</title>
</head>
<body>
<p>Put your English text here.</p>
<p lang=”fr”>Mettez votre texte français ici.</p>
<p lang=”en”>Put the rest of your English text here.</p>
</body>
</html>

Meta Tags
Finally, you get to do something with the <head> tag. So far, you’ve only
seen the <title> tag used to give information about the document, but
you can do a lot more with the <head> tag. What’s more, aside from the
<title> tag, information in the <head> tag doesn’t usually appear in your
document. You can use the meta information tag (<meta>) to identify the
page’s author, keywords used for searching, or a brief description to
appear in search results. You also can use the <meta> tag to give com-
mands to the browser. You can use as many <meta> tags as you like in
your page. You’ll learn how in the sections that follow.

Improved Searching
Search engines (as you’ll find in Lesson 17, “Planning for the Future”) add
the content of your Web pages to their indexes. When a potential

28 Lesson 3

visitor enters a search phrase, the search engine checks its index to find that
word and returns any pages that include that word. It works great. But, what
if you were a realtor and you worked hard at creating a Web page that
included the words houses, housing, sale, and buy; but didn’t include the
phrase real estate? If that was the phrase your visitor was looking for, they
would never find your page.You can use the <meta> tag to include product
names, geographic locations, industry terms, and synonyms that people
might be searching for. There are three <meta> tags that work to help
improve your chances of being found by a search engine:

• Keywords Keywords are words that you feel people might use
to search for your Web page, or synonyms for words that appear
in your document.

• Description This is usually a paragraph of information about
your page. Some search engines use the information in this tag to
summarize your page, but other search engines use the first few
lines of text in your actual document.

• Author This is your opportunity to shine. Just in case someone
is searching for your name, they will find your page if you enter
that information into the <meta> tag.

Meta information for search engines comes in pairs: name and contents.
The following HTML code includes meta information pairs for each of the
preceding <meta> tags.

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

<head>
<title>Your HTML Page</title>
<meta name=”keywords” contents=”words that people might

use to search for your page.” />
<meta name=”description” contents=”a brief paragraph describing

your document.” />
<meta name=”author” contents=”your name” />
</head>
<body>

29Adding Text and More

<p>Insert your text here.</p>
</body>
</html>

Caution Remember, <meta> tags only appear in the
<head> section of an HTML file.

Refresh and Redirect
There might be times when you want to replace one page with another or
want to redirect a link. You might, for example, choose to include a splash
page on your Web site. You can use the meta information to force the page
to change within a given time span using the sample code that follows:

<meta http-equiv=”refresh” content=”time in seconds,
URL of the new page” />

Splash Page The introductory page used by some
Web page authors to show flashy graphics or a prod-
uct logo before continuing to the rest of the site’s
contents.

If you have a page that you update several times a day and you want to
make sure that people always see the most recent version, you can enter
the page’s own URL in the refresh tag. When the browser sees the
refresh tag, it presents the requested URL in the specified time.

<meta http-equiv=”refresh” content=”time in seconds,
URL for this page” />

Caution Because not all Web browsers support this
attribute, authors should include some content on the
splash page that enables users to move to the next
page on their own.

30 Lesson 3

Expiration Dates
If you have a page that you change frequently, you can specify an expira-
tion date in the <meta> tag to ensure that the Web browser looks for a
newer version (rather than displaying an older version, which might still
be stored in the browser’s memory). Look at the example that follows:

<meta http-equiv=”expires”
contents=”Wed, 04 December 2006 00:00:00 GMT” />

When you enter the URL for this page in your browser, it checks its his-
tory files to see whether a copy is stored there. If so, it checks the meta
information to see whether this page is still valid. If the expiration date
has passed, the browser looks to the Web for a more recent copy before
displaying the page.

Table 3.3 reminds you of the formatting tags you learned in this lesson.

TABLE 3.3 HTML Tags Used in This Lesson

HTML Tag Closing Description of Use

 Text appears boldface.

<big> </big> Text appears one size larger than normal.

 Line break. Forces text to the next line.

 Text appears emphasized (italic). Usually
the same as <i>.

<h1> </h1> A first-level heading.

<h2> </h2> A second-level heading.

<h3> </h3> A third-level heading.

<h4> </h4> A fourth-level heading. Rarely used.

<h5> </h5> A fifth-level heading. Rarely used.

<h6> </h6> A sixth-level heading. Rarely used.

<i> </i> Text appears emphasized (italic).

<meta /> Identifies information about the document.

31Adding Text and More

<p> </p> Paragraph break. Forces a blank line.

<small> </small> Text appears one size smaller than nor-
mal.

 Text appears boldface. Same as .

 Text appears in subscript.

 Text appears in superscript.

<tt> </tt> Text appears monospaced, as if typed.

In this lesson, you’ve learned:

• The <p> tag, or paragraph tag, tells the browser to add a blank
line before it displays any text that follows. The
 tag
moves your text to the next line without adding a blank line.

• HTML enables you to add emphasis to your text with several
predefined formatting tags.

• Symbols such as +, –, and % require a little computer shorthand
to tell the browser how to interpret these symbols. This short-
hand begins with an ampersand (&) and ends with a semicolon
(;). A more complete list can be found in Appendix C.

• You can add other languages to your HTML documents by using
the lang attribute on the <html> tag.

• Meta information for search engines comes in pairs: name and
contents, and the <meta /> tags always appear between the
<head> tags.

HTML Tag Closing Description of Use

LESSON 4
Linking Text
and Documents

In this lesson, you will learn how to use HTML’s most valuable feature:
hyperlinks.

What Is a URL?
Ask anyone and they’ll tell you that (far and away) the feature that makes
HTML so worthwhile is the ability to hyperlink from one place to another.
All Web pages, Internet resources, files, and so on, have an address. That
address is known as a Uniform Resource Locator, or URL. Before you can
link to another page (or resource), you have to know its address. You can
find the URL for any resource in the Address box (or Location box) of
your browser.

Hyperlink The text that enables you to jump from a
Web document to another location.

Caution Although URL is the commonly accepted
term to describe the location of Internet resources, a
new term, URI (Uniform Resource Identifier), will likely
replace it as XML becomes the standard. You’ll find
out more about XML in Lesson 17, “Planning for the
Future.”

The <a> tag (called an anchor) is used to define hyperlinks. Unlike most
other HTML tags, the <a> tag requires an attribute. When you use the <a>
tag, you must specify whether you want the enclosed text to link to

someplace (with the tag) or
be linked from someplace (with the <a name=”the place in a document
you want to link to” id=”the place in a document you want to

link to”> tag). The following section provides some examples.

Hyperlinks
The easiest link to learn is the hyperlink to another location. The <a> tag
with the href attribute and its closing tag, , surround any text that
you want to highlight. The default hyperlink highlighting in HTML is
underlined blue text. In the following example, you would click on the
words click here to jump (hyperlink) to the document found at the URL
inside the quotes (http://www.microsoft.com).

Please click here to
open the Microsoft Web site.

Tip Did you know that you can copy the URL of any
Web page from your browser? Just highlight the
address in the Address box (or Location box) and
select Edit, Copy (or press Ctrl+C). Then, select Edit,
Paste (or press Ctrl+V) to paste the address between
the quotes of the href attribute.

Linking to Other Files and Email
You can link to more than just other people’s Web sites. You can use the
same href attribute to link to email addresses for other pages of your own
Web site, or even to other files on your own computer. The hyperlink to
point to another file (second.htm) on my own computer, for example, is
shown in the following code. In this example, the second.htm file is stored
in the same directory as the page linking to it.

Please click here to open
my second Web page.

If, however, my second.htm file was stored in another directory (for
example, the Links directory), the hyperlink would need to include the
directory name too, as in the following:

http://www.microsoft.com

34 Lesson 4

Please click here to open
my other page.

Tip Did you know that you can force your hyperlink
to open a new browser window? This is especially
handy if you want to link to someone else’s Web site
without directing traffic away from your own site. Use
the target=”_blank” attribute, as in the following
example. Try it!

<a href=”http://www.somewhere.com/page.htm”
target=”_blank”>

Click here to open a related Web site.

The href attribute changes slightly if you want to link to a file that is not
part of your Web site. You need to tell the Web browser that the file is not
located on the Web server. You can see how that is accomplished in the
following example:

Click here to open my favorite file.

If I want to link to my dogs.doc file in the 4legs folder of my animals
server, for example, my hyperlink looks like the following:

click here
to open my favorite file.

Caution Did you notice that the direction of my
slashes changes when I change my link type from
http:// to file:\\? The forward slash (/) is always
used to separate directory folders on a Web file server.
The backslash (\) is used to separate directory folders
in Windows and DOS.

You also can link to an email address by using the mailto prefix, as
shown in the following code line. When you click on the words click

35Linking Text and Documents

here, an email window that enables you to type your message to Mickey
Mouse appears.

Click here
to send mail to Mickey.

Linking Within the Same Page
Now that you know how to link to other resources, you might want your
hyperlinks to be more meaningful. HTML enables you to use hyperlinks to
point to a specific spot (or anchor) in an HTML document, instead of just
pointing to the entire document. As an example, suppose that you have a
list of headlines at the top of your HTML document that points to a more
complete article at the bottom of your document. This is easy in HTML.
Remember that anchor tags come with three attributes: href (which has
already been discussed), and name and id (which always appear together).

Anchor A named point on a Web page. The same
tag is used to create hyperlinks and anchors.

Caution In the new XHTML and XML standards
(which will eventually replace HTML), the W3C is call-
ing for the use of a new attribute for the <a> tag
(called id) to replace the name attribute. The smart
thing to do (to make sure that you comply with the
new standard when it is released) is to use both attrib-
utes in your documents. To avoid problems, use the
same value for both attributes, for example, if
name=”dogs” then id=”dogs” as well.

The <a> tag also enables you to name an anchor (or bookmark) in your
document with the name and id attributes. HTML then enables you to use
the anchor tag to point directly to that bookmark. Figure 4.1 demonstrates
how the example in the previous paragraph might look in HTML. Figure
4.2 shows that same document in the browser.

36 Lesson 4

FIGURE 4.1 Notice how the href attribute points to the location
named by the name and id attributes.

Caution The <a href> tag includes the same URL for-
mat you’ve seen before, but also includes the # symbol
to separate the filename from the named anchor.

FIGURE 4.2 The <a> tag with the href attribute is highlighted,
but the <a> tag with the name and id attributes is not.

37Linking Text and Documents

Linking to an Anchor in Another Page
Creating a hyperlink to an anchor in another page requires only one more
element: the URL. As you learned before, you can link to an anchor in a
file on your own Web site, as shown in Figure 4.3, or you can link to a
known anchor in a file on another Web site. The keyword in that sentence
is known. You can’t link to a specific spot on a file unless that spot is
already recognized by the Web browser as a named anchor.

Tip When naming anchors, remember to keep the
names short and not to use spaces. These aren’t HTML
requirements, but following these guidelines certainly
makes linking easier. Look at the example in Figure
4.1 again. The named anchor for the Red, White, and
Blue article is the abbreviated red.

FIGURE 4.3 Notice that each href attribute includes a folder name
(articles), a filename (colors.htm), and the specific anchor name
(red).

Tip You can use style sheets to add visual interest to
your hyperlinks. Lesson 5, “Adding Your Own Style,”
will show you how.

Table 4.1 lists the HTML tags that were discussed in this lesson.

38 Lesson 4

TABLE 4.1 HTML Tags Used in This Lesson

HTML Tag Closing Description of Use

 Surrounds text that links to another
location.

 Surrounds text that is linked to.

 Same as <a name>, but might soon
replace it. Use them together as:
.

In this lesson, you’ve learned:

• Anchor tags come with three attributes: href (which links to
someplace), and name and id (which link from someplace).

• You can copy the URL of any Web page from your browser and
paste it between the quotes of the href attribute in your <a> tag.

• The same href attribute links to email addresses, to other pages
of your own Web site, or even to other files on your own com-
puter.

LESSON 5
Adding Your
Own Style

In this lesson, you will learn how to create style sheets, apply them to
your HTML pages, and wow your audience with your creativity.

Style Sheets
As you’ve already learned, HTML was written as a markup language for
defining the structure of a document (paragraphs, headings, tables, and so
on). Although it was never intended to become a desktop publishing tool,
it does include some basic formatting attributes, such as bgcolor, font-
size, and align. In 1996, the W3C first recommended the idea of
Cascading Style Sheets (CSS) to format HTML documents. The recom-
mendation, which was updated in mid-1998, enables Web developers to
separate the structure and format of their documents.

Style Sheet A set of rules that determine how the
styles are applied to the HTML tags in your documents.

The CSS recommendation describes the following three types of style
sheets:

• Embedded The style properties are included (within the
<style> tags) at the top of the HTML document. A style
assigned to a particular tag applies to all those tags in this type
of document. In this book, you’ll see embedded style sheets
most often.

40 Lesson 5

• Inline The style properties are included throughout the HTML
page. Each HTML tag receives its own style attributes as they
occur in the page.

• Linked The style properties are stored in a separate file. That
file can be linked to any HTML document using a <link> tag
placed within the <head> tags.

In the following sections, you’ll learn how to construct these style sheets
and how to apply them to your documents.

Tip Even without all the formatting benefits that
style sheets provide, Web developers can rejoice in
knowing that using style sheets will no doubt be the
biggest timesaver they’ve ever encountered. Because
you can apply style sheets to as many HTML docu-
ments as you like, making changes takes a matter of
minutes rather than days.

Before the advent of style sheets, if you wanted to
change the appearance of a particular tag in your
Web site, you would have to open each document,
find the tag you wanted to change, make the change,
save the document, and continue on to the next docu-
ment. With style sheets, you can change the tag in a
single style sheet document and have the changes
take effect immediately in all the pages linked to it.

Defining the Rules
Style sheet rules are made up of selectors (the HTML tags that receive the
style) and declarations (the style sheet properties and their values). In the
following example, the selector is the body tag and the declaration is
made up of the style property (background) and its value (black). This
example sets the background color for the entire document to black.

body {background:black}

41Adding Your Own Style

You can see that, in a style sheet, the HTML tag is not surrounded by
brackets as it would be in the HTML document, and the declaration is
surrounded by curly braces. Declarations can contain more than one prop-
erty. The following example also sets the text color for this page to white.
Notice that the two properties are separated by a semicolon.

body {background:black; color:white}

You can format this style rule in a number of ways to make it easier to
read. For example, the following rule produces exactly the same results as
the preceding style:

body {background:black;
color:white}

So does this:

body {
background:black;
color:white
}

If you want to apply the same rules to several HTML tags, you could
group those rules together, as in the following example:

body, td, h1 {
background:black;
color:white
}

Add a Little class
As the old saying goes, rules are made to be broken. What if you don’t
want every single h1 heading in your document to be white on a black
background? Maybe you want every other h1 heading to be yellow on a
white background. Let me introduce you to the class attribute. You can
apply this attribute to almost every HTML tag, and it’s almost like creat-
ing your own tags.

Figure 5.1 shows a fairly standard HTML page that uses an aqua table at
the top of the page to hold the navigation links, and places other tabular
content in yellow tables throughout the document. You can see the HTML
document for that page in Figure 5.2.

42 Lesson 5

FIGURE 5.1 An HTML page that formats two tables differently.

FIGURE 5.2 The HTML document for the page in Figure 5.1.
Notice the class attribute in each <table> tag.

43Adding Your Own Style

Take a closer look at the style properties in Figure 5.2. This document
defines two table styles within the <style> tags. The HTML tag name
table is followed by a period (.) and the class names (nav and rest).

table.nav {background:aqua}
table.rest {background:yellow;

text-align:center;
color:black}

When the table is referenced in the body of the document, you must apply
the class attribute to tell the browser which style properties should be
applied. The HTML markup for each table in this example appears in the
following HTML code. You can see that the class name appears within
quotations just like the other HTML attributes (and as with the width
attribute shown here).

<table class=”nav” width=”100%”>
<table class=”rest” width=50%>

Applying Styles
Before moving on, we’ll quickly cover how to apply style properties to
your documents. Remember, you have three methods to add style sheets:
embedded, linked, and inline. We’ll discuss each one in turn.

Tip In designing your Web site, use linked style sheets
to describe your most frequently used styles (the ones
that will be formatted in the same fashion for all of the
pages in your Web site), such as the heading tags and
link tags. Use embedded style sheets to describe the
formatting of tags that will remain the same within a
single document, or set of documents, such as special
table settings or page margins. Use the inline style
sheets to describe the formatting of tags that vary from
the site-wide formatting applied with the other style
sheets, such as for a special callout or sidebar.

44 Lesson 5

Embedded Styles
All the styles are defined at the top of the HTML document within the
<head> tags because they contain information about the entire document.
The styles defined here apply only to the one document in which they
appear. If you plan to use these same styles in another document, you
need to add them there as well.

<head>
<style type=”text/css”>
table.nav {background:aqua}
table.rest {background:yellow;

text-align:center;
color:black}

a:link {color:red;
text-decoration:none}

</style>
</head>

Note The <style> tag almost always includes the
type=”text/css” attribute, so you should get used to
adding it.

Linked Styles
Linked style sheets hold all the style properties in a separate file. You then
link the file into each HTML document where you want those style prop-
erties to appear.

<head>
<link rel=”stylesheet” href=”mystyles.css” type=”text/css”>
</head>

With this method, I’ve created a separate file called mystyles.css (for cas-
cading style sheet) that contains all my style properties. You can see that
the same type=”text/css” attribute shows up here. Following are the
entire contents of the mystyles.css file. These are the same styles that
showed up in the preceding embedded styles example, but now they
appear in a separate text file.

45Adding Your Own Style

table.nav {background:aqua}
table.rest {background:yellow;

text-align:center;
color:black}

a:link {color:red;
text-decoration:none}

Tip Well-designed Web sites (with more than one
page) contain repeated page elements and styles. The
linked style sheet is most appropriate for this type of
Web authoring. You’ll learn more about designing
effective Web sites in Lesson 13, “Designing with
HTML.”

Inline Styles
With inline styles, the style properties are added to the HTML tag as the
tag is entered. This means that if I want the same style to appear on all
the <h1> tags in my document, I would have to type those styles in all the
<h1> tags. Look at the following example. I am still using the same style
properties, as in the previous examples, but now you can see how the two
tables would be created using inline styles.

<table style=”background:aqua” width=”100%”>

<table style=”background:yellow; text-align:center;
color:black” width=”100%”>

Using inline styles, the <style> tag becomes the style attribute. Multiple
style properties are still separated by semicolons, but the entire group of
properties for each tag is grouped within each HTML tag. This type of
style sheet is fine for documents in which you need to apply styles to only
one or two elements, but you wouldn’t want to do all that work when you
have a lot of styles to add.

Cascading Precedence
You’ve got one more thing to learn before moving on. These three styles
are not treated equally by the browsers, nor are they supposed to be.

46 Lesson 5

Web browsers give precedence to the style that appears closest to the tag.
So, inline styles (which appear as attributes within the tag itself) are most
important. Embedded styles (which appear at the top of the HTML file)
are applied next, and linked styles (which appear in another file alto-
gether) are applied last.

Imagine that you have created an embedded style for the <h1> tag, but want
to change that style for one occurrence of the <h1> tag in that document.
You would create an inline style for that new <h1> tag. The browsers recog-
nize that fact and change the style for that tag to reflect the inline style.

Caution Style sheet precedence is supposed to place
more importance on embedded styles than on linked
style sheets. In actual practice, however, you’ll find
that both Internet Explorer and Netscape treat linked
sheets as more important than embedded sheets (but
they do treat inline styles as more important than
either of the other two). You’ll find that you have bet-
ter luck if you use either linked or embedded styles,
but not both.

Formatting Text with Styles
Text is the most important element of any Web page. Without text, there is
nothing on the page to help people decide whether it’s worth coming
back.

Text on an HTML page is structured by the <body>, <p>, <td>, <tr>,
<th>, <h1> <h6>, and tags (among others). You can add your own
style preferences to each of these tags using the style properties shown in
Table 5.1.

Note Unless you (or the people viewing your pages)
have adjusted the browser’s default settings, normal
HTML body text appears in 12 point Times New
Roman font on most computer systems.

47Adding Your Own Style

In the following example, we’ve added some embedded style elements
that set the font, font size, and font color for the body text of the basic
HTML document we created in Lesson 2, “Creating Your First Page.” In
Figure 5.3, you can see how those styles change the appearance of the
document in the browser.

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”

xml:lang=”en” lang=”en”>
<head>
<title>My First Web Page</title>
<style type=”text/css”>
body {font-family:”Arial”;

font-size:”12pt”;
color:red}

</style>
</head>
<body>
<p>This is my <i>first</i> Web page.</p>
</body>
</html>

FIGURE 5.3 The browser applies the style attributes to the text in
the <body> tags.

Table 5.1 lists the many style properties that you can use to format your text.

TABLE 5.1 Style Properties for Text

Property Description of Use and Values

background Sets the background color for the text.

color Sets the text color for the text.

continues

48 Lesson 5

font-family Sets the font for the text.

font-size Can be a point size, a percentage of the size of
another tag, or xx-small to xx-large.

font-style normal (which is assumed) or italic.

font-weight extra-light to extra-bold.

text-align left, right, center, or justify (full).

text-indent Can be a fixed length or a percentage.

text-decoration underline, overline, strikethrough, and none.

Microsoft maintains a brief tutorial for style sheets on its typography site
(http://www.microsoft.com/typography/default.mspx). The tutorial
teaches Web page authors how style sheets can enhance their documents.
The <style> tag for one of those examples is shown in the following code.
This is impressive because of the many different styles and classes defined
in this document. You can see that you are only limited by your own imag-
ination. You can see the page this style code created in Figure 5.4.

<style type=”text/css”>
body {background: coral}
.copy {color: Black;

font-size: 11px;
line-height: 14px;
font-family: Verdana, Arial, Helvetica, sans-serif}

a:link {text-decoration: none;
font-size: 20px;
color: black;
font-family: Impact, Arial Black, Arial,

Helvetica, sans-serif}
.star {color: white;

font-size: 350px;
font-family: Arial, Arial, helvetica, sans-serif}

.subhead {color: black;
font-size: 28px;
margin-top: 12px;
margin-left: 20px;

TABLE 5.1 Continued

Property Description of Use and Values

http://www.microsoft.com/typography/default.mspx

49Adding Your Own Style

line-height: 32px;
font-family: Impact, Arial Black, Arial,

Helvetica, sans-serif}
.what {color: black;

font-size: 22px;
margin-left: 20px;
font-weight: bold;
font-style: italic;
font-family: Times New Roman, times, serif}

.quott {color: black;
font-size: 120px;
line-height: 120px;
margin-top: -24px;
margin-left: -4px;
font-family: Arial Black, Arial, helvetica, sans-serif}

.quotb {color: black;
font-size: 120px;
line-height: 120px;
margin-right: -1px;
margin-top: -33px;
font-family: Arial Black, Arial, helvetica, sans-serif}

.quote {color: red;
font-size: 24px;
line-height: 28px;
margin-top: -153px;
font-family: Impact, Arial Black, Arial,

Helvetica, sans-serif}
.footer {color: cornsilk;

background: red;
font-size: 22px;
margin-left: 20px;
margin-top: 16px;
font-family: Impact, Arial Black, Arial,

Helvetica, sans-serif}
.headline {color: black;

font-size: 80px;
line-height: 90px;
margin-left: 20px;
font-family: Impact, Arial Black, Arial,

Helvetica, sans-serif}
.mast {color: cornsilk;

font-size: 90px;
font-style: italic;
font-family: Impact, Arial Black, Arial,

Helvetica, sans-serif}
</style>

50 Lesson 5

FIGURE 5.4 The preceding style code produced this page, found at
http://www.microsoft.com/typography/css/gallery/slide3.htm.

Caution None of the most popular Web browsers react
the same way to all the style sheet properties. Your best
bet is to remember to test everything before you pub-
lish it. Webmaster Stop maintains a table of style sheet
properties mapped to the most popular browsers. Check
out this table (http://www.webmasterstop.com/118.html)
to find out whether the style sheet properties you plan
to use are supported by specific browsers.

Link Styles
You have probably seen those bright blue underlined hyperlinks on the Web.
Style sheets have the following selectors to help you change the look of them:

• a:link Sets the styles for unvisited links.

• a:visited Sets the styles for visited links.

http://www.microsoft.com/typography/css/gallery/slide3.htm
http://www.webmasterstop.com/118.html

51Adding Your Own Style

• a:active Sets the styles for the link while it is linking.

• a:hover Sets the style for the link while your mouse is hovering.

Table 5.2 shows some of the style properties you can assign to your links.

TABLE 5.2 Style Properties for the Anchor Styles

Property Description of Use and Values

background-color Sets the background color for the link.

color Sets the text color for the link.

font-family Sets the font for the text of the link.

text-decoration underline, overline, strikethrough, and none.

Tip One of the most popular style sheet effects on
the Web right now is to remove the underlining on
hyperlinks. To do this on your pages, just add the
text-decoration:none declaration to the a styles, as
shown in the following example:

a:link {color:yellow;
text-decoration:none}

If you like the look of the underlined hyperlink, you’re
in luck. You don’t have to specify anything at all.
Underlining is assumed for all a styles.

Color Styles
As you can see in Table 5.3, you can apply color to your HTML tags in
two different ways: with color or with background.

Tip Check out http://wdvl.internet.com/Graphics/
Colour/ for a quick tune-up of Web color selections.

http://wdvl.internet.com/Graphics/Colour/
http://wdvl.internet.com/Graphics/Colour/

52 Lesson 5

TABLE 5.3 Style Properties for Color

Property Description of Use and Values

color Sets the color of the text.

background Sets the background of the page or text.

Caution Don’t forget to test your pages before you
publish them. Not all colors work together. If you’ve
specified a black background color and a black text
color, you’ve got a problem because no one will be
able to see your text.

Adding Lines
A horizontal line, or horizontal rule as it is named in HTML, is one of the
easiest tags to use. You can insert the <hr /> tag anywhere in your docu-
ment to insert a horizontal line that extends across the space available.
Take a look at the following sample HTML. It shows three <hr> tags: two
used as a section break between text and the other used inside a table cell.
Figure 5.5 shows how they appear in the browser.

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”

xml:lang=”en” lang=”en”>
<head>
<title>Horizontal Lines</title>
<style type=”text/css”>
td {text-align=center}
</style>
</head>
<body>
<p>This is a horizontal line.</p>
<hr />
<p>This is another horizontal line.</p>
<hr />

<table width=”50%” rules=cols>

53Adding Your Own Style

<tr>
<td>This is also a<hr />horizontal line.</td>
<td>There is
no line on this
side

of the table.</td>
</tr>

</table>
</body>
</html>

FIGURE 5.5 The <hr /> tag inserts a horizontal line that stretches
across the available horizontal space.

Adding Style to Horizontal Lines
As with other HTML tags, you can use style sheet properties to design
your own horizontal rules. You can set the height, width, and color of the
line to match the design of your Web page. The following HTML sample
shows two different styles attached to the <hr /> tag. If I use the hr.red
style, I see a red line that takes up 50% of the horizontal space. If I use
the hr.purple style, I see a purple line that is 4 pixels high and takes up
75% of the horizontal space.

<style type=”text/css”>
hr.red {color:red;

width:50%}
hr.purple {color:purple;

height:4;
width:75%}

</style>

54 Lesson 5

I’ve used both of those styles in the following sample HTML. Figure 5.6
shows you how those examples look in the browser.

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”

xml:lang=”en” lang=”en”>
<head>
<title>Horizontal Lines</title>
<style type=”text/css”>
td {text-align=center}
hr.red {color:red;

width:50%}
hr.purple {color:purple;

height:4;
width:75%}

</style>
</head>
<body>
<p>This is a plain horizontal line.</p>
<hr />

<p>This is a purple horizontal line.</p>
<hr class=”purple” />

<table width=”50%” rules=cols>
<tr>
<td>This is a red <hr class=”red” />horizontal line.</td>
<td>There is
no line on this

side of the table.</td>
</tr>

</table>
</body>
</html>

55Adding Your Own Style

FIGURE 5.6 Applying styles to the <hr /> tag changes the appear-
ance of the horizontal line.

Margin Styles
Style sheets give you another important advantage: You can specify the
margins of almost any HTML element. The margins can be defined in pt,
in, cm, or px sizes.

body {margin-left: 100px;
margin-right: 100px;
margin-top: 50px}

You can set the margin-left, margin-right, and margin-top properties
individually or combine them into one property called margin that applies
the sizes to the top, right, and left margins.

body {margin: 100px 100px 50px}

The sample CSS document from Microsoft’s CSS Gallery (which you
looked at earlier) also specifies margins for the text elements. Try it on
your documents.

<style type=”text/css”>
body {background: coral }
.subhead { color: black;

font-size: 28px;
margin-top: 12px;
margin-left: 20px;
line-height: 32px;
font-family: Impact, Arial Black, Arial,

Helvetica, sans-serif}
</style>

Table 5.4 lists the HTML tags that were discussed in this lesson.

TABLE 5.4 HTML Tags Used in This Lesson

HTML Tag Closing Description of Use

<hr /> Creates a horizontal line.

<style> </style> Surrounds style sheet properties, or
references to external style sheets. The
standard open tag should be <style
type=_”text/css”>.

In this lesson, you’ve learned:

• The CSS recommendation describes three types of style sheets:
embedded, inline, and linked.

• Three different style sheets exist in HTML: embedded, inline,
and linked.

• If multiple style sheets are applied to your HTML document, the
browser applies the styles of the inline style sheet first, and then
the linked style sheets, and then embedded style sheets.

• The <hr /> tag adds a horizontal line to your HTML document.
Use style sheet properties to adjust the color, width, and height.

• Remove the underlining on your hyperlinks by adding the text-
decoration:none declaration to your a style tags.

56 Lesson 5

Tip Check out the following style sheet references
for more help:

• http://webdeveloper.com/html/html_css_1.html

Web Developer’s CSS tutorial

• www.w3.org/TR/REC-CSS2/propidx.html W3C’s list
of CSS properties

• http://www.microsoft.com/typography/

default.mspx Microsoft’s CSS tutorial

http://webdeveloper.com/html/html_css_1.html
www.w3.org/TR/REC-CSS2/propidx.html
http://www.microsoft.com/typography/default.mspx
http://www.microsoft.com/typography/default.mspx

LESSON 6
Creating Lists

In this lesson, you will learn to use HTML to organize your text into lists.

Types of Lists
One way to organize the text in your Web pages is with lists. In addition
to the obvious benefit of being able to list items on a page, they also pro-
vide a design benefit by enabling you to break up long pages of ordinary
paragraphs. HTML recognizes the following list types and has tags that
correspond to each:

• Bulleted (unordered) lists

• Numbered/lettered (ordered) lists

• Definition lists

Tip You should use ordered lists when the items in
the list must be followed in a specific order, and use
unordered lists when they do not. You generally use
definition lists for terms and their definitions, but they
can have other uses as well.

Bulleted (Unordered) Lists
A bullet (usually a solid circle) appears in front of each item in an
unordered list. HTML automatically creates the bullet when you use the
unordered list tag () together with the list item tag (). Although
the following sample HTML shows each list item as a single line of text,
your list items can be as long as you want:

first item in the list
second item in the list
third item in the list

58 Lesson 6

Figure 6.1 shows how the Web browser displays an ordered and an
unordered list. The figure includes list examples from many of the follow-
ing sections. When your list items are longer than a single line of text, the
Web browser indents the second line (and any following lines) so that the
text lines up.

FIGURE 6.1 Ordered and unordered lists shown in the Web browser.

Formatting Bulleted Lists
HTML automatically adds a solid circle in front of each list item as a bul-
let, but you have two other choices. Using style sheet tags (which you
learned about in Lesson 5, “Adding Your Own Style”), you can select one
of two other bullet types: a square or a hollow circle. You can see how
your HTML document would look if you chose to use a square bullet
instead of the standard solid circle. Figure 6.1 shows how the Web
browser displays this bullet type.

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”

xml:lang=”en” lang=”en”>

<head>

59Creating Lists

<title>Bullet Options</title>
<style type=”text/css”>
ul.square {list-style-type:square}
ul.image {list-style-
image:url(“http://www.xeroxblankmedia.co.uk/graphics/globe.gif”)}
</style>
</head>
<body>
<ul class=”square”>
a list item
another list item

<ul class=”image”>
a list item
another list item

</body>
</html>

You’ll notice that this sample HTML also includes a style (list-style-
image). This style enables you to replace the plain HTML bullets with
your own image. In this example, I replaced the bullets with an image of
a globe. Try changing the URL for one of your own images. You can see
the globe image I chose in Figure 6.1.

Numbered (Ordered) Lists
If the items in your list should follow a specific order, as in recipes or
instructions, you want to use the ordered list tag (). With this tag,
HTML automatically numbers or letters your items for you. Here’s an
example:

first item in the list
second item in the list
third item in the list

Notice how similar the two list samples are. Both the and tags
call for the individual list items to be identified with the tag. Like the
 tag, HTML has an automatic style for the list items within the
tag. HTML automatically numbers the items with the familiar Arabic

60 Lesson 6

numerals (1, 2, 3, and so on). What’s more, it automatically renumbers the
list items if you decide to add or delete items later. Once again, Figure 6.1
has an example of this type of list.

Formatting Numbered Lists
You can use style sheets for formatting ordered lists. In addition to the
standard Arabic numerals, there are four other styles that can be applied to
your ordered list. Table 6.1 describes each of those types, and the follow-
ing sample HTML shows how you can use style sheets to create a list
ordered by lowercase roman numerals. Figure 6.1 shows an example of
such a list in the Web browser.

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”

xml:lang=”en” lang=”en”>
<head>
<title>Bullet Options</title>
<style type=”text/css”>
ol.lwroman {list-style-type:lower-roman}
</style>
</head>
<body>
<ol class=”lwroman”>
a list item
another list item

</body>
</html>

TABLE 6.1 List Style Types

Sample Style Syntax Definition

a, b, c lower-alpha Lowercase letters

A, B, C upper-alpha Uppercase letters

i, ii, iii lower-roman Small roman numerals

I, II, III upper-roman Large roman numerals

61Creating Lists

Setting a Start Value
There might be times when you’d like to start an ordered list with a num-
ber other than one. Many times when writing instructions, you need to
interrupt a numbered list with some other material (such as text or exam-
ples), and then continue with the numbered list. To do this in HTML,
close the first list, add the additional materials that you need, and then
start a new list, using the list item’s value attribute to set the beginning
number for the new list. Figure 6.2 demonstrates how the following code
is interpreted by the browser.

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”

xml:lang=”en” lang=”en”>
<head>
<title>Ordered Lists</title>
<style type=”text/css”>
</style>
</head>
<body>
<p>It’s Payday!</p>

Turn in your timecard.
Receive your paycheck.
Endorse your paycheck.

<p>Congratulations! You’re almost there.</p>

<li value=”4”>Put the check in the bank.

</body>
</html>

Caution The value attribute requires that you use
Arabic numbering to specify the start value, even if
you’ve chosen roman numerals or letters for your list
type.

62 Lesson 6

FIGURE 6.2 The Web browser shows an ordered list that was
interrupted and started again using the value attribute.

Definition Lists
If you need it, HTML has one more type of list available to you: the defi-
nition list, which uses the <dl> tag. Rather than using the usual tag
to specify the items in the list, this type of list uses the <dt> tag (for defi-
nition terms) and the <dd> tag for their definitions. Following is an exam-
ple of the HTML for a definition list, and Figure 6.3 shows how the Web
browser formats a definition list.

<dl><dt>The Definition Term</dt>
<dd>Is defined below the term.</dd></dl>

FIGURE 6.3 A definition list displayed in the browser.

Table 6.2 lists the HTML tags that were discussed in this lesson.

63Creating Lists

TABLE 6.2 HTML Tags Used in This Lesson

HTML Tag Closing Description of Use

<dl> </dl> Definition list.

 List item. Used with and tags.

<dt> </dt> Definition term. The list item of a <dl>.

<dd> </dd> Definition data. Describes definition terms.

 Ordered, or numbered/lettered, list.

 Unordered, or bulleted, list.

In this lesson, you’ve learned:

• HTML recognizes three different list types: unordered (bulleted),
ordered (numbered), and definition.

• Rather than the default bullet style (a solid circle), style sheets
enable you to select three other bullet types: a square, a hollow
circle, or an image of your own.

• The value attribute of the tag sets the beginning number
for your list.

LESSON 7
Creating Tables

In this lesson, you will learn how to build tables using HTML, and how to
control the layout and appearance of a Web page using tables.

Simple Tables
Traditionally, tables have been used for displaying tabular data (such as
numbers) in rows and columns. The flexibility of HTML, however,
enables Web developers to create tables that display more than just num-
bers. In fact, as important as the capability to display tabular data is, even
more important to Web designers is the capability to control the layout of
other document elements (such as text and images).

Table An arrangement of horizontal rows and verti-
cal columns. The intersection of a row and a column is
called a cell.

Caution Although HTML tables look similar to your
favorite spreadsheet, HTML tables don’t perform
mathematical functions.

HTML tables are not difficult to create, but they do require some organi-
zation. All HTML tables begin with the <table> tag and end with the
</table> tag. In between those tags are three other tags to be aware of, as
follows:

• <tr> defines a horizontal row.

• <td> defines a data cell within that row.

• <th> specifies a data cell as a table heading. In newer browsers,
a table heading cell is formatted as centered and bold.

Remember that Web browsers ignore any spaces, tabs, and blank lines that
you include in your HTML document. So, feel free to use spacing to help
you keep track of the table tags. Figure 7.1 shows enough blank spaces
between the tags so that you can see the rows and columns lining up. It
makes it easier to ensure that you don’t forget any tags. Figure 7.2 shows
how that table looks in a browser.

FIGURE 7.1 A simple two-column, three-row HTML table.

FIGURE 7.2 That same HTML table as it appears in the browser.

Formatting Tables
Now you can add some pizzazz to your simple table. In Table 7.1, you see
some of the different style attributes you can apply to HTML tables.
Figure 7.3 shows how you can use these attributes to create an HTML
table with a little more character. Figure 7.4 shows the way the table
appears in a browser.

66 Lesson 7

TABLE 7.1 Table Style Attributes

Attribute Default Use With Values

align left All Horizontal alignment of cell
contents: left, right, center,
and char (which aligns around
a specific character, usually a
decimal or comma).

bgcolor All Background color.

border 0 <table> Width of the border (in pixels).

cellpadding 0 <td>, <th> Space between border and
content (in pixels).

cellspacing 0 <td>, <th> Space between cells (in pixels).

colspan 1 <td>, <th> Number of columns that a
cell should span (merge).

rowspan 1 <td>, <th> Number of rows that a cell
should span (merge).

rules none <table> Where the lines (rules)
appear between cells: rows,
cols, or all.

valign center <td>, <tr>, Vertical alignment of cell
<th> contents: top, bottom, or

baseline.

width to fit All Width of table or cells (in
pixels or as a percentage of
the page).

Tip The World Wide Web Consortium’s Web site
(www.w3.org/TR/REC-html40/struct/tables.html) has
detailed descriptions of all the attributes available for
tables, as well as examples of how you can use them.

www.w3.org/TR/REC-html40/struct/tables.html

67Creating Tables

FIGURE 7.3 Table attributes in HTML.

Pixel A pixel is the size of a single dot of color on your
monitor. The monitor’s display resolution affects the size
of a pixel. A display resolution of 800×600 means that
your monitor displays 800 pixels in width by 600 pixels
in height. The pixel size on a monitor that displays at a
resolution of 1024×800 would be much smaller than one
on a monitor with a resolution of 800×600.

A table with a width attribute fixed at 800 pixels fills a
screen that is set to a resolution of 800×600, but only
fills a portion of a screen that is set to 1024×800.

FIGURE 7.4 That same HTML table as it appears in the browser.

68 Lesson 7

Advanced Tables
HTML contains two more attributes that you should be aware of when
formatting tables. The colspan (which causes a cell to span two or more
columns) and rowspan (which causes a cell to span two or more rows)
attributes are invaluable when creating complex tables, although, as you
can tell from the HTML in Figure 7.5, using them makes it harder to keep
your HTML document organized. Figure 7.6 shows how the table looks in
a browser.

FIGURE 7.5 Using the colspan and rowspan attributes to create
complex tables.

FIGURE 7.6 That same HTML table as it appears in the browser.

Using Tables for Layout
Look at the source code for some of your favorite Web pages and I bet
that you’ll find they were created using tables. Following are some of my
favorite Web pages that use tables to control the page layout:

69Creating Tables

• www.ibm.com/us/ The columns of search categories are created
with tables.

• www.cnn.com/ This site is essentially a three column table.

• www.microsoft.com/office/editions/prodinfo/default.mspx

Microsoft, too, uses tables to design the layout of its Web site.

• www.idolonfox.com/ The Americal Idol Web site demonstrates
another creative use of tables in layout.

Tip Even if you don’t plan to place a border around
the cells in your table, it’s much easier to see how
your HTML commands are interpreted by your Web
browser when you have the borders turned on
(<table border=”1”>). After you are satisfied that the
table is formatted correctly and your content is where
you want it to be, you can remove the border
attribute, leaving just the <table> tag.

Table 7.2 lists the HTML tags that were discussed in this lesson.

TABLE 7.2 HTML Tags Used in This Lesson

HTML Tag Closing Description of Use

<table> </table> Identifies the beginning and ending of a
table. All table content must be contained
within this tag.

<td> </td> Table data cell. Similar to a column.

<th> </th> Table heading.

<tr> </tr> Table row. Surrounds table cells (<td>)
and headings (<th>).

www.ibm.com/us/
www.cnn.com/
www.microsoft.com/office/editions/prodinfo/default.mspx
www.idolonfox.com/

70 Lesson 7

In this lesson, you’ve learned:

• Tables can control the layout of HTML document elements
(such as text, navigation, and images).

• Extra spaces in your HTML documents help you keep track of
the table tags. Web browsers ignore any extra spaces.

• The colspan and rowspan attributes merge cells so that you can
create complex tables.

LESSON 8
Using
Graphics

In this lesson, you’ll learn how to add pizzazz to your Web pages with
graphic images.

Adding Images
If the Web were nothing but text, it would still be technologically impres-
sive, but it wouldn’t be nearly as much fun. Adding images to your pages
is easy; adding images that make your Web pages look professional just
takes a little know-how. Luckily, you’ll learn that here—and it shouldn’t
take longer than 10 minutes.

The two most frequently used graphics file formats found on the Web are
GIF and JPEG. The Joint Photographic Experts Group (JPEG) format is
used primarily for realistic, photographic-quality images. The Graphics
Interface Format (GIF) is used for almost everything else. One new file
format is gaining popularity among designers and will soon be making its
presence known: The Portable Network Graphics format (PNG) is
expected to replace the GIF format someday. Don’t rush out to replace all
your graphics, however; not all browsers support it fully yet.

Tip Sound like a pro—learn how to pronounce the
graphic formats you use. GIF is pronounced “jif” (like
the peanut butter), JPEG is pronounced “jay-peg,”
and PNG is pronounced “ping.”

Let’s get down to business. You add all images by using a single HTML
tag, the image source tag, . By now you proba-
bly recognize that this tag is actually an tag with an attribute

72 Lesson 8

(src) and attribute value (location), but because all images require a src
attribute, it’s easier to refer to it as a single tag. You’ll also notice that the
image tag does not have a corresponding closing tag. It is a single tag and
you’ll need to remember to add the closing slash at the end: . The
result of the following sample HTML appears in Figure 8.1.

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”
lang=”en”>

<head>
<title>First Images</title>
<style type=”text/css”>
</style>
</head>
<body>
<p>This is an image in my first Web page.</p>

</body>
</html>

FIGURE 8.1 The tag inserts an image
into your HTML document.

73Using Graphics

Adding Alternate Text
When browsing the Web, you might have noticed that many times when
you move your mouse pointer over an image, you see a text pop-up that
describes the image, or tells you something more about the area of the
Web site that image represents. You can see an example of that type of
text pop-up in Figure 8.2.

Caution Be aware that the World Wide Web
Consortium, the standards-setting body for HTML, is
considering replacing the tag with the more
generic <object> tag. To add an image using the
<object> tag, follow this format:

<object data=”location” type=”image/gif”> text
describing the image... </object>

FIGURE 8.2 The alt attribute adds a text pop-up to your image.

74 Lesson 8

The following HTML sample shows how the alt attribute is added into
the tag. Like the src attribute, the alt attribute tells the browser
more information about the image. And, like the src attribute, you should
always use the alt attribute with the tag.

<img src=”http://www.thingstobehappyabout.com/face2.gif”
alt=”This looks just like me!”/>

alt attribute Sets the alternate text for a graphic. It
was named alt because it describes the text some
people would see as an alternative to the image that
others would see.

Caution Although you should use the alt attribute
whenever you use the tag, make sure that
you don’t specify irrelevant text. For example, there is
no point in specifying alternate text for a decorative
image (such as a bullet or a line); instead, specify an
empty value (alt=” “).

The alt attribute has another very important purpose. Many people with
slower modem connections to the Web decide to customize their browser
settings to ignore graphics because loading graphics into a Web browser
can sometimes take a long time. Remember, too, that not all browsers
enable you to view graphics. Some browsers, such as Lynx, have no
graphics capabilities at all. The alt attribute ensures that people who
can’t view your graphics can still understand their context.

Without any other attributes, the browser displays the image at its original
size and aligns the bottom of the graphic with the bottom of the text. You
can adjust both those settings using style sheet tags.

75Using Graphics

Image Attributes
You can use other attributes of the tag to change the image size.
Table 8.1 shows some of these attributes, and the following sections pro-
vide some examples for adding these attributes to your documents.

TABLE 8.1 Attributes Used with the Tag

Attribute Values Description of Use

height Pixel or percent Specifies the height of an image.

width Pixel or percent Specifies the width of an image.

Adjusting the Height and Width
You can adjust the size of your image using the height and width attrib-
utes. You can set these attributes to a fixed pixel size or a percentage of
the page size. Look at the following sample HTML lines. The first line
sets the happy face image from Figure 8.1 to a fixed pixel size of 60 pix-
els high and 60 pixels wide. The second line sets the same image to 6% of
the page width and 10% of the page height. Figure 8.3 shows how both of
these look in the browser.

<img src=”http://www.thingstobehappyabout.com/face2.gif”
alt=”This looks just like me!” height=”60” width=”60” />

<img src=”http://www.thingstobehappyabout.com/face2.gif”
alt=”This looks just like me!” height=”10%” width=”6%” />

FIGURE 8.3 The height and width attributes control the size of
the image.

76 Lesson 8

The Web browser interprets pixels and percentages equally well when ren-
dering an image. You need to remember, however, that your Web visitors
may not use the same monitor display settings that you do. What does this
mean to you? My monitor is set to 800 pixels wide. In the preceding
HTML sample, I set the happy face image to 6% of the page width, or 48
pixels wide. If I viewed the same page on a monitor set to 1024 pixels
wide, that same 6% of the page width would now equal 61 pixels, which
is much wider than I wanted.

If you truly want the image to be a certain percentage of the page (as you
might for a graphical line), then use percentages. Using percentages
ensures that the image will take up the space you want it to. If you want
the image to appear a specific size, use the pixel setting.

Caution Be sure to change both the height and
width of your image if you plan to resize them.
Adjusting only one of them will stretch the image out
of proportion. An alternative is to resize the image in
your image editor.

Tip Create the illusion of faster image loading.
Regardless of whether you’re resizing an image or not,
you should always include the height and width attrib-
utes because they give the browser important informa-
tion about how much space will be required to show
the image on the page. This way, the browser can set
that space aside and continue building other aspects of
the page even while the image downloads. This gives
the impression that the page loads faster since the
viewer doesn’t have to wait for the entire image to
download before looking at other areas of the page.

Aligning Text and Images
You can use the align attribute of the tag to force an image to
appear on the left or right of a section of text. You can see an example of
this attribute in action in Figure 8.4.

77Using Graphics

<img src=”http://www.thingstobehappyabout.com/face2.gif”
alt=”This looks just like me!” height=”60” width=”60”
align=”right” />

You also can use the align attribute to vertically align an image with the
text. The align attribute has three more values: top, bottom, and center,
which are discussed in the following list. Figure 8.4 shows you a sample
HTML document using the vertical alignment properties.

• Setting the align attribute to top aligns the top of the image
with the top of any surrounding text.

• Setting the align attribute to bottom aligns the bottom of the
image with the bottom of any surrounding text.

• Setting the align attribute to center aligns the center of the
image with the center of any surrounding text.

FIGURE 8.4 Notice how the align attribute forces the image to
align with the text.

78 Lesson 8

Using Images as Links
Images are good for more than just looks. You can use them to provide
creative hyperlinks to other documents. HTML makes this easy because
using an image as a link is exactly the same as using text. You are still
using the anchor tag (the <a> tag you learned about in Lesson 4, “Linking
Text and Documents”) to surround the item you want to act as the hyper-
link to another document. When you link from an image, the anchor tags
must surround the image tag. Following is an example of the HTML you
would use:

<img src=”http://www.thingstobehappyabout.com/face2.gif”

alt=”This looks just like me!” height=”60” width=”60” />

When your visitors move their mouse pointers over the face image in this
sample, they will see a pop-up that says, “This looks just like me!” When
the visitors click on the image, they will open the DOC2.htm file refer-
enced by the anchor tag.

Thumbnail Images
Another popular use of the hyperlinking capability of HTML is to link
from one image to another. Why would you want to do that? Well, many
times the image you want to display is so large that it takes longer to load
into the browser than you think people would like to wait. If that’s so, you
can create a smaller version of the file, called a thumbnail, that will load
more quickly into the browser. The visitor simply clicks the thumbnail if
he wants to open the larger file. Here’s how it’s done.

Caution Be sure to preview your HTML documents in
the browser (or in several browsers) to make sure that
you are happy with how they look before you publish
them. Not all browsers treat these align attributes in
the same way.

79Using Graphics

<img src=”thumbnail.jpg” alt=”Click here to view a larger

image.” height=”60” width=”60” />

As you can see, clicking the thumbnail.jpg image will open another image
(large_image.jpg). The alt attribute in this sample tells the visitor how to
open the larger image.

Image Etiquette
Images are fun and colorful and easy to add to your HTML, but following
are some etiquette rules to follow if you want your visitors to be happy
with your site.

• The larger an image’s file size, the longer it will take to load into
the browser. Because most visitors to the World Wide Web still
use a slow speed modem to connect from home, their time is pre-
cious. If you remember that and make sure to use small images
whenever possible, you’ll find that your visitors are happier.

• Not only is the file size of the individual image important, but
also is the total file size of your HTML document. The more
images you add—even small images—the larger your file size
will become. Previewing your page in several browsers will help
you determine how long your page will take to load in the
browser. If you find the time too slow, so will your visitors.

• While the alt attribute is one of the most important attributes
(because it should be used every time you use the tag),
it pays to remember a simple guideline: Make sure that the text
for the alt attribute is relevant to the image—anything less will
frustrate your visitors.

Tip Many image editor programs provide tools to
help you create thumbnail images of your large
graphics. You can also use standalone products, such
as Cerious Software’s Thumbs Plus available for down-
load at ftp://ftp.cerious.com/pub/cerious/
thmpls32.exe.

80 Lesson 8

• On the subject of relevance: Be sure that your images are rele-
vant to the text. An image of an airplane works great if you’re
talking about travel plans, but means nothing if you’re talking
about wildlife.

• You can find images all over the Internet, and saving them to
your own computer for use later is easy (see the following Tip).
Just as in the publishing world, however, graphic designers can
protect their images by copyright. If you’ve found an image you
like on a commercial Web site, look for a copyright notice or
other legal statement that indicates whether the image is free for
the taking. There are plenty of free images available on the
Internet without using copyrighted material.

Tip You can copy any Web image to your own com-
puter, as long as it isn’t protected by copyright. Just
right-click on the image (or hold down the mouse but-
ton if you are on a Macintosh computer) and select
Save Image As from the pop-up menu. Save the file
on your own computer and use it as you would any
other image file.

Table 8.2 lists the HTML tags that were discussed in this lesson.

TABLE 8.2 HTML Tags Used in This Lesson

HTML Tag Closing Description of Use

 Adds an image to an
HTML document.

<object> </object> Adds an object (can be
used for images) to a
HTML document.

81Using Graphics

In this lesson, you’ve learned:

• The two most frequently used graphics file formats found on the
Web are GIF and JPEG. JPEG is used primarily for realistic,
photographic-quality images; GIF is used for almost everything
else. PNG is expected replace GIF sometime in the future.

• All images are added to HTML documents with the image tag
and the source attribute, .

• You can use the <a> tag to link an image to another document.

• Images are part of the fun of Web pages, but they are also part of
the problem; larger file sizes mean longer page load times.

LESSON 9
Mapping
Images

In this lesson, you’ll learn how to use image maps to link one image to
many pages.

What Are Image Maps?
You’ve learned how to use an image to link to another page, but did you
know that you can subdivide a single image and link each part of that image
to another page? This type of subdivided image is called an image map.

Image Map An image that is divided into pieces that
are linked to (or, mapped to) more than one resource,
such as an HTML page, a file, or another image.

You’ve probably seen image maps on the Web, even if you didn’t know
what they were. Rather than creating a different image for each button in
the navigation bar, many Web designers create a single image that con-
tains all the buttons and then use image maps to link each button to the
appropriate page. Figure 9.1 shows one example of such a navigation bar.
Look at the following additional examples:

• The Amazon Web site (http://www.amazon.com) also uses
image maps in its navigation bar.

• The map on the Travel Alberta Web site (http://www1.
travelalberta.com/content/maps/) uses an image map to
direct visitors to information about specific regions of the
province.

http://www.amazon.com
http://www1.travelalberta.com/content/maps/
http://www1.travelalberta.com/content/maps/

• The Johnson’s Baby Soft Web site (http://johnsons
babysoft.com/) uses an image map to link to specific product
information for the products shown on its home page.

FIGURE 9.1 This image has been subdivided into four parts (one
for each button on my navigation bar). Notice that some pieces of
the image will not be linked to anything. Do not draw the boxes
on your own image; I included them for demonstration purposes.

Finding the Coordinates
Like any other map, image maps have coordinates. In an image map, the
coordinates, which are written as pixels, mark the corners of the piece of
the image that will be linked to a specific URL. Before you can create any
image map, you have to know the coordinates for your image.

Many image editors are available that can help you determine these coor-
dinates and give them to you in a file so that you can cut and paste them
into your HTML document. However, it’s a lot easier to let your image
editor do the work for you. Just type “create image map” into your
favorite Web search engine to find several applications.

Tip A free trial version of Paint Shop Pro can be
downloaded from the Corel® Web site at
http://www.corel.com/servlet/Satellite?

pagename=Corel3/Trials/DownloadContainer.

http://www.corel.com/servlet/Satellite?pagename=Corel3/Trials/DownloadContainer
http://johnsonsbabysoft.com/
http://johnsonsbabysoft.com/
http://www.corel.com/servlet/Satellite?pagename=Corel3/Trials/DownloadContainer

84 Lesson 9

If you want to create your own image map, use the image editor to find
the coordinates, write them down, and add those coordinates to your
HTML file. Figure 9.2 shows you how Paint Shop Pro displays the coor-
dinates for an image. I highlighted the portion of my navigation bar that I
wanted to map to my home page and Paint Shop Pro told me which coor-
dinates to use. As the figure shows, the highlighted section is a rectangle
with corners at 1, 107 and 189, 167.

Tip You can divide your image into rectangular, cir-
cular, or irregular polygon shapes. The rectangle is the
easiest shape to use when you’re getting started and
that’s the shape used in Figure 9.2.

FIGURE 9.2 Paint Shop Pro displays the coordinates of a selected
region of the image in the lower-left corner.

85Mapping Images

Client Side Versus Server Side
With HTML, you can create image maps that work on the client side and
the server side. The following list indicates the differences:

• Client side When you click on a client-side image map, the
Web browser does all the work to bring you to the new location.
The browser selects the link that was specified for the activated
region and follows it.

• Server side When you click on a server-side image map, the
server that stores the map interprets the commands and brings
you to the page to which you are linked.

So how do you know which one to use? Most Web page authors only use
client-side image maps because they are faster and anyone with a version
3.0 browser or higher can view them. You can always provide text links
for older browsers that don’t recognize the client-side image maps.
Because client-side image mapping is the type of image map used most
often, it is the one you’ll learn about in the following section.

Caution The pixel coordinates for an image mark the
corners of the portion of the image you are highlight-
ing. The coordinates are relative to the entire image,
not to the position of the image on the Web page.
Use your image editor to gather the coordinates and
you won’t get confused.

Tip When you are planning your Web page design,
remember that you might not need to use an image
map at all. You can place several smaller images close
together for the same look. As long as the areas you
want to link are primarily rectangular, this process is
very easy with HTML and the tag you learned in
Lesson 8, “Using Graphics.”

86 Lesson 9

Creating Client-Side Image Maps
Let’s get started. After you have an image and have determined the coor-
dinates for each piece of the image, you can begin mapping your image in
HTML. The following HTML sample shows the image map I created for
the navigation bar shown in Figure 9.1:

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”

xml:lang=”en” lang=”en”>
<head>
<title>Image Maps</title>
<style type=”text/css”>
body {text-align=”center”}
</style>
</head>
<body>
<map name=”NavBar” id=”NavBar”>
<area shape=”rect” coords=”270, 91, 416, 138”

href=”resources.htm” alt=”resources” “ />
<area shape=”rect” coords=”139, 117, 287, 166”

href=”services.htm” alt=”services” “” />
<area shape=”rect” coords =”139, 61, 290, 111”

href=”about.htm” alt=”about us” />
<area shape=”rect” coords =”5, 84, 157, 139”

href=”default.htm” alt=”home page” />
</map>
<img src=”redcircles.jpg” width=”424” height=”166”

alt=”My Nav Bar” border=”0” usemap=”#NavBar” />
</body>
</html>

Look at the HTML example for image maps a little closer:

• <map name=”x” id=”x”> Every image map needs a name and an
id. It works just like the named anchor tag <a> you saw in Lesson
4, “Linking Text and Documents.” It identifies the section of the
HTML document that you want to reference from your image.

• <area shape=”w” coords=”x” href=”y” alt=”z” /> An
<area /> tag is required for each portion of an image that will
be linked. It identifies the shape of that portion, the coordinates
for it, and the URL to which it will lead.

87Mapping Images

• </map> This tag closes the preceding <map name> tag.

• usemap=”#Map Name” usemap is an attribute of the tag. It
points the Web browser to the correct image map for this image.
Notice the # sign that precedes the map name; it works just like cre-
ating a hyperlink to a named anchor within the current document.

The Web browser sees the image map and knows that the image will be
linked. In Figure 9.3, you can see that the mouse pointer changes into a
hand when it hovers over a portion of the image that is mapped, as it does
when placed over any other hyperlink.

FIGURE 9.3 The image from Figure 9.2 displayed in the Web browser.

Adding Text Links for Older Browsers
Because client-side image maps can be interpreted only by version 3.0 or
later Web browsers, you’ll need to provide another way for your visitors to
get to the other pages in your Web site. The easiest way to do this is to pro-
vide text links under your image, as shown in the following HTML sample
and in Figure 9.4:

<img src=”redcircles.jpg” width=”424” height=”166”
alt=”My Nav Bar” usemap=”#NavBar” />

<p align=”center” />
Home Page |
About Us |
Resources |
Services

88 Lesson 9

As you can see, text links are standard HTML <a href> links. They will
follow the tag and direct the viewers to the same pages they
could reach with the image map. Figure 9.4 shows you how these links
will look in the Web browser.

FIGURE 9.4 The image from Figure 9.2 displayed in the Web
browser, with additional text links provided for older browsers.

Table 9.1 lists the HTML tags that were discussed in this lesson.

TABLE 9.1 HTML Tags Used in This Lesson

HTML Tag Closing Description of Use

<area /> Identifies the shape (circle, rect, or
poly), coordinates (in pixels), and URL
for each section of the image.

<map name> </map> Surrounds the image map and gives a
reference name to be used with the
usemap=”#map name” attribute.

In this lesson, you’ve learned:

• Image maps link a single image to multiple Internet resources.
The most popular examples of image maps on the Web are for
navigation bars.

• Paint Shop Pro and other graphics programs enable you to create
your image, and determine the coordinates for the image map.

• Image maps can be contained within your HTML document or
in a separate file.

LESSON 10
Creating
Frames

In this lesson, you’ll learn to create frames. You’ll also learn why some
people don’t like them and how you can use them effectively.

Simple Frames
HTML frames give you a way to display two or more HTML documents
at once. Each frame in the browser window displays its own HTML docu-
ment. Those documents can link to each other or remain completely sepa-
rate entities.

Frame A complete HTML document that appears
inside of, or alongside, one or more other HTML
documents within the same browser window.

Most often, as in Figure 10.1, you’ll see frames used as a navigation bar
on a Web site. The navigation frame can appear on any side of the docu-
ment, but you’ll find it most often on the top or left margins because
English (the language of the majority of Web pages) is oriented from top
to bottom and left to right.

To create frames, you’ll need to create a new type of HTML document,
called a frameset. A frameset is a special type of HTML document that
defines how many frames will be displayed and which HTML documents
will appear in each frame. The frameset document for the page is dis-
played in Figure 10.1.

90 Lesson 10

FIGURE 10.1 A simple two-frame document as it appears in the
browser. The left frame contains the site’s navigation bar and the
right frame contains the pages to which the navigation buttons
link.

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

<head>
<title>First Frameset</title>
<style type=”text/css”>
</style>
</head>
<frameset cols=”20%,*”>
<frame src=”toc.htm” name=”left” id=”left” />
<frame src=”latin.htm” name=”main” id=”main” />

<noframes>
<body>
<p>Table of Contents</p>
</body>

</noframes>
</frameset>
</html>

91Creating Frames

If you compare this document with a regular HTML document, you
should notice right away that the <body> tag is missing. A frameset docu-
ment uses a new tag, <frameset>, to replace the <body> tag. Within the
<frameset> tag, you’ll see the <frame /> tag, which is used to describe
the contents of each frame, and the <noframes> tag, which is used to
instruct the browser what to display in the event the viewer’s browser
does not support frames, including adding the <body> tag again.
Confused? Let’s take a closer look at each of these tags.

<frameset>
Within the <frameset> tag, you will need to define the orientation of the
frames—in vertical columns, cols, or in horizontal rows, rows. This ori-
entation attribute also requires you to define the size of each of your
frames. For example, if you have three vertical frames in your frameset,
you will need to specify three size attributes. Look again at the
<frameset> tag in the preceding HTML sample.

<frameset cols=”20%,*”>

This tag defines two vertical columns. The first column is 20% of the
screen width; the second column fills the remainder of the screen—80%.
The asterisk (*) tells the browser to fill the remainder of the screen. You
can use the same trick if you are defining more than two frames. Although
it shows only two values, the following <frameset> tag will actually be
used to define three horizontal rows. The first row has been set to 20% of
the length of the screen; the asterisk forces the browser to equally divide
the remainder of the screen between the other two rows.

<frameset rows=”20%,*”>

Tip Did you notice that the <!DOCTYPE> tag changed?
In Lesson 2, “Creating Your First Page,” you learned
that XHTML has three variations. The frameset varia-
tion is used whenever you create framed pages.

92 Lesson 10

You don’t have to let the browser figure out the size of your frames. If
you are a perfectionist, you can do your own math and specify the size
yourself. Just remember that the total value of the sizes can’t be more than
100% of the screen. Now that makes sense, doesn’t it?

Tip You can specify the size of your frames in pixels
or as a percentage of the browser window by using
the % sign as in the following tag:

<frameset cols=”50%,50%”>.

You don’t have to use the % sign, however. You can
use a forward slash (/) as an abbreviation of the %
sign, as in the following tag:

<frameset cols=”50/,50/”>.

<frame />
Like the tag you learned about in Lesson 8, “Using Graphics,”
the <frame /> tag uses the src (source) attribute to tell the browser where
to find the document to display. The important thing to remember when
you are setting up your frameset document is that you are defining the
start page for your Web site, or the first framed page in your site. You
don’t have to figure out every possible combination of pages that might
appear, you only have to specify the first one.

The <frame /> tag also requires the name and id attributes. Most
people name their frames by their location on the browser window. The
<frame /> tags in the following example, for instance, call the frame
that appears on the left of the screen, left, and the other frame main
because it will hold the main pages of the Web site.

<frame src=”toc.htm” name=”left” id=”left” />
<frame src=”latin.htm” name=”main” id=”main” />

Tip You could name the frames anything (Dog, Cat,
Red, or Blue), but you’ll find them easier to remember
if you stick to something simple.

93Creating Frames

Following are a few more attributes of the <frame /> tag that might come
in handy:

• frameborder With this attribute, you can remove the small
border line that separates the frames. In Figure 10.2, the border
has been removed from the sample frameset.

FIGURE 10.2 Figure 10.1 with the frameborder attribute set to “0”.

• marginwidth or marginheight These attributes specify (in pix-
els) the space between the border and the text in the frame.

• scrolling Using the values of yes, no, or auto, you can tell the
browser whether or not to add a scrollbar next to the frame. Don’t
worry, however; even if you’ve specified scrolling=”no”, the
browser will display a scrollbar if the content of the frame exceeds
the size of the frame.

• noresize Just like any other window, you can resize frames man-
ually by dragging the frame’s border (even when the frameborder=
”0” attribute has been specified). You can prevent that capability by
specifying the noresize attribute in your frameset.

<noframes>
The <noframes> tag that appears in the preceding example tells the browser
what to do if it doesn’t know how to display frames, or if your visitor has
adjusted his browser’s settings to refuse frames.

94 Lesson 10

<noframes>
<body>
<p>Table of Contents</p>
</body>
</noframes>

The <noframes> tag is not required and many Web page authors choose to
ignore it, but it takes very little effort to add it and it makes good sense if
you want to be certain that everyone will be able to view your Web site.

While it’s true that many authors ignore the <noframes> tag, you’ll find
that just as many authors choose to create an entire non-framed version of
their Web site. I happen to think that’s overkill.

If you are using frames as a navigation bar, you could make a couple sim-
ple changes to your main HTML pages to help people who can’t see the
frames navigate your site. In Figure 10.3, I’ve made the same frameset
document from Figure 10.1 work for people who can’t see frames. By
adding a simple one-row table to hold a duplicate set of navigation ele-
ments, someone who stumbles upon your page, but can’t see the frame on
the left, can still navigate the site.

FIGURE 10.3 Adding a navigation bar to the top of each of the
main pages will make this site work for those people who can’t
view framed pages.

95Creating Frames

Nested Frames
You might want to be more creative with your frame layout. You can use the
<frameset> tag more than once in a single frameset document. This feature
enables you to nest frames within each other. Following is an example of a
nested frame. I indented the second <frameset> to make it easier to read.

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

<head>
<title>First Frameset</title>
<style type=”text/css”>
</style>
</head>
<frameset rows=”15%,*,10%”>
<frame src=”sitename.htm” name=”top” id=”top” />

<frameset cols=”20%,*,11%”>
<frame src=”toc.htm” name=”left” id=”left” />
<frame src=”latin.htm” name=”main” id=”main” />
<frame src=”motto.htm” name=”right” id=”right” />

</frameset>
<frame src=”contacts.htm” name=”bottom” id=”bottom” />

<noframes>
<body>
<p>Table of Contents</p>
</body>

</noframes>
</frameset>
</html>

The first <frameset> tag defines three horizontal frames, but the second
<frameset> tag divides the middle row into three column frames. Figure
10.4 shows you how this nested frameset will appear in the browser.

96 Lesson 10

FIGURE 10.4 All the borders have been left showing to help you
see where the nested frames are in this example.

<iframe>
You can create a frame one more way by using the <iframe>, or inline
frame, tag. Rather than creating a separate frameset document, you define
an inline frame within a regular HTML document because it appears in
the middle of another document. Figure 10.5 shows the same content as
the sample in Figure 10.4, but this page was created using an inline frame.
You can see the HTML document for this page in Figure 10.6.

You can apply all the same attributes for regular frames to the <iframe>
tag except the noresize attribute because unlike regular frames, inline
frames cannot be resized.

Caution As of right now, the <iframe> tag only
works with Internet Explorer 4 and higher browsers,
so don’t try to use it unless you know your audience
has one of those browsers.

97Creating Frames

FIGURE 10.5 The scrollable document in the center of this page
was added with an inline frame.

FIGURE 10.6 Style sheet properties are used to help define the col-
ors and fonts for this document. The <iframe> tag is actually embed-
ded inside a table to achieve the page layout shown in Figure 10.5.

98 Lesson 10

Tip Throughout the book, you have been cautioned
that not all browsers support all the HTML tags you’ve
learned. For a fee, WebSideStory’s StatMarket® tracks
browser usage and other fun statistics on its Web site
(http://www.websidestory.com/services-
solutions/datainsights/statmarket/overview.html).
You can use that knowledge to decide whether you
are willing to take the risk of using a tag such as
<iframe>, which is not supported by all browsers.

Linking Between Frames
Think back to Lesson 4, “Linking Text and Documents,” when you
learned how to create hyperlinks. You’ll remember that you can use the
 tag to name an anchor, or target, within a docu-
ment that could be linked to directly, as shown in the following code.

Point A

You’ll remember that you need to use the anchor tag, , to surround the text that you want to highlight, as
shown in the following example:

Click Here to go to Point A

All frames also have the name and id attributes assigned to them. You can
use that name to specify which frame you want your hyperlink to open in.
Let’s look at the HTML code for the toc.htm file used in the preceding
examples.

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

<head>
<title>Table of Contents</title>
<style type=”text/css”>

http://www.websidestory.com/services-solutions/datainsights/statmarket/overview.html
http://www.websidestory.com/services-solutions/datainsights/statmarket/overview.html

99Creating Frames

</style>
</head>
<body>
<p>HOME</p>
<p>Page 1</p>
<p>Page 2</p>
<p>Page 3</p>
<p>Page 4</p>
</body>
</html>

Now you see a new attribute has been attached to the <a href> tag:
target. The target attribute refers to the target frame for the hyperlink.
Besides the frame names that you’ve specified in your frameset document,
you can target the following other three names:

• This tag opens the hyper-
link in a new browser window.

• This tag opens the hyperlink
in the same window where the hyperlink was. If the hyperlink
was in a frame, the link will open in the same frame, replacing
that frame document.

• This tag opens the hyperlink
in the same browser window. If the hyperlink was in a frame, the
link will open in the same frame, replacing the entire frameset.

Target Frame The name of the frame in which a
hyperlink will open.

Caution Always specify the target attribute when-
ever you are working with frames. If you don’t specify
the target frame, the browser generally will replace
the current frame with the target document, which
might not be what you’d intended.

100 Lesson 10

The Two Biggest Problems with
Frames
Mention frames to any Web site developer, and you’ll be sure to get an
earful. Good or bad, people always have an opinion. You’ve already seen
how useful they can be at providing navigational information, but let’s see
why so many people dislike them.

Tip Jakob Nielsen, one of the Web’s most respected
usability experts, maintains a Web page called (and par-
don my French), Why Frames Suck (Most of the Time),
in which he discusses some of the many problems users
have with frames. You can read his original 1996 article
at www.useit.com/alertbox/9612.html, which was later
updated in 1999 (http://www.useit.com/alertbox/
990502.html). Though not a recent article, the concerns
he raises are still valid today.

So Many Pages, So Few URLs
When you load your frameset document into your browser, you are telling
the browser to load all the pages into this same document, following the
selected hyperlinks. So? Take a look at the URL for your frameset docu-
ment. My URL is C:\Webshare\wwwroot\sams\frame2.htm. No matter
how many times I click the hyperlinks in my framed pages, the URL stays
the same because all those framed pages are loading into the same frame-
set document.

Why is that a problem? Suppose that my best customer is browsing my
site and she is looking at the wonderful information on Page4.htm. She
decides to save the URL in her Favorites (or bookmark it) so that she
doesn’t have to search for the information again. The URL she saves is
C:\Webshare\wwwroot\sams\frame2.htm, not C:\Webshare\
wwwroot\sams\page4.htm, which is what she was actually looking at.
There is no guarantee that when she opens that URL in the browser, it
will open on Page4.htm, as she wanted in the first place. How frustrating!

www.useit.com/alertbox/9612.html
http://www.useit.com/alertbox/990502.html
http://www.useit.com/alertbox/990502.html

101Creating Frames

If you right-click the mouse (or hold the mouse button if you have a
Macintosh), you can click Properties in the shortcut menu. On the
Properties dialog box is the URL for that particular page (see Figure
10.7). You can highlight and copy that URL into the Address field of your
browser to open later. When you do this, however, you will not see the
framed version of the site; you will only see the single document that you
saved, with no additional navigation to help you.

FIGURE 10.7 The Properties dialog box contains the actual URL
for a framed page. You can copy the URL using the shortcut menu
after you highlight the text.

Printing
Another huge problem for users of your framed Web site is printing. Why
should printing be a problem? As much as we like to think that we are
headed toward paperless offices and online commerce, people still like to
print documents. When most people see a page that they want to print,
they click the Print button on their browser. With older browsers, the Print
button only prints the active frame.

102 Lesson 10

On my sample framed site, if you clicked a link in the left frame to open a
new document in the main frame and then clicked the Print button without
making any other mouse clicks, you would actually print the navigation
bar on the left frame, not the document in the main frame that you
wanted. Unfortunately, the browser doesn’t know which frame you want,
only which frame was last active.

The newer browser versions have included a new feature in their Print dia-
log boxes—a Print Frames option that allows you to specify whether you
want to print the active frame or the entire frameset (see Figure 10.8). A big
improvement, but you can’t guarantee which browser your visitor is using.

Active Frame The last frame that you clicked.

FIGURE 10.8 The Print dialog box from Internet Explorer.

103Creating Frames

Using Frames Effectively
Although frames have some usability problems, there are some obvious
advantages for using them. Just make sure that you use them the right
way. Here are some tips to help.

• Frames are not a toy Frames work best when used as a naviga-
tion tool, or when it makes sense to show two or more elements
of a document at the same time.

• Remember the target attribute Nothing is worse than clicking
a hyperlink in a framed document and breaking out of frames
unintentionally. Worse, each hyperlink in a framed document that
does not include the target attribute has the potential of opening
in a new browser window. You could end up with a real mess.

• Include the <noframes> tag Always remember that there are
people who can’t see frames (either because of older browsers,
or because they set their browser preferences to ignore them).
Provide alternate content with the <noframes> tag.

• Include alternate navigation within the main frame With the
Web, there is no guarantee that your visitors will always arrive at
your home page and see the frameset as you intended them to
see it. Sometimes, they will arrive on an individual frame. If you
provide additional navigation links within those pages, your visi-
tors will still be able to move within your site.

• Never frame other framed pages Not as frequent anymore on
the Web, but when frames first became available, Web page
authors framed everything, including other framesets. This
compound-framing is very confusing to users.

Tip If you want to print a single frame, you can click
the right-mouse button, or hold down the mouse but-
ton if you are using a Macintosh, and select the Print
option from the shortcut menu. The printer will print
only the selected frame, not the entire frameset.

104 Lesson 10

Table 10.1 lists the HTML tags that were discussed in this lesson.

TABLE 10.1 HTML Tags Used in This Lesson

HTML Tag Closing Description of Use

<a href> Creates hyperlinks to other docu-
ments. Always use the target
attribute with frames.

<frameset> </frameset> Replaces the <body> tag in a frame-
set document and surrounds the
<frame> and <noframes> tags. This
tag must include the attribute to
describe the orientation of the
frames and their size.

<frame /> Includes the frame’s name and id

and a URL for the content (src). It
also might include attributes to
define the border and scrolling.

<iframe> </iframe> Embeds a frame inside another doc-
ument. It only works with Internet
Explorer.

<noframes> </noframes> Defines an alternate viewing page for
browsers that don’t support frames.

In this lesson, you’ve learned:

• A frameset document defines the number of frames and their
sizes; standard HTML documents will be contained in the
frames.

• Each frame of a frameset document must be named so that you
can direct your hyperlink to appear in a specific target frame.

• Despite their obvious advantage for organizing your site’s navi-
gation elements, many people dislike frames because of usability
problems associated with them.

LESSON 11
Building
Online Forms

In this lesson, you’ll learn how to create Web forms that enable you to get
input from your visitors.

Creating Forms
You’ve seen forms on the Web, but I’ll bet you didn’t know they were so
easy to create. I want to point out a couple of things for you to keep track
of as you read this section and then you’ll create a form.

• Forms are made up of fields (that you want the user to fill out)
and buttons (to perform actions such as submit and reset).

• Every field (<input type=”type” />) should have name and id

attributes as well.

• Every field can be set to have a default value (a pre-selected
option that the users can overwrite if they want); many also can
be set to validate the data the user enters.

• Every form requires a Submit button that sends the form data to
the address specified in the action attribute of the <form> tag. It
has its own <input /> tag and you can read more about it in the
“Buttons” section later in this lesson.

One more thing: A form isn’t a form until it is enclosed within the <form>
tag. The <form> tag always includes an action and a method attribute. To
make it simple, a form’s method is almost always set to post and the
action can only be one of two values: an e-mail address of the person
who will be receiving the form’s data, or a URL of a file that will be
receiving the form’s data. We’re going to use the e-mail option because

106 Lesson 11

it’s easier for you to practice with. Figure 11.1 demonstrates an online
form using the following simple <form> tag. Figure 11.2 shows the full
HTML document for the form shown in Figure 11.1.

<form method=”mailto:youremail@yourisp.com” action=”post”>

FIGURE 11.1 This Web form contains each of the input types
(fields) discussed in this lesson.

Don’t forget that an HTML form is just like any other HTML document;
it doesn’t recognize extra spaces. If you want to line up your fields for a
more professional-looking form, line up your form fields in tables, as
shown in Figure 11.3, and use style sheet properties to define your fonts
and add images.

107Building Online Forms

FIGURE 11.2 Here’s the HTML document for the form shown in
Figure 11.1.

FIGURE 11.3 This version of the form took a little longer to cre-
ate, but the results are worth it.

108 Lesson 11

Form Fields
The main reason to create a form is to collect data. The fields on a form
help you do that. The following sections describe each of the field types
and give you some hints for how each one can be customized to suit your
needs.

Text Box
The simplest form of data collection is an empty box. Your form poses a
question (“What is your name?”) and your visitor fills in the answer in the
space provided. In HTML, this type of field is called a text box. HTML
uses the <input /> command to identify a form field. The following
example is a complete HTML form with one field: a text box that is 40
pixels wide and is called Name.

<form action=”mailto:youremail@yourisp.com” method=”post”>
<p>What is your name?</p>
<p><input type=”text” name=”Name” id=”Name” size=”40” /></p>
<p><input type=”submit” value=”Submit” name=”submit”

id=”submit” /></p>
</form>

The form field’s attributes (type, name, id, and size) help to customize
the form field. name, id, and size are obvious, but the type attribute could
use some explanation. Although this type of field traditionally is called a
text box, you also can set the type attribute to password (which displays
an asterisk when the user types his or her password). If you know that
your visitors will be using Internet Explorer, you could also set the type
attribute to integer (which is a whole number without decimals) or
number (which can include decimals). One more type, file, is explained
in the “File Select” section found later.

Tip The tabindex attribute, shown within the
<input /> tags on Figure 11.2, sets the order in which
the user can navigate through the form elements using
the Tab key. The tabindex attribute and the index
number increases toward the bottom of the form.

109Building Online Forms

Text Area
You use the <textarea> tag to define a multiline text box. In addition to
the usual name, id, and tabindex attributes, all <textarea> boxes should
control the size of the box using the rows and cols attributes. cols indi-
cates the width of the field in pixels; rows indicates the height of the field.

Anything you type between the <textarea> and </textarea> tags will
appear inside the field and can be overwritten by users when they are
completing the form. The following example shows the code for a text
area box with an initial value of “Enter the address here.”

<textarea rows=”2” name=”address” id=”address”
cols=”30” tabindex=”12”>Enter the address here.</textarea>

Radio Buttons and Check Boxes
Radio button and check box fields are very similar. In fact, there’s really
only one difference between them: Your user can select only one item in a
radio button list, but can select multiple check box items. Look at the
form in Figure 11.1 again. Check boxes are used for the pizza toppings
question because it is possible that your visitors might want multiple top-
pings. Radio buttons are used to ask about the preferred size of the pizza
because a pizza can only be one size.

The following example demonstrates how a check box field is created.
Notice all the check box fields that relate to the same question (“Pick your
toppings”) have the same name and id attributes. You use the value
attribute to specify the information you will see when the form data is
submitted to you. If you don’t specify any value, the form data typically
will send on/off or yes/no values for all fields.

<p>Pick your toppings:

<input type=”checkbox” name=”toppings” id=”toppings”

value=”sausage” tabindex=”7” />
Sausage

<input type=”checkbox” name=”toppings” id=”toppings”
value=”pepperoni” tabindex=”8” />

Pepperoni
<input type=”checkbox” name=”toppings” id=”toppings”

value=”mushrooms” tabindex=”9” />
Mushrooms</p>

110 Lesson 11

With radio buttons, you’ll need to use the checked attribute to set a start-
ing value for each field. When you do specify a preselected option, be
sure to select the most frequently submitted value. In the following exam-
ple, the large pizza has been preselected. Users can change that selection
when they are completing the form and the form data will be submitted to
you with the users’ choices selected.

<p>What size pizza would you like?

<input type=”radio” value=”large” name=”size”
id=”size” checked tabindex=”1” />

Large
<input type=”radio” value=”med” name=”size”
id=”size” tabindex=”2” />

Med.
<input type=”radio” value=”small” name=”size”
id=”size” tabindex=”3” />

Small</p>

Drop-Down Option
The drop-down menu option, shown in the following HTML sample, uses
a <select> tag to define the overall menu (such as giving it a name, id,
and a size—the number of rows visible at any time). Enclosed within the
<select> tag are <option> tags that describe the contents of the drop-
down menu. As with radio buttons, you can specify a start value for the
drop-down menu using the selected attribute.

<p>What type of crust?
<select name=”crust” id=”crust” size=”1”>

<option value=”Deep Dish” tabindex=”4”>
Deep Dish</option>

<option value=”Hand-Tossed” tabindex=”5”>
Hand-Tossed</option>

<option value=”Thin & Crispy” tabindex=”6”>
Thin & Crispy</option>

</select></p>

Drop-Down Default
Some form designers like to add an <option> tag at the top of their drop-
down menu fields that tells their users to select one of the items from the

111Building Online Forms

FIGURE 11.4 This drop-down menu includes an extra <option> tag
for the Pick One statement.

Like check boxes, your user can hold the Ctrl key to select multiple options
in the drop-down menu if you add the multiple attribute to the <select>
tag. This change (shown in the following HTML sample) enables users to
select multiple options by pressing and holding down the Ctrl key while
clicking on the options in the menu. (See Figure 11.5.)

<form action=”mailto:youremail@yourisp.com” method=”post”>
<h3>What are your favorite card suit(s)?</h3>
<select name=”suit” id=”suit” size=”1” multiple=”multiple”>

<option value=”Hearts”>Hearts</option>
<option value=”Diamonds”>Diamonds</option>
<option value=”Clubs”>Clubs</option>
<option value=”Spades”>Spades</option>

</select>
<p><input type=”submit” value=”Submit your Answer”
name=”submit” id=”submit” />
<input type=”reset” value=”Clear the Form” name=”reset”
id=”reset” /></p>
</form>

list. The following code sample demonstrates how this option would look.
Figure 11.4 illustrates this option in an online form.

<option value=”Pick”>Pick One</option>

112 Lesson 11

FIGURE 11.5 Changing the size=”1” attribute from the drop-
down menu code sample to size=”3” enables the visitor to see
three options at once. Here, two options have been selected.

File Select
Another useful way to gather information from your visitors is to allow
them to send you files. You might use this input option, the file type, to
collect résumés, orders, or any other type of file. The following HTML
sample demonstrates how this option is created. As you can see in Figure
11.6, the browser creates a Browse button to help your visitors send their
files.

<form action=”mailto:youremail@yourisp.com” method=”post”>
<p>Send me your resume.</p>
<p><input type=”file” enctype=”multipart/form-data”

name=”resume” id=”resume” /></p>
<p><input type=”submit” value=”send now”

name=”submit” id=”submit” /></p>
</form>

FIGURE 11.6 The visitors will click the Browse button to browse
their own file system in search of the appropriate file.

113Building Online Forms

Buttons
The Submit and Reset buttons are special types of form elements.
Although they are created using the <input /> tag (see Figure 11.2), they
are not data collection tools, but actually are data submission tools.

• The Submit button collects all the data from the form and posts
(sends) it to the location specified in the action portion of the
<form> tag.

• The Reset button clears the form of any data that might have
already been completed. The Reset button resets the form to the
original pre-selected values.

The Submit button is required on all forms, but the Reset button is
optional. The browser’s Refresh button has the same effect as the Reset
button on a form. It reloads the page and deletes everything except the ini-
tial values of the form.

Caution Check with your Web host before creating
this type of form; it might have additional require-
ments for you.

Tip There is one more input type to be aware of: the
hidden type. A hidden field is not displayed on the
form, but returns results anyway. You might want to col-
lect the date and time the visitor submitted the form,
the version of the form that was submitted, or the
name of the person who should receive the data. Create
the field based on the HTML example that follows:

<input type=”hidden” name=”version”
id=”version” value=”B” />

114 Lesson 11

Receiving Form Data
When your visitors click the Submit button on a form on your Web site,
the data they entered into the form will be sent to you using the action
you specified in your <form> tag. In Figure 11.2, we selected an e-mail
action. Figure 11.7 shows you how my e-mail software returns the form
data to me. You should now see why it is so important to include the name
and id attributes associated with every form field.

FIGURE 11.7 Your e-mail software may format the responses dif-
ferently, but they will all show the field names (Size and Toppings,
for example), along with the data your visitor entered into those
fields.

It is not always convenient to receive form data via e-mail, particularly if
you expect to receive a lot of responses. Reading, and responding to, that
many e-mail messages can become tiresome. Your ISP also might prefer
that you do not use its mail servers in this manner.

Another action that you can assign to your forms is a script to handle the
responses for you. Scripts are automated form handlers and can be used to
collect all the responses in a single file and respond to the visitors for you.
This book can’t begin to explain how to write the scripts, or find them,
but your ISP, or your network administrator, probably will have several
scripts available for you to choose from and can help you attach them to
your form.

115Building Online Forms

Table 11.1 lists the HTML tags that were discussed in this lesson.

TABLE 11.1 HTML Tags Used in This Lesson

HTML Tag Closing Description of Use

<form> </form> Encloses all form elements.

<input /> Identifies a form field.

<option> </option> Identifies the contents of a drop menu.

<select> </select> Encloses a drop-down menu field.

<textarea> </textarea> Identifies a multi-lined text field.

In this lesson, you’ve learned:

• All form fields should have name, id, and tabindex attributes.

• The <form> tag always includes a method attribute (which is usu-
ally post) and an action attribute. The action can be either an
e-mail address or a URL of a file that will be receiving the
form’s data.

• The six form field types are text box, text area, radio buttons,
check boxes, drop-down option menus, and the file browse box.

Caution All ISPs handle forms differently. Always
check with your ISP or network administrator before
attempting to create forms for your Web site.

LESSON 12
Making It
Sing: Sound
and Video

In this lesson, you’ll learn how to add sound and video to your Web
pages, and find the plug-ins required to use them.

Adding Sound and Video
Used correctly, sound and video clips can greatly enhance the content in
your Web pages. Imagine a Web page about Dr. Martin Luther King, Jr.
that didn’t include something about his famous “I Have a Dream” speech.
The text of the speech is moving, but the delivery is what made it so pow-
erful. You can add sound and video clips to your own Web pages using
some HTML tags you’ve already learned.

Tip You can hear the “I Have a Dream” speech at
http://www.americanrhetoric.com/speeches/

Ihaveadream.htm.

This lesson discusses several methods for adding sound and video clips.
You should know that the one method that is sure to work with every
browser on every platform is also the simplest: the <a> tag.

<a href=”http://www.americanrhetoric.com/mp3clips/
politicalspeeches/mlkihaveadream35348.mp3”>
Listen to the I Have a Dream speech.

When your visitors click on the words Listen to the I Have a Dream
speech, the mlkihaveadream35348.mp3 file will download to their comput-
ers and begin playing. If the visitors do not have the correct plug-in to

http://www.americanrhetoric.com/speeches/Ihaveadream.htm
http://www.americanrhetoric.com/speeches/Ihaveadream.htm

hear the sound clip, the browser should prompt them to save the file for
later. It will not, however, prompt them to download the correct plug-in.
You will need to provide that information on your page.

Tip Try typing “sound clips” into your favorite
search engine to find sound files you could use on
your own pages.

Video clips can be handled in exactly the same way:

<a href=”
http://www.lucidcafe.com/library/96jan/96jangifs/
MLK630828Video.ram”>

Watch a video of Dr. King’s greatest speech.

Caution Use sound and video sparingly and make
the wait worthwhile. Even short clips can have a large
file size and may take a very long time to load. Make
sure that you give your visitors some idea of the con-
tent of the clip so that they can decide whether to
wait for the download.

<embed>
Netscape invented a new tag called <embed> to enable you to include a
sound or video clip on a Web page. Microsoft’s Internet Explorer browser
also accepts this non-standard tag. The following sample shows how the
<embed> tag works to add a video clip.

Tip If you’d like to duplicate the following sample,
you can download the video clip from http://
download.microsoft.com/download/0/9/d/09d051c4-

decc-4d39-9c57-f520187213a1/Amazing_Caves_720.exe

and save it to your own desktop. Then just change the
src attribute to suit your needs.

http://download.microsoft.com/download/0/9/d/09d051c4-decc-4d39-9c57-f520187213a1/Amazing_Caves_720.exe
http://download.microsoft.com/download/0/9/d/09d051c4-decc-4d39-9c57-f520187213a1/Amazing_Caves_720.exe
http://download.microsoft.com/download/0/9/d/09d051c4-decc-4d39-9c57-f520187213a1/Amazing_Caves_720.exe

118 Lesson 12

<p>Click the video to see a clip from the IMAX movie Journey
into Amazing Caves.</p>

<embed src=”C:\Documents and
Settings\qc04818\Desktop\Amazing_Caves_720.wmv”
width=”360” controls=”true” autostart=”true”
loop=”false”>

<noembed>
<a href=”C:\Documents and
Settings\qc04818\Desktop\Amazing_Caves_720.wmv”>
Click for a surprise.

</noembed>
</embed>

<p>You will need the <a href=”http://www.microsoft.com/
windows/windowsmedia/download/
AllDownloads.aspx?displang=en&qstechnology=”>
Windows Media Player to see this clip.</p>

The browser displays the control panel for the media device you use, as
shown in Figure 12.1. You can add width and height attributes to the
<embed> tag to control the size of the video still. The <noembed> tag
provides an alternate way for visitors to download the video if their
browser doesn’t recognize the <embed> tag.

FIGURE 12.1 When embedded, a control panel for the device
used to play the video or sound clip, appears in the browser.

Notice that I’ve included four attributes for the <embed> tag in this
example: width, controls, autostart and loop. Width sets the width of
the video. It is not necessary to set the height since the video will size the
image proportionally. Controls ensures that the video player controls are

119Making It Sing: Sound and Video

included. Autostart, which you can set to true or false, tells the browser
whether to begin playing the clip immediately upon loading the page. The
loop attribute tells the browser how many times in a row to play the clip
before stopping. You can set the loop attribute to any whole number.

Another attribute you can set is autorewind. This attribute is automatically
set to true, but if for some reason you don’t want to rewind the clip after it
plays, you can set it to false. The hidden attribute hides the player’s VCR
controls from the user. Hiding the controls gives you, the developer, more
control over the use of the clip, but may annoy your visitors if they are not
allowed to turn your clip on or off.

<object>
The <embed> tag is nonstandard, which means that the W3C doesn’t recog-
nize it as a legitimate HTML markup tag. The W3C prefers that Web page
developers include sound and video clips using the <object> tag. You will
learn more about this tag in Lesson 14, “Creating Active Web Pages.”

<p>Click the video to begin playing.</p>
<object classid=”C:\Documents and
Settings\qc04818\Desktop\Amazing_Caves_720.wmv”>

</object>
<a href=”C:\Documents and

Settings\qc04818\Desktop\Amazing_Caves_720.wmv”>Surprise!

Caution Unfortunately, the <object> tag does not
yet work consistently in all browsers, although it is the
W3C-preferred tagging method. Be prepared to either
always include an alternate <a href> tag for sound
and video elements, or duplicate your work by includ-
ing the <embed> tag as well.

The <object> tag also comes with a multitude of attributes that you can
set to help control the use of the clip in your Web page. You can add a
border around the object by using the appearance attribute and setting the
value to 1. The <object> tag also has an autostart and autorewind

attribute.

120 Lesson 12

Finding Plug-ins
We’ve mentioned before that it’s never a good idea to include any items
on your Web page that require a plug-in (such as Flash or RealAudio)
without also providing a link to the plug-in. You don’t want to assume that
your visitors will have the required software to view your page because
they might not.

Microsoft generally believes that the browser itself should contain enough
code to run any scripts, applications, and embedded items without loading
plug-ins, and it uses ActiveX controls to handle these types of events.
Netscape, however, agrees with the idea that browsers should be light and
plug-ins should be used to handle outside events. Partially because of this
belief, Netscape maintains one of the best plug-in archives on the Web at
http://browser.netscape.com/ns8/community/plugin.jsp.

Tip If you’re looking for a browser-neutral source
of downloadable plug-ins, check out CNET at
http://www.download.com/sort/3120-20-0-1-5.

html?qt=browser+plug-ins.

Table 12.1 lists the HTML tags that were discussed in this lesson.

TABLE 12.1 HTML Tags Used in This Lesson

HTML Tag Closing Description of Use

<embed> </embed> Netscape’s nonstandard, although
largely supported, tag for including
sound and video clips.

<noembed> </noembed> Netscape’s tag that provides an alter-
nate method of downloading the clip
for browsers that don’t recognize the
<embed> tag.

<object> </object> W3C’s preferred, although largely
unsupported, tag for including sound
and video clips.

http://www.download.com/sort/3120-20-0-1-5.html?qt=browser+plug-ins
http://www.download.com/sort/3120-20-0-1-5.html?qt=browser+plug-ins
http://browser.netscape.com/ns8/community/plugin.jsp

121Making It Sing: Sound and Video

In this lesson, you’ve learned:

• Sound and video clips can be added to your Web page with the
<a> tag.

• Both the <object> and the <embed> tags enable you to add a
video clip with the video controls (start, stop, and so on) to your
documents.

LESSON 13
Designing with
HTML

In this lesson, you will learn some designer tricks of the trade to make
your pages look as good as they work.

Design Basics
Web design may have had its roots in traditional paper design, but online
design is different. One of the biggest differences when designing for
online is the capability to hyperlink. Adding hyperlinks in your Web pages
gives you the capability to quickly direct your viewers to the information
you want them to see, including reference material on, or off, your Web
site. Unfortunately, the capability to link also is one of the biggest disad-
vantages to online design. Occasionally, viewers get so caught up in click-
ing on all those “for additional information click here” links that they
forget what they were looking for in the first place; in effect, they get lost
in cyberspace.

Web site designers have a number of design elements available to help
them make it easy for their users to recognize which Web pages are part
of the same Web site. These elements can also help set the mood for their
Web site. The layout, images, navigation buttons, bullets, lines, colors,
and even the fonts you choose should support the overall design theme of
your site. In the following sections, you’ll learn how each of these ele-
ments works together.

To design an effective Web page, you’ll need to be aware of the differ-
ences in moving from traditional design to online design. Table 13.1 sum-
marizes some of the differences. Knowing the problems you’ll face is
only half the battle; the rest is knowing how to avoid them. You’ll learn
that in the sections that follow.

TABLE 13.1 Paper Design Versus Online Design

Paper Design Online Design

Viewers follow content Using search tools or hyperlinks,
along a linear path with a viewers can access the content at
beginning, middle, and an end. any point. The only way for you to

control that movement is to pro-
vide hyperlinks and navigation.

Viewers can see an entire page With larger graphics (or non-
(text and graphics) at the same graphical browsers), viewers
time. often have time to read the entire

text before they ever see any
images.

Serif fonts (such as Times Roman) Sans-serif fonts usually are used
usually are used for content; for content; serif fonts usually are
sans-serif fonts (such as Arial) used for headings.
usually are used for headings.

Viewers see an entire page (or Viewers see only the amount of
multiple pages in a book or content that will fit on their
magazine layout). The size of the monitor at one time, which often
page, and the amount of content is only a couple of paragraphs of
presented on it, are controlled by text. The viewer controls the
you, the author. presentation of the content with

the size of their monitor and the
browser settings.

Two whole fields of study, Information Design and Usability, are devoted
to finding the most effective methods of communicating your message.
Researchers in these fields have come up with some standard design
guidelines that can help you make the most of the material you have to
present. Following are some facts I’ll bet you didn’t know:

• Red, yellow, orange, and green are the most difficult colors of
text to read online. It’s best not to use them or to use them spar-
ingly. You’ll learn more about colors and fonts in the subsequent
sections.

124 Lesson 13

• Your visitors read almost 50% slower online than on paper. You
can counter that by keeping your page length short (no more
than two to three screen lengths) and providing tables and bul-
leted lists to give their eyes a rest from large blocks of text.

• Animated images and moving text catch the eye of potential vis-
itors, but most people find them annoying if they continue to
move while the visitor is trying to read or search for content on
the page. You’ll learn about these features in Lesson 14,
“Creating Active Web Pages.”

• If your visitors are looking for a particular piece of information,
they will search your site for less than a minute before moving
on to some other site, unless they are confident that you have the
information they are looking for. A well-designed Web site will
help your visitors find their information quickly. You’ll learn
how to do this in the “Layout, Content, and Navigation” section.

Layout, Content, and Navigation
Because people tend to read online text more slowly than paper text, Web
site designers use page layout techniques to help make content more
readable.

Page Layout The arrangement of text, graphics, and
whitespace on a page.

Whitespace Refers to the background of a page.
Note that this space does not have to be white.

In general, when designing a Web site, you will need to keep the follow-
ing key tips in mind. Figure 13.1 shows you how some of these layout
tricks work to emphasize your content.

• Keep paragraphs short and include a margin Keep your para-
graphs under ten lines and include a margin. If you want viewers

125Designing with HTML

to read your text, you’ll need to make it easy for them. You
learned how to use style sheets to create margins in Lesson 5,
“Adding Your Own Style.”

• Break up long sections of text with bullets, tables, and headings
Information design research has shown that online readers scan
text, rather than read it, until they find what they’re looking for.
Bullets and headings help users find things more quickly.

• Don’t underline any text unless it is a hyperlink Online view-
ers expect anything underlined to be clickable. If you use under-
lining for another purpose, such as formatting your headings,
you will confuse your readers.

A plain text document
can be boring

and intimidating.

Adding bullets and
a paragraph separator
helps add diversity and
interest to your page.

Headings break up the
text, but it’s still boring.

FIGURE 13.1 Adding diversity to your page layout helps enhance
its readability.

If your Web site contains more than one page, you’ll want to include
some way for your visitors to find the other pages in your site. A good
navigation system is more than a table of contents; it is a defined structure
that gives your visitors information about your site. Your navigation sys-
tem can consist of text links or image links (refer to Lesson 8, “Using
Graphics”). Whichever link type you choose, your navigation system
should appear on every page of your site to help orient your users.

126 Lesson 13

Fonts and Colors
Color is an exciting way to add interest to your Web pages. In addition to
the obvious splash of color that images provide, you can add color to your
fonts and page backgrounds. Be creative in your choices, but use a critical
eye to review the results. Some colors are very difficult to read online and
some color combinations are nearly impossible to decipher. Always pro-
vide some contrast in your color choice: use a light-colored font on a dark
background and a dark-colored font on a light background.

Tip Many designers use frames as a navigation tool.
A frame is a portion of your HTML document that dis-
plays a separate HTML. You learned how to create
frames, and use them effectively, in Lesson 10,
“Creating Frames.”

Tip In HTML, some colors are defined by name (such
as navy, red, and black), others by a hexadecimal num-
ber. The six-digit number represents the amount of
RGB (red, green, and blue) in the color. Lynda
Weinmann, a well known graphic designer, has cre-
ated a couple of color charts specifically for online
use: http://www.lynda.com/hex.html.

So, how do you add color? With style sheet properties, of course. HTML
does have a tag that enables you to specify a font (such as Arial or
Times Roman) and colors and sizes, but according to the W3C, users are
not supposed to use it. Instead, they’ve given you the font-family, font-
size, color, and background properties for your style sheets. The following
code provides an example of how you can specify your fonts for the
<body> and <h1> tags.

http://www.lynda.com/hex.html

127Designing with HTML

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”

xml:lang=”en” lang=”en”>
<head>
<title>Fonts and Colors</title>
<style type=”text/css”>
body {font-family:Trebuchet MS, Arial;

color:navy;
font-size:12;
background:white}

h1 {font-family:Bookman Old Style, Times New Roman;
color:white;
font-size:14;
background:navy}

</style>
</head>
<body>
<h1>Fonts and Colors</h1>
<p>This text is navy on a white background, but the heading

above is white on a navy background.</p>
</body>
</html>

By changing the values in the style properties, you change the results you
see in the browser. Look at Figure 13.2 to see how the following changes
affect what you see. By not adding a separate font-color and background

property to the <h1> tag, the properties assigned in the <body> tag continue.

Caution Just because you can specify a font doesn’t
mean that your visitor will have that font on his or
her computer. To be on the safe side, always specify at
least one alternate font, as I did in the following
example. All but the most basic computers will have
Arial and Times New Roman, so it’s not a bad idea to
use one of those two as your alternate font. Appendix
B, “Style Sheet Quick Reference,” contains a list of
Web-safe fonts.

128 Lesson 13

<style type=”text/css”>
body {font-family:Trebuchet MS;

color:black;
font-size:12;
background:#FFFF80}

h1 {font-family:Bookman Old Style;
font-size:14}

</style>

FIGURE 13.2 The background property sets the background color
of the entire tag, so using the property on the <body> tag sets the
color for the entire page.

Tip Don’t get carried away with your font selections.
A good rule of thumb is to use no more than three
different fonts on each page: one font for the head-
ings, one for the body text, and one for any special
text, such as captions and pull-quotes.

129Designing with HTML

Images
Like the other design elements discussed in this lesson, you should use
images sparingly when they support the theme you’ve already established. In
Lesson 8, you learned how to add images to your Web pages and use HTML
and style sheet properties to align them with your text. Figure 13.3 shows the
difference that balance and diversity make to your overall Web page layout.

Alternating the placement of
the images helps balance the

page, but it’s still boring.

Balancing the images
with text and whitespace

makes the most
creative use of your page.

Placing all the images
on one side of the page

makes it seem off
balance and boring.

FIGURE 13.3 Adding diversity to your graphical layout helps add
interest.

Caution Whenever you are working with graphics on
a Web page, you need to be mindful of the overall size
of the page. Most people will visit your Web site using
a slow modem connection and might not be willing to
wait for your page to finish loading. When you open
your page using a modem, it should take no longer
than five seconds to load. If your pages take much
longer to load, you might try to reduce the image size,
add thumbnails, or include some type of warning as to
the fact that the page will take longer to load.

130 Lesson 13

Background Images
Earlier, you learned how to add background color to your pages, but
sometimes you’ll want to add an image to the background of your page.
The most prolific example of a background image is the page border (see
Figure 13.4).

FIGURE 13.4 Use the background-image and margin style sheet
properties to create a colored border on your Web page.

Here’s how the source code looks for that page:

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”

xml:lang=”en” lang=”en”>
<head>
<title>Using a Background Image</title>
<style type=”text/css”>
body {font-family:Trebuchet MS, Arial;

color:black;

131Designing with HTML

font-size:14;
background-image:url(images\background.gif);
background-repeat:no repeat);
background-position:left top;
margin:10px,160px}

h1 {font-family:Bookman Old Style, Times New Roman;
color:#A00068;
font-size:18;
background:white}

</style>
</head>
<body>
<h1>Background Images can be Fun</h1>
<p>I had to add a margin around this text or it would have

begun inside the colored border area and defeated
the purpose.</p>

</body>
</html>

The background.gif image is the colored border background. It is a GIF
file, which makes it small (only 5KB) so that it will load quickly. I made
it in Paint Shop Pro by drawing a rectangle down the side of the page, as
shown in Figure 13.5.

FIGURE 13.5 The background.gif file was created in Paint Shop Pro.

You’ve already seen how you can use style sheet properties to set the
fonts and colors of the page, but look at the previous HTML source code

132 Lesson 13

for Figure 13.4 again to see that we’ve added four new style sheet proper-
ties for you to learn:

• Background-image:url (URL of file) The property tells the
browser where to find the background image you want to use on
your page. It must be used as part of the body style.

• Background-position This property tells the browser where to
place the background image. This is assumed to be the top left
(or left top), but you can specify any combination of the follow-
ing vertical values: top, bottom, or center, and these horizontal
values: left, right, or center.

• Background-repeat This property determines whether or not
the background image will repeat in a tiled manner to file the
entire browser window or appear on the background just once.

• Margin You can specify the margin property in inches (in),
centimeters (cm), ems (em), points (pt), or pixels (px). If no unit
of measure is specified, the pixel unit is assumed. You can set
the top, right, bottom, and left margins. I only set two of the
margins for my background (0, 160). The browser knows that I
wanted top=0px, right=160px, bottom=0px, and left=160px.
The browser copied the first two values and applied the same
values to the last two options. If I had entered only one value,
the browser would have applied the same value to all four
options.

If I hadn’t set the margin property, the text on my page would have over-
lapped my image, as shown in Figure 13.6.

Tip Don’t forget to check out Lesson 5 if you want
to know more about HTML style sheets.

133Designing with HTML

FIGURE 13.6 Without the margin property, text starts at the left
edge of the page.

In this lesson, you’ve learned:

• The layout, images, navigation buttons, bullets, lines, colors, and
even the fonts that you choose should support the overall design
theme of your site.

• Create interest in your Web pages by alternating the alignment
of text and images, and by adding bulleted lists and tables.

• Just because you can specify a font doesn’t mean that your visi-
tor will have that font on his or her computer. To be on the safe
side, always use Arial or Times New Roman as your alternate
font.

LESSON 14
Creating Active
Web Pages

In this lesson, you will learn about some of the advanced scripting tools
that can enhance your Web pages. You’ll also find some resources to help
you learn more.

What Are Active Web Pages?
Normal HTML pages—everything you’ve created so far—are considered
to be static. The page you create is the page that your visitors see, and
(assuming that the pages are created without browser-specific code) all
your visitors see the same thing.

Scripting languages and DHTML provide the capability to make any
HTML element respond to user events, such as mouse clicks. This capabil-
ity can be used for something as simple as displaying a menu of naviga-
tional choices when a word is clicked, to something as complex as a Web
application, like online ordering.

Don’t be scared off by the word application. There is some programming
knowledge that is required to implement these elements into your Web pages,
but not much. Unfortunately, I can’t teach you everything there is to know
about programming, but I can tell you where to find additional information.

The most popular ways of including active elements in your Web pages are
described in the sections that follow. Table 14.1 gives a quick overview of
the information in this lesson.

TABLE 14.1 Scripting and Programming

Technique Comments

ActiveX ActiveX works natively on Microsoft Internet Explorer
and on Netscape with a plug-in.

DHTML Microsoft and Netscape disagree on how to implement
DHTML. You might end up creating two sets of code to
make everyone happy.

Java Platform independent and can be used to create complex
applications.

JavaScript The best of everything. Works on all the major browsers,
can be called from a plain HTML page, and you can find
plenty of examples to copy into your own Web pages.

VBScript An easy to learn scripting language, VBScript is the most
commonly used language in creating Active Server Pages.

DHTML
DHTML is an acronym for Dynamic HTML. DHTML combines all the ele-
ments you’ve already learned (HTML, style sheets, and scripting) to create
Web pages that are interactive and easy to update. Unfortunately, Microsoft,
Netscape, and the World Wide Web Consortium (W3C) all disagree on how
to accomplish this feat. The W3C doesn’t even list the acronym on its Web
site when discussing HTML standards.

Tip See what Microsoft has to say about DHTML at
http://msdn.microsoft.com/library/default.asp?url=/

workshop/author/dhtml/dhtml.asp.

You can find Netscape’s description at http://archive.
devx.com/dhtml/articles/sl011701/sl011701.asp.

Technique Comments

Microsoft and Netscape do agree that DHTML should enable you to alter
the appearance of a Web page after it has been loaded in the browser.
They also agree that DHTML should enable developers to position any
HTML element on a page. The elements can even be positioned in the
same location so that, in effect, the elements appear on top of each other,
but that’s where the agreement ends.

http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/dhtml.asp
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/dhtml.asp
http://archive.devx.com/dhtml/articles/sl011701/sl011701.asp
http://archive.devx.com/dhtml/articles/sl011701/sl011701.asp

136 Lesson 14

Microsoft and Netscape have each developed their own browser-specific
codes to achieve this type of interactivity. Using Microsoft’s coding standards
means that Netscape viewers might not be able to see the dynamic elements.
The same is true if you use Netscape’s coding standards. This diversity means
that developers are forced to choose either to ignore a whole subset of their
users, or to double-code all their pages to ensure that doesn’t happen.

The most popular use of DHTML on the Internet is in navigational menus.
You’ve seen it in action even if you didn’t recognize it. When you hover
over a menu name and a list of submenus appears, the menu was probably
generated using DHTML. One of my favorite examples (shown in Figure
14.1) includes images as well as text links in the submenus.

Tip You can find plenty of information and coding
examples online at http://www.DynamicDrive.com.

FIGURE 14.1 This Web site uses style sheets, absolute positioning,
and JavaScript to dynamically alter the page.

http://www.DynamicDrive.com

137Creating Active Web Pages

Java and ActiveX
Java and ActiveX are both programming languages used to create Web
applications. Java (created by Sun Microsystems) is platform independent
(meaning that PCs, Macs, and UNIX systems can interpret the commands
in the application). ActiveX (created by Microsoft), however, only works
with the Internet Explorer browser. It is nearly impossible to guarantee
that your visitors will use this browser unless you employ the annoying
tactic that so many developers have chosen: preceding any application
with a note warning your visitors that they must download the correct
browser before they can view your pages.

How Do They Work?
Both Java and ActiveX work under the principle of object-oriented pro-
gramming. The idea is that each piece of code should be treated as a sepa-
rate entity, which can be used repeatedly in many types of environments,
including the Web.

Both elements can be embedded in your Web pages using HTML’s
<object> tag. An <object>, in HTML, can be an image, an application,
or another HTML document. The attributes are the important distinction.
The first example (which follows) would be used to include a Java applet.
The second example would be used to include an ActiveX control (or
application).

<object codetype=”application/java-archive”
codebase=”http://www.myWeb.com/apps/”
classid=”java:my.program.start”>

</object>

<object codebase=”http://www.myWeb.com/apps/”
data=”my.activex.program”>
classid=”CLSID:613C8CCE-1FF8-41CF-A3DB-052336C14002”

</object>

In the first example, the classid attribute is the name of the Java applet
being called by the <object> tag. This same information appears in the
data attribute for ActiveX programs. In both examples, the codebase
attribute indicates the directory in which the application can be found.
However, the codebase attribute itself is not necessary. The entire URL

138 Lesson 14

(including the base directory information) could be included in the
classid (for Java) and data (for ActiveX) attributes rather than including
the separate codebase attribute.

The ActiveX classid attribute deserves some explanation. Other than
telling you that the string of letters and numbers actually represents a
URL, the best help I can give is to inform you that any ActiveX control
that you choose to use in your Web page includes the appropriate classid
information so that you can copy it into your tag.

Tip Find information about Java and download some
fun Java applets at
http://java.sun.com/applets/index.html.

You can download ActiveX controls at
http://www.download.com/2001-2206-0.html.

JavaScript and VBScript
Scripting is another type of programming, but it’s easier to learn, which is
a plus. Scripts can be added to an HTML document using the <script>
tag. The tag can appear within the <head> or <body> of the document.

A script might be contained in a separate document that is called by the
<script> tag (much as a linked style sheet is a separate document called
by the <style> tag). A script might also be contained within the <script>
tags in the HTML document itself. The decision is yours, based on how
often you plan to use the script. If the script appears in only one page,
incorporate the script into the document, as in the first of the following
HTML samples. If the script appears on more than one page, make it a
separate file so that you don’t have to duplicate it, as in the second HTML
sample.

<script type=”text/vbscript”>enter your script here.</script>
<script type=”text/javascript”

src=”http://www.myweb.com/scripts/myscript.jss”>
</script>

http://java.sun.com/applets/index.html
http://www.download.com/2001-2206-0.html

139Creating Active Web Pages

Although the src (source) attribute is only required when the script is
contained in a separate file, the type attribute is always required. This
attribute tells the browser which language the script is written in:
text/javascript, text/vbscript, or text/tcl. If you are using the same
scripting language throughout your HTML document, you can include a
<meta> tag that defines the default script type for the entire document.
The <meta> tag (as you learned in Lesson 3, “Adding Text and More”) is
placed inside the <head> tag and gives the browser information about the
document.

<meta http-equiv=”Content-Script-Type” content=”type”>

What Can Scripting Do?
The easy answer to this question is anything. If you look at some of the
script collections on the Web, you find that people are using script for all
kinds of things—including adding table values, creating rollover effects,
and even games.

Tip WebDeveloper has more than 7,000 download-
able JavaScript samples at http://webdeveloper.com/
javascript/.

It is possible to associate a script with a certain event that occurs when the
page appears on the browser. Figure 14.2 is an HTML page with some
very simple JavaScript code that changes the background color of the
page with the press of a button.

You might wonder where the code is because the <script> tag is empty.
The code, in this case, is embedded in the <input> tag with the onclick
command. The tag responds to each of the events shown in Table 14.2 and
a few more.

http://webdeveloper.com/javascript/
http://webdeveloper.com/javascript/

140 Lesson 14

FIGURE 14.2 Simple JavaScript code to change the background
color with the onclick command.

TABLE 14.2 Script Calls

Event With Tags The Script Runs When…

onload <body>, <frameset> The document opens.

onunload <body>, <frameset> The document closes.

onclick Anything The mouse is clicked over a
particular item (button, image,
and so on).

ondblclick Anything The mouse is double-clicked
over a particular item.

onmouseover Anything The mouse is moved onto an
item.

onmouseout Anything The mouse moves away from
an item.

onmousemove Anything The mouse is moved while on
an item.

onsubmit Submit button The form is submitted.

onreset Reset button The form is reset.

141Creating Active Web Pages

The scope of this book does not allow for coverage of all these topics in
any depth, but I hope you have some idea of the possibilities and can take
the time to learn more on your own. Table 14.3 lists the HTML tags that
were discussed in this lesson.

TABLE 14.3 HTML Tags Used in This Lesson

HTML Tag Closing Description of Use

<object> </object> Embeds an object, such as an
application, into a Web page.

<script> </script> Embeds a script into a Web page.

In this lesson, you’ve learned:

• How to add Java and ActiveX applications to your HTML docu-
ments with the <object> tag.

• How to add JavaScript and VBScript to your HTML documents
with the <script> tag.

• That DHTML combines all HTML, style sheets, and scripting to
create Web pages that are interactive and easy to update.

Tip The event handlers (script calls) that tags support
differ between browsers. Netscape supports many
fewer event handlers than Internet Explorer does.
Use Web Developer Journal’s compatibility table
(http://webdevelopersjournal.com/articles/
javascript_limitations.html) to choose the right
handler for your pages.

http://webdevelopersjournal.com/articles/javascript_limitations.html
http://webdevelopersjournal.com/articles/javascript_limitations.html

LESSON 15
Using Web
Authoring
Tools

In this lesson, you will learn where to find some of the most popular Web
page authoring tools and how you can use them to create your Web site.

Why Use a Tool?
You’ve just spent the last 14 lessons learning how to create Web pages by
yourself, so why would you want to use a tool? The biggest reasons are
time and ease of use. The Web is a very visual medium and staring at
HTML code in a text editor is not very visually stimulating. It’s easy to
forget to be creative when you are concentrating so hard on making sure
that you’re using the correct HTML tags and putting them in the proper
place in the document.

Web page authoring tools come with enough bells and whistles to get
your Web site started in no time, and feature excellent site management
and reporting tools. There are differences, though. FrontPage, for exam-
ple, comes with a set of design themes that you can apply to your own
pages to give your site a professional look. Dreamweaver has extensive
support for style sheets. You can easily create style sheet declarations and
apply them to the other pages in your Web site.

FrontPage and Dreamweaver are consistently voted best of the best and
you might find that one of them could help you, too. In the following sec-
tions, I want to introduce you to some of the most interesting features of
both products.

Microsoft FrontPage
FrontPage contains a little bit of everything. It has site management fea-
tures, pre-designed Web themes, starter Webs that are ready for your con-
tent, and advanced features (such as navigation buttons and search bots);
all with a familiar interface that feels like a combination of Microsoft
Word and the Windows Explorer. Figure 15.1 shows a sample page in
FrontPage.

FIGURE 15.1 A sample page in FrontPage.

One of the best features FrontPage has going for it, aside from the fact
that the interface is so familiar to most computer users, is that it includes
a variety of Web wizards that you can use to define the type of site and
the type of pages you want to have. Select a design theme and the pro-
gram creates all your pages and adds Navigation bars with the hyperlinks
already in place. You just add the basic content in the middle of the page.

144 Lesson 15

The Navigation view of FrontPage is exciting as well. You can add,
remove, and rearrange the pages in your Web site and FrontPage automat-
ically updates the Navigation bar. (See Figure 15.2.)

FIGURE 15.2 The Navigation view in FrontPage. You can add,
remove, and rearrange pages in this view and the Navigation bar is
automatically updated.

FrontPage is available with the Professional Special Edition version of
Office; it can also be purchased separately. It integrates well with the
other Microsoft Office software packages, such as Word, Excel, and
Access. You can even create a Web page in Microsoft Word, save it as a
Web page in your FrontPage Web site, and apply the FrontPage Web
theme to the finished product without losing your original formatting.

FrontPage supports basic database interactivity well. It can create and
update an Access database from a form. In addition, extensive toolbars,
menu choices, and shortcut menus make it easy to add your content with-
out cluttering up the editing window. The tabs at the bottom of the

145Using Web Authoring Tools

FrontPage window enable you to see the actual HTML source code for
your page or a split version of the screen so that you can see both the
design and code view. (See Figure 15.3.)

FIGURE 15.3 The Split view of FrontPage.

FrontPage has another feature that you might enjoy using on your Web sites.
It includes the capability to add content from some of Microsoft’s most
popular Web sites (such as Expedia, MSNBC, and bCentral). In Figure
15.4, for instance, you can see that the MSNBC component includes head-
lines from the News, Living and Travel, Business, and three other sections.

Tip You can find out more about FrontPage at
Microsoft’s FrontPage Web site (http://office.
microsoft.com/en-us/FX010858021033.aspx).

http://office.microsoft.com/en-us/FX010858021033.aspx
http://office.microsoft.com/en-us/FX010858021033.aspx

146 Lesson 15

FIGURE 15.4 Inserting a FrontPage Web component.

FrontPage does provide some fairly advanced page components that include
an ad banner manager, hit counter, search bot, hover buttons, and scheduled
image and page substitutions. Most of these features, however, require
FrontPage server extensions that you can download free from Microsoft’s site.

Caution Be aware that if you create a Web site in
FrontPage and want to publish it to the World Wide
Web, you need to find a Web host that supports these
server extensions. You’ll learn more finding Web hosts
in Lesson 16, “Making a Name for Yourself.”

Macromedia Dreamweaver
Dreamweaver, too, comes packaged with an impressive array of page
designs and layout templates to help you get started, although it does not
feature a “looks like Microsoft Word” interface. (See Figure 15.5.) Instead,

147Using Web Authoring Tools

the interface includes a variety of toolbars, called panels, but those same
panels offer a variety of ways to enhance the pages that you create.

FIGURE 15.5 A sample page in Dreamweaver.

Once you’ve designed a page to your specifications, you can create a tem-
plate with editable and non-editable regions, which you then can use to
build other pages on your site. What’s more, if you change your template
somewhere down the line, Dreamweaver automatically updates any page
created with the template—a handy shortcut to ensure that the appearance
of your site remains intact. You can use Dreamweaver’s CSS Styles panel
to create style sheet declarations by example and store those styles for
recall in other pages. (See Figure 15.6.)

The Properties Inspector, at the bottom of the Dreamweaver workspace,
enables you to review existing properties or set new properties for any
page element (text, tables, images). Available properties are alignment,
color, anchor tags, etc. You set the properties and Dreamweaver writes the
HTML/CSS code for you.

148 Lesson 15

FIGURE 15.6 The CSS Styles panel easily modifies styles. The
Properties Inspector displays the properties of any selected tag.

Two of my favorite features are the Insert toolbar and Dreamweaver’s new
Panel groups, which appear to the right of your workspace. The panels are
completely customizable, allowing you to display or hide those panels
that are most frequently used by you.

• The Insert toolbar contains buttons for creating the most com-
monly used objects (such as images, tables, and layers).

• The CSS Styles panel contains details about the properties asso-
ciated with a selected style.

• The Application panel allows you to configure databases, set up
links to your remote site, and create ColdFusion components.

• The Tag Inspector panel shows you all of the attributes associ-
ated with the selected tags.

• The Files panel is similar to the Windows Explorer because it
contains all of the files and folders in your Web site.

149Using Web Authoring Tools

• The Frames panel visually displays the frames in your frameset
helping keep you organized.

• The History panel keeps track of every action, including arrow
movements, copy/paste, and text insertion that takes place on
your Web page.

Dreamweaver excels at the advanced features, such as layering and XML
compliance. Even though most browsers can’t agree on how to support
these features, Dreamweaver can check your page for compatibility with
several versions of both Internet Explorer and Netscape Navigator, and
verify all your internal links.

Unlike FrontPage, Dreamweaver doesn’t require special server extensions
or add extraneous code to your pages, which means that you are able to
use your pages with any Web host.

Other Popular Web Tools
FrontPage and Dreamweaver aren’t the only Web authoring and site man-
agement tools available. Several more appear in the following list:

• Adobe GoLive http://www.adobe.com/products/golive/

main.html

• NetObjects Fusion http://www.netobjects.com/

• BBEdit http://www.barebones.com/products/bbedit/

index.shtml

If you don’t like the idea of a WYSIWYG tool and you prefer to continue
working directly with the HTML source code, you probably will like
HomeSite. With HomeSite, you can drag and drop HTML code, insert
links, and modify existing tags. You can also search and replace HTML
code, and when you’re confused about which attributes apply to which
tags, HomeSite can offer suggestions. All this makes HomeSite the choice
of many professional developers. You can read more about HomeSite at
http://www.macromedia.com/software/homesite/.

http://www.adobe.com/products/golive/main.html
http://www.adobe.com/products/golive/main.html
http://www.netobjects.com/
http://www.barebones.com/products/bbedit/index.shtml
http://www.barebones.com/products/bbedit/index.shtml
http://www.macromedia.com/software/homesite/

150 Lesson 15

In this lesson, you’ve learned:

• Microsoft FrontPage is perfect for beginners. It looks like
Microsoft Word and comes with many preformatted designs.

• Macromedia’s Dreamweaver has advanced features, such as
style sheet controls and layering, that make it perfect for
professionals.

• Both tools enable you to create Web pages without knowing the
HTML tags that you’re learning in this book.

LESSON 16
Making a
Name for
Yourself

In this lesson, you will learn where to find a Web host to publish your Web
site and tips for making sure your site is found.

Web Hosting
When you finally finish creating your Web pages, you’re going to want to
put them on the Internet and make sure they’re found. Unless you plan to
set up your own Web server, you’ll probably be looking for a Web hosting
service.

Web Host A company that provides space on its Web
servers to store your Web files.

Web hosting services offer help in a variety of ways, and at a variety of
costs. Some Web hosts offer design services, customizable scripts, visitor
logs, database support, and more (in addition to the standard disk space).
Use the information in Table 16.1 to find a Web host that meets your
needs.

152 Lesson 16

TABLE 16.1 Web Hosting Resources

Host Name Comments URL

The List The official list of http://www.thelist.com/

Internet service providers

Web Hosting CNET describes popular http://reviews.cnet.com/

Buying Guide features offered by Web Web_hosting_buying_

hosts so that you can decide guide/4520-6540_
which host is best for you 7-5138854-1.html?tag=dir

Yahoo! Free Web hosting with http://geocities.

Geocities authoring resources yahoo.com/home/

Tripod Free Web hosting http://www.tripod.

lycos.com/

FreeWebs Free Web hosting http://members.

freewebs.com/

Register Web hosts that support http://www.microsoft.

FrontPage Microsoft FrontPage, com/office/frontpage/

Hosts and who have registered prodinfo/partner/

with Microsoft wpp.asp

Search Pages and Indexes
After your HTML documents are up and running on a Web server, you
need to make sure that people can find them. Because most people look to
search engines when they want to find something on the Internet, we’ll
start there.

Search Engines Searchable indexes of Web resources.
Some search engines (called indexes) also categorize
information enabling people to search by categories
and keywords.

http://www.thelist.com/
http://reviews.cnet.com/Web_hosting_buying_guide/4520-6540_7-5138854-1.html?tag=dir
http://geocities.yahoo.com/home/
http://www.tripod.lycos.com/
http://members.freewebs.com/
http://www.microsoft.com/office/frontpage/prodinfo/partner/wpp.asp

153Making a Name for Yourself

Two types of search engines exist on the Web: spiders and indexes.

• A spider (also called a Web crawler, or bot, which is short for
robot) is an automated script that crawls through Web pages fol-
lowing hyperlinks to find related pages, and then builds a data-
base with the contents of all the pages it visits. Google.com is an
example of spider technology.

• A search directory is a categorized list of sites on the Internet. The
search directory’s administrative personnel review the content of
user-submitted Web sites and populate the categories. The Yahoo!
directory is the best known example of this type of technology.

Search Bots
Search engine bots (also called robots, spiders, and crawlers) search
through all Web pages and then index them according to the information
they find. You can help the indexing portion be more accurate by using
<meta> tags. Without <meta> tags, these bots treat every word in a docu-
ment exactly alike. If you add keywords and descriptions to your docu-
ments, you increase the possibility that your Web pages will be found.
You learned how to do this in Lesson 3, “Adding Text and More,” but let’s
try a quick refresher. The following example shows the correct format for
adding the <meta> tag to your documents. Figure 16.1 is an actual exam-
ple of the <meta> tags used on the WebReference.com site.

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”

xml:lang=”en” lang=”en”>
<head>
<title>Your HTML Page</title>
<meta name=”keywords” contents=”keywords that

people might use to search
for your page.”>

<meta name=”description” contents=”a brief
paragraph describing your
document.”>

<meta name=”author” contents=”your name”>

154 Lesson 16

</head>
<style type=”text/css”>
</style>
<body>

insert your document here.
</body>
</html>

FIGURE 16.1 The HTML source code for http://www.microsoft.com
with the <meta> tags highlighted.

Tip If you don’t add any other <meta> tags, be sure
to add the description. Not all search engines rank
pages in the same manner, but they all display a
description of the pages found. The right description
can lure visitors to your site.

http://www.microsoft.com

155Making a Name for Yourself

Adding Your Web Site to the Search
Engine
All search engines enable Web authors to add the URL of their own
Web site to the search engine. Most of them do this with some type
of online form. A link to Google’s Advertising Programs page
(http://www.google.com/submit_content.html) appears at the bottom
of every Google page. (See Figure 16.2.) As you can see, Google offers
several ways to advertise your Web site through its free index, or you can
submit your site to specific programs for a fee. Just choose the right
option for you.

FIGURE 16.2 Google’s Advertising page enables you to add your
Web page to the Google index.

Yahoo!’s Suggest a Site page (http://search.yahoo.com/
info/submit.html) offer similar flexibility (see Figure 16.3).

http://www.google.com/submit_content.html
http://search.yahoo.com/info/submit.html
http://search.yahoo.com/info/submit.html

156 Lesson 16

FIGURE 16.3 Yahoo!’s Suggest a Site page enables provides option
for submitting your Web site.

Tip Some Web sites offer to add your URL to many
(if not all) search sites with one form. Companies such
as Add Me (http://www.addme.com/submission.htm), for
instance, charge a fee for this convenience. However,
you probably want to add your own site information
to the most popular search sites (Yahoo!, Excite,
AltaVista, Lycos, LookSmart, and Go.com) to assure
yourself the best chance of being found.

http://www.addme.com/submission.htm

157Making a Name for Yourself

Advertising
Don’t forget that you can advertise on the Web, too. The following list of
Web sites offers some form of advertising or announcement service. The
flashy banner ads and annoying pop-ups page that proliferate the Web are
there for a reason: People actually click on them. These advertising ser-
vices can help you create your own ad and place it on pages that relate to
your site. The Interactive Advertising Bureau (http://www.iab.net/
standards/index.asp) maintains a set of standards for many types of
Internet advertisting options.

Tip Remember to include your URL on your business
cards, letterhead, and e-mail auto-signature. Unless
you tell people where to look, they can’t find you.

In this lesson, you’ve learned:

• Two types of search engines exist on the Web: spiders and
indexes.

• To add keywords for the search engines with <meta> tags.
Different search engines search for different <meta> tags, so use
several (including keywords, descriptions, and author).

• Most search engines have their own site-submittal forms. Fill out
these forms so that the search engine can find your site.

http://www.iab.net/standards/index.asp
http://www.iab.net/standards/index.asp

LESSON 17
Planning for
the Future

In this lesson, you will learn what’s next for the Internet and what you
can do now to prepare for the coming changes.

The Future of the Internet
The extraordinary growth of the Internet since the early 1990s has come
about chiefly because HTML is so easy to learn. Companies can distribute
information to their employees, customers, and business partners quickly
and inexpensively. Unfortunately (or fortunately, depending on your point
of view), the first blush of Internet and Web development has passed and
companies are already beginning to look for new ways to disseminate the
information they want to share.

Hearing this cry for help, the World Wide Web Consortium has developed
an eXtensible Markup Language (XML) that can be used by Web page
authors whose needs extend beyond the capabilities of HTML.

eXtensible Markup Language (XML) The newest
language being developed by the World Wide Web
Consortium, XML has been described as a language for
defining other languages. It is more flexible than HTML.

What Is XML?
To understand XML, you need to step back and remember what HTML is.
HTML is a markup language that uses a predefined set of tags to describe
a document’s structure in terms of paragraphs, headings, and so on. Like
HTML, XML describes the structure of the document, but unlike HTML,

XML is flexible enough (or extensible enough) to define the same tag
name (such as <title>) in several different ways depending on which
Document Type Definition (DTD) is called.

In addition, XML takes the concept of tagging one step further by enabling
developers to create custom tags and attributes. Both markup languages use
style sheets to define the format of each tag with color, fonts, and emphasis.

Document Type Definition (DTD) A file defining the
set of tags that can be used within a particular file.
XHTML uses three DTDs: strict, transitional, and
frameset.

The following examples show how a single entry from an address book
might be marked up in both HTML and XML, respectively:

• HTML:

<p>The White House

1600 Pennsylvania Avenue NW

Washington, DC 20500</p>

• XML:

<contact>
<name>The White House</name>
<address>1600 Pennsylvania Avenue NW</address>
<city>Washington</city>

<state>DC</state>
<zip>20500</zip>

</contact>

Why is this difference important? It’s important because, in essence, your
document becomes a giant database of information.

Suppose that I am the owner of a chain of multiplex theaters and I want to
put information on the Web about the movies I’m showing. In traditional
Web publishing (if something as young as the World Wide Web can be
said to even have a traditional method), I could do one of the following
two things:

160 Lesson 17

• Create a series of Web pages that would need to be updated
frequently.

• Create a database that held all the information and hire a Java
programmer to write an application that would enable people to
perform searches on my database to see what was showing in
their neighborhood.

With the advent of XML, I have a third option. I can create a single Web
page that contains all the information for all my theaters, and then use
style sheets and templates to present the right information to the right
people.

Tip The W3C and industry experts are creating industry-
specific versions of the XML standard. So, you can create
your own tags in XML, and you can also take advantage
of the fact that others in your industry are using the
same standard.

Analyze the Data
The first thing I have to do is analyze my data. What information do I
need to share? I probably would want to share the name of the movie, a
brief description, the names of the stars in the movie, links to promotional
information for the film, the name of the theater in which it’s playing, the
address of the theater, my phone number, the time the movie is showing,
the price of the ticket, whether discounts are available, and a lot more.

After you know the type of data you need to collect, you can create your
XML input document. You can see an example of two of these input doc-
uments in Figure 17.1. Each data type is represented by a pair of tags
(such as <movies> and </movies>). Related data types are nested within a
parent tag. For example, the <title> and <star-male> tags are related to
the <movies> tag. Unlike with HTML, I made up my own XML tags
based on the information I wanted to present.

161Planning for the Future

FIGURE 17.1 Without a style sheet, an XML-enabled browser can
only render text.

Caution Don’t rush out to convert all your HTML
documents to XML just yet. Most browsers can’t
process XML documents yet. However, you can start
preparing now by creating XHTML documents. These
documents enable you to use HTML and XHMTL now,
and will be easy to convert to XML in the future.

Create a Style Sheet Template
After you complete the input document, you need to create a style sheet
template that determines how you present your information. You learned
about style sheets in Lesson 5, “Adding Your Own Style.” XML style
sheet templates are very similar, but also define the structure of the docu-
ment (tables, lists, paragraphs, and so on).

162 Lesson 17

The real fun with XML documents comes from the fact that the content of
the page is separated from its format. In the movie theater example, sup-
pose that I own two movie theaters. Multiplex 1 is a downtown art theater.
It only shows artsy films attended by serious film students and it likes to
promote itself as a dark, almost somber, environment. Multiplex 2 is in a
posh part of uptown and shows mostly revivals to an older, more conserv-
ative crowd. Now imagine that I’m planning to show the same movie,
Citizen Kane, at both theaters.

My input document, which holds the content that appears on the Web site
for both theaters, includes the following tags for Citizen Kane:

<title>Citizen Kane</title>
<star-male>Orson Wells</star-male>
<desc>Powerful newspaper owner Charles Foster Kane was many

things to many people, both in life and, as seen in
retrospective, in death.</desc>

<links>http://us.imdb.com/Plot?0033467</links>

Using XML style sheet templates, I can create two completely different
pages for my theaters. For Multiplex 1, the artsy theater, I might choose to
have a black background with the title in a dramatic gothic-looking font
and the other elements (<star-male>, <desc>, and <links>) placed in a
bulleted list below. For Multiplex 2, the revival theater, I might create a
background image of a film canister for my page. Then, I might choose to
place all the elements of the movie into a horizontal table for a more con-
servative feel.

I can do that because style sheet properties reference the element they are
defining, not the content of that element. Rather than placing the content
(Citizen Kane) on the style sheet template, I would place the following
tag, which tells your computer to insert the information in the <title>
tag.

<xsl:value-of select=”title”/>

Tip You can learn more about XML style sheet tem-
plates from the W3C at www.w3.org/TR/xsl/. Another
excellent resource for XML information is www.xml.com.

www.w3.org/TR/xsl/
www.xml.com

163Planning for the Future

XML promises to be a platform-independent, software-independent lan-
guage. Web developers and other programmers will be able to use the same
data input documents to present information on the Web, in business
automation tools (such as spreadsheets and word processors), and even on
paper. That can save us all a lot of time and money.

Being Prepared
More and more, computer application developers are choosing to create their
applications using Web technology. Whereas just 10 years ago, schools were
busy teaching their students how to write BASIC programs and type DOS
commands at the appropriate prompts, now they are teaching students
HTML and learning to browse the Internet is a requirement. Some schools
even offer homework help on the Internet. The Internet and Web technology
are not going away, and they are going to continue to grow and change.

Already we are seeing the emergence of cell phones, pagers, and other hand-
held devices that can display some Internet sites. The release of the XML stan-
dard will enable the Internet to become available in any number of new media.
That’s why it is important to understand what you can do now to make sure
that you aren’t caught off guard the next time the standard changes.

Check Your Code
Microsoft and Netscape, the two largest competitors in the browser wars,
continue to try and outdo each other with new browser features. Both
browsers have been known to create new tags that work only on their own
browser. If you use those tags when you are creating your Web site, you end
up forcing your viewers to choose a browser, or lose important features that
you intended to share with them. Don’t put them in that position. You can
use tools, such as NetMechanic (http://www.netmechanic.com), to ensure
that your site is the best it can be.

Be sure to test your pages on different browsers and older browser versions.
Not everyone uses the newest version of a browser and some older versions
do not support as many tags. The Browser Photo feature at the
NetMechanic site does this for a small fee. Figure 17.2 shows what you can
expect from their service. For each site, Browser Photo tells you which
browsers (and at what resolutions) the site was tested.

http://www.netmechanic.com

164 Lesson 17

FIGURE 17.2 NetMechanic can test your pages for browser
compatibility.

Use Correct Syntax
XHMTL must be well-formed; in other words, tags must be nested prop-
erly (see the “Nest Tags Properly” section later in this lesson) and tags
must be closed. For example, if you forget to close your (list item)
tag within a (unordered or bulleted list), the browser knows that
when you add the next tag, you want the last one to close. In fact,
you want all of your tags to close. In HTML, the following:

One ring-y, ding-y
Two ring-y, ding-ys

is the same as this:

One ring-y, ding-y
Two ring-y, ding-ys

165Planning for the Future

and the same as this:

One ring-y, ding-y
Two ring-y, ding-ys

and the same as this:

One ring-y, ding-y
Two ring-y, ding-ys

With XHTML documents, browsers can differentiate between those exam-
ples. Only the first example is well-formed. Learn now to use the proper syn-
tax for your documents and you won’t find yourself reworking them later.

Tip Did you notice in the examples that capitaliza-
tion of the tags makes a difference in XHTML? It’s all
part of the syntax.

Always Quote Attributes
All tag attributes must be quoted. In the past, you could add attributes, as
in the following HTML sample:

However, the new XHTML standard (in an effort to prepare us for the
transition to XML) requires us to enclose all the attribute specifications in
quotes, as in the following HTML sample:

These are minor differences, sure, but if you get into the habit of doing
this correctly from the start, it will save a tremendous amount of rework
as the standard is fine-tuned.

166 Lesson 17

Use Style Sheets
In previous versions of HTML, Web page authors controlled the color,
format, and layout of their documents with formatting tags (such as and <body

bgcolor=”color”>). With XHTML, the W3C is recommending that all
these format attributes be controlled with style sheets instead.

This book has focused on the XHTML preferences, which might mean
that older browsers won’t always show what you intend. You can add
older HTML tags to your documents without affecting your style sheets,
as shown in Figure 17.3. Just remember that the HTML format tags and
the style sheet properties cannot conflict, or you will have problems. If
your style sheet property tells the browser that the <body> tag should have
a yellow background, for example, be sure that the <body> tag also calls
for a yellow background. If you choose conflicting attributes by mistake
(as is done in the following example where the style sheet requires the
background color to be #FFFF80, but the <body> tag requires the back-
ground color to be white), the style sheet property takes precedence.

Nest Tags Properly
Because XHTML and XML are more structured than HTML, you should
get into the habit of paying attention to the details. You’ve seen in previ-
ous lessons that you can nest one HTML tag inside another. If you want
to have text within a table cell (or any tagged element, such as a ,
, and so on) to be both bold and italic, remember to close the tags in
the opposite order from which they were opened. The following example
shows that was opened first and closed last.

<table>
<tr>
<td>
This text is only bolded. <i>This text is bolded and
italicized.</i>
</td>
</tr>
</table>

167Planning for the Future

FIGURE 17.3 The HTML document seen earlier now has format-
ting tags added for older browsers.

As shown above, you might nest tags within a paragraph. In that code, the
two sentences are both bold, although only the second is also italicized.

Check It Twice
It’s such a simple thing that we often overlook it, but your pages appear
more professional and your visitors have more respect for the information
you provide, if your content is spelled correctly.

By the same token, don’t publish broken links. Nothing is worse than
clicking a link that goes nowhere, or leads to the dreaded 404 error. Make
sure you verify that all your links go where you want them to go.

168 Lesson 17

Learn All You Can
The Internet is a great place to learn about HTML, XML, and the World
Wide Web. Check out some of the following great resources:

• W3C’s HTML and XHTML Specifications
www.w3.org/MarkUp/

• W3C’s XML 1.0 Recommendation www.w3.org/XML/

• XML, Java, and the Future of the Web
http://www.ibiblio.org/pub/sun-

info/standards/xml/why/xmlapps.htm

• XML Resource Center www.xml.com

• W3 Schools http://www.w3schools.com/default.asp

In this lesson, you’ve learned:

• XML goes beyond HTML. Rather than just assigning a structure
to the text (with paragraphs, headings, tables, and so on), XML
adds meaning and order.

• The XML standard isn’t complete yet, but it will take over the
Internet when it is.

• There are things you can do now to ensure that you are ready for
the future of the Internet: use the correct syntax for all tags, use
lowercase HTML tags, nest your tags appropriately, and use
style sheets rather than the HTML formatting codes.

Caution Whatever you do, don’t forget to verify that
your document includes the correct DTD: Strict,
Transitional, or Frameset. The document is not
XHTML-compliant if it doesn’t include the DTD.

www.w3.org/MarkUp/
www.w3.org/XML/
http://www.ibiblio.org/pub/suninfo/standards/xml/why/xmlapps.htm
http://www.ibiblio.org/pub/suninfo/standards/xml/why/xmlapps.htm
www.xml.com
http://www.w3schools.com/default.asp

APPENDIX A
HTML/
XHTML
Quick
Reference

HTML and XHTML are markup languages that define the structure,
rather than the format, of the elements of your documents. XHTML, is the
latest version of that language, is more restrictive than previous versions.

To make the information readily accessible, this appendix organizes
HTML elements by their function in the following order:

• Required elements

• Text phrases and paragraphs

• Text formatting elements

• Lists

• Links

• Tables

• Frames

Tip This appendix is based on the information pro-
vided in the XHTML Specification W3C
Recommendation of January 26, 2000 and revised on
August 1, 2002. The latest versions of these standards
can be found at http://www.w3.org/TR/html/.

http://www.w3.org/TR/html/

170 Appendix A

• Embedded content

• Style

• Forms

• Scripts

The elements are listed alphabetically within each section, and the follow-
ing information is presented:

• Usage A general description of the element.

• Attributes Lists the attributes of the element with a short
description of their effect.

• Notes Relates any special considerations when using the element.

Caution Several elements and attributes of HTML
have been deprecated by the current XHTML specifica-
tion. They have been outdated and you should avoid
using them. Those deprecated elements and attributes
have been eliminated in this appendix.

Following this, the common attributes and intrinsic events are summarized.

Required Elements
HTML relies on several elements to define the document as well as to
provide information that is used by the browser or search engine.

Tip Several common attributes used for structure,
internationalization, and events are abbreviated as
core, i18n, and events in the following quick reference
sections. The description for each of these abbrevia-
tions can be found later in the “Common Attributes
and Events” section.

171HTML/XHTML Quick Reference

<body>...</body>
Usage Contains the document’s content.

Attributes core, i18n, events.

onload=”...” Intrinsic event triggered when the doc-
ument loads.

onunload=”...” Intrinsic event triggered when the
document unloads.

Notes There can be only one <body>, and it must follow the
<head>. The <body> element can be replaced by a
<frameset> element.

<!DOCTYPE>
Usage Version information appears on the first line of an

HTML document and is an SGML declaration rather
than an element.

Attributes html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-

strict.dtd”> Used for documents following the
Strict XHTML requirements.

html PUBLIC “-//W3C//DTD XHTML 1.0

Transitional//EN” “http://www.w3.org/TR/

xhtml1/DTD/xhtml1-transitional.dtd”> Used for
documents following the XHTML requirements, but
also including some deprecated elements.

html PUBLIC “-//W3C//DTD XHTML 1.0

Frameset//EN” “http://www.w3.org/TR/xhtml1/
DTD/xhtml1-frameset.dtd”> Used for framed
documents.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd

172 Appendix A

<head>...</head>
Usage This is the document header and contains other ele-

ments that provide information to users and search
engines.

Attributes i18n.

profile=”...” URL specifying the location of
meta data.

Notes In general, there can be only one <head> per document.
It must follow the opening <html> tag and precede the
<body>. The <head> must include a <title>.

<html>...</html>
Usage The html element contains the entire document.

Attributes i18n.

<meta />
Usage Provides information about the document.

Attributes i18n.

http-equiv=”...” HTTP response header name.

name=”...” Name of the meta information.

content=”...” Content of the meta information.

-scheme=”...” Assigns a scheme to interpret the
meta data.

<title>...</title>
Usage This is the name you give your Web page. The <title>

element is located in the <head> element and is dis-
played in the browser window title bar.

Attributes i18n.

173HTML/XHTML Quick Reference

Text Phrases and Paragraphs
Text phrases (or blocks) can be structured to suit a specific purpose, such
as creating a paragraph. This should not be confused with modifying the
formatting of the text.

<address>...</address>
Usage Provides a special format for author or contact infor-

mation.

Attributes core, i18n, events.

Notes The
 element is commonly used inside the
<address> element to break the lines of an address.

<blockquote>...</blockquote>
Usage Used to display long quotations.

Attributes core, i18n, events.

cite=”...” The URL of the quoted text.

Usage Forces a line break.

Attributes core, i18n, events.

clear=”...” Sets the location where the next line
begins after a floating object (none, left, right, all).

<div>...</div>
Usage The division element is used to add structure to a block

of text.

Attributes core, i18n, events.

Notes Cannot be used within a <p> element.

174 Appendix A

...
Usage Emphasized text.

Attributes core, i18n, events.

<h1>...</h1>–<h6>...</h6>
Usage The six headings (h1 is uppermost, or most important)

are used in the body to structure information in a hier-
archical fashion.

Attributes core, i18n, events.

Notes Visual browsers display the size of the headings in
relation to their importance, <h1> being the largest and
<h6> the smallest.

<p>...</p>
Usage Defines a paragraph.

Attributes core, i18n, events.

<pre>...</pre>
Usage Displays preformatted text.

Attributes core, i18n, events.

width=”...” The width of the formatted text.

...
Usage Stronger emphasis.

Attributes core, i18n, events.

175HTML/XHTML Quick Reference

_{...}
Usage Creates subscript.

Attributes core, i18n, events.

^{...}
Usage Creates superscript.

Attributes core, i18n, events.

Text Formatting Elements
Text characteristics such as the size, weight, and style can be modified
using these elements, but the XHTML specification encourages you to use
style sheets instead.

...
Usage Bold text.

Attributes core, i18n, events.

<big>...</big>
Usage Large text.

Attributes core, i18n, events.

<hr />
Usage Horizontal rules are used to separate sections of a Web

page.

Attributes core, events.

noshade=”...” Displays the rule as a solid color.

176 Appendix A

<i>...</i>
Usage Italicized text.

Attributes core, i18n, events.

<small>...</small>
Usage Small text.

Attributes core, i18n, events.

<tt>...</tt>
Usage Teletype (or monospaced) text.

Attributes core, i18n, events.

Lists
You can organize text into a more structured outline by creating lists. Lists
can be nested.

<dd>...</dd>
Usage The definition description used in a <dl> (definition list)

element.

Attributes core, i18n, events.

Notes Can contain block-level content, such as the <p> element.

<dl>...</dl>
Usage Creates a definition list.

Attributes core, i18n, events.

compact=”compact” Deprecated. Compacts the
displayed list.

Notes Must contain at least one <dt> or <dd> element in any
order.

177HTML/XHTML Quick Reference

<dt>...</dt>
Usage The definition term (or label) used within a <dl> (defi-

nition list) element.

Attributes core, i18n, events.

Notes Must contain text (which can be modified by text
markup elements).

...
Usage Defines a list item within a list.

Attributes core, i18n, events.

type=”...” Changes the numbering style (1, a, A, i,
I) in ordered lists, or the bullet style (disc, square,
circle) in unordered lists.

value=”...” Sets the numbering to the given integer
beginning with the current list item.

...
Usage Creates an ordered list.

Attributes core, i18n, events.

start=”...” Sets the starting number to the chosen
integer.

Notes Must contain at least one list item.

...
Usage Creates an unordered list.

Attributes core, i18n, events.

Notes Must contain at least one list item.

178 Appendix A

Links <a>...
Hyperlinking is fundamental to HTML. These elements enable you to link
to other documents, other locations within a document, or external files.

Usage Used to define links and anchors.

Attributes core, i18n, events.

charset=”...” Character encoding of the resource.

name=”...” Defines an anchor.

href=”...” The URL of the linked resource.

target=”...” Determines where the resource is
displayed (user-defined name, _blank, _parent, _self,
_top).

rel=”...” Forward link types.

rev=”...” Reverse link types.

accesskey=”...” Assigns a hotkey to this element.

shape=”...” Enables you to define client-side
imagemaps using defined shapes (default, rect,
circle, poly).

coords=”...” Sets the size of the shape using pixel
or percentage lengths.

tabindex=”...” Sets the tabbing order between ele-
ments with a defined tabindex.

Tables
Tables are meant to display data in a tabular format. Tables are also
widely used for page layout purposes.

<caption>...</caption>
Usage Displays a table caption.

Attributes core, i18n, events.

179HTML/XHTML Quick Reference

<table>...</table>
Usage Creates a table.

Attributes core, i18n, events.

width=”...” Table width.

cols=”...” The number of columns.

border=”...” The width in pixels of a border around
the table.

frame=”...” Sets the visible sides of a table (void,
above, below, hsides, lhs, rhs, vsides, box, border).

rules=”...” Sets the visible rules within a table
(none, groups, rows, cols, all).

cellspacing=”...” Spacing between cells.

cellpadding=”...” Spacing in cells.

<td>...</td>
Usage Defines a cell’s contents.

Attributes core, i18n, events.

axis=”...” Abbreviated name.

axes=”...” axis names listing row and column
headers pertaining to the cell.

rowspan=”...” The number of rows spanned by a
cell.

colspan=”...” The number of columns spanned by a
cell.

char=”...” Sets a character on which the column
aligns.

charoff=”...” Offset to the first alignment character
on a line.

180 Appendix A

<th>...</th>
Usage Defines the cell contents of the table header.

Attributes core, i18n, events.

axis=”...” Abbreviated name.

axes=”...” axis names listing row and column
headers pertaining to the cell.

rowspan=”...” The number of rows spanned by a
cell.

colspan=”...” The number of columns spanned by a
cell.

char=”...” Sets a character on which the column
aligns.

charoff=”...” Offset to the first alignment character
on a line.

<tr>...</tr>
Usage Defines a row of table cells.

Attributes core, i18n, events.

char=”...” Sets a character on which the column
aligns.

charoff=”...” Offset to the first alignment character
on a line.

Frames
Frames create new panels in the Web browser window that are used to
display content from different source documents.

181HTML/XHTML Quick Reference

<frame />
Usage Defines a frame.

Attributes name=”...” The name of a frame.

src=”...” The source to be displayed in a frame.

frameborder=”...” Toggles the border between
frames (0, 1).

marginwidth=”...” Sets the space between the frame
border and content.

marginheight=”...” Sets the space between the
frame border and content.

noresize Disables sizing.

scrolling=”...” Determines scrollbar presence
(auto, yes, no).

Notes Use the Frameset DTD.

<frameset>...</frameset>
Usage Defines the layout of frames within a window.

Attributes rows=”...” The number of rows.

cols=”...” The number of columns.

onload=”...” The intrinsic event triggered when the
document loads.

onunload=”...” The intrinsic event triggered when
the document unloads.

Notes Use the Frameset DTD.

<iframe>...</iframe>
Usage Creates an inline frame.

Attributes name=”...” The name of the frame.

182 Appendix A

src=”...” The source to be displayed in a frame.

frameborder=”...” Toggles the border between
frames (0, 1).

marginwidth=”...” Sets the space between the frame
border and content.

marginheight=”...” Sets the space between the
frame border and content.

scrolling=”...” Determines scrollbar presence
(auto, yes, no).

height=”...” Height.

width=”...” Width.

<noframes>...</noframes>
Usage Alternative content when frames are not supported.

Attributes None.

Notes Use the Frameset DTD. The <body> element must be
included inside the <noframes> tag.

Embedded Content
Also called inclusions, embedded content applies to Java applets,
imagemaps, and other multimedia or programmed content that is placed in
a Web page to provide additional functionality.

Comments <!-- ... -->
Usage Used to insert notes or scripts that are not displayed by

the browser.

Attributes None.

Notes Comments are not restricted to one line and can be any
length. The end tag is not required to be on the same
line as the start tag.

183HTML/XHTML Quick Reference

Usage Includes an image in the document.

Attributes core, i18n, events.

src=”...” The URL of the image.

alt=”...” Alternative text to display.

height=”...” The height of the image.

width=”...” The width of the image.

border=”...” Border width.

hspace=”...” The horizontal space separating the
image from other content.

vspace=”...” The vertical space separating the
image from other content.

usemap=”...” The URL to a client-side imagemap.

ismap=”ismap” Identifies a server-side imagemap.

<map>...</map>
Usage When used with the <area> element, it creates a client-

side imagemap.

Attributes core.

name=”...” The name of the imagemap to be created.

<object>...</object>
Usage Includes an object or applet.

Attributes core, i18n, events.

declare=”declare” A flag that declares, but doesn’t
create an object.

184 Appendix A

classid=”...” The URL of the object’s location.

codebase=”...” The URL for resolving URLs speci-
fied by other attributes.

data=”...” The URL to the object’s data.

type=”...” The Internet content type for data.

codetype=”...” The Internet content type for the
code.

standby=”...” Shows message while loading.

height=”...” The height of the object.

width=”...” The width of the object.

border=”...” Displays the border around an object.

hspace=”...” The space between the sides of the
object and other page content.

vspace=”...” The space between the top and bottom
of the object and other page content.

usemap=”...” The URL to an imagemap.

shapes= Enables you to define areas to search for
hyperlinks if the object is an image.

name=”...” The URL to submit as part of a form.

tabindex=”...” Sets the tabbing order between ele-
ments with a defined tabindex.

Style <style>...</style>
Style sheets (both embedded and linked) are incorporated into an HTML
document through the use of the <style> element.

Usage Creates an internal style sheet.

Attributes i18n.

type=”...” The Internet content type.

185HTML/XHTML Quick Reference

media=”...” Defines the destination medium
(screen, print, projection, braille, speech, all).

title=”...” The title of the style.

Notes Located within the <head> element.

Forms
Forms create an interface for the user to select options and return data to
the Web server.

<button>...</button>
Usage Creates a button.

Attributes core, i18n, events.

name=”...” The button name.

value=”...” The value of the button.

type=”...” The button type (button, submit, reset).

disabled=”...” Sets the button state to disabled.

tabindex=”...” Sets the tabbing order between
elements with a defined tabindex.

onfocus=”...” The event that occurs when the
element receives focus.

onblur=”...” The event that occurs when the
element loses focus.

<form>...</form>
Usage Creates a form that holds controls for user input.

Attributes core, i18n, events.

action=”...” The URL for the server action.

186 Appendix A

method=”...” The HTTP method (get, post). get is
deprecated.

enctype=”...” Specifies the MIME (Internet media
type).

onsubmit=”...” The intrinsic event that occurs when
the form is submitted.

onreset=”...” The intrinsic event that occurs when
the form is reset.

target=”...” Determines where the resource is dis-
played (user-defined name, _blank, _parent, _self,
_top).

accept-charset=”...” The list of character encod-
ings.

<input />
Usage Defines controls used in forms.

Attributes core, i18n, events.

type=”...” The type of input control (text,
password, checkbox, radio, submit, reset, file,
hidden, image, button).

name=”...” The name of the control (required except
for submit and reset).

value=”...” The initial value of the control (required
for radio and checkboxes).

checked=”checked” Sets the radio buttons to a
checked state.

disabled=”...” Disables the control.

readonly=”...” For text password types.

size=”...” The width of the control in pixels except
for text and password controls, which are specified in
number of characters.

187HTML/XHTML Quick Reference

maxlength=”...” The maximum number of charac-
ters that can be entered.

src=”...” The URL to an image control type.

alt=”...” An alternative text description.

usemap=”...” The URL to a client-side imagemap.

tabindex=”...” Sets the tabbing order between ele-
ments with a defined tabindex.

onfocus=”...” The event that occurs when the ele-
ment receives focus.

onblur=”...” The event that occurs when the ele-
ment loses focus.

onselect=”...” Intrinsic event that occurs when the
control is selected.

onchange=”...” Intrinsic event that occurs when the
control is changed.

accept=”...” File types allowed for upload.

<label>...</label>
Usage Labels a control.

Attributes core, i18n, events.

for=”...” Associates a label with an identified con-
trol.

disabled=”...” Disables a control.

accesskey=”...” Assigns a hotkey to this element.

onfocus=”...” The event that occurs when the ele-
ment receives focus.

onblur=”...” The event that occurs when the ele-
ment loses focus.

188 Appendix A

<legend>...</legend>
Usage Assigns a caption to a fieldset.

Attributes core, i18n, events.

accesskey=”...” Assigns a hotkey to this element.

<option>...</option>
Usage Specifies choices in a <select> element.

Attributes core, i18n, events.

selected=”selected” Specifies whether the option is
selected.

disabled=”disabled” Disables the control.

value=”...” The value submitted if a control is sub-
mitted.

<select>...</select>
Usage Creates choices for the user to select.

Attributes core, i18n, events.

name=”...” The name of the element.

size=”...” The height in number of visible rows.

multiple=”multiple” Allows multiple selections.

disabled=”disabled” Disables the control.

tabindex=”...” Sets the tabbing order between ele-
ments with a defined tabindex.

onfocus=”...” The event that occurs when the ele-
ment receives focus.

onblur=”...” The event that occurs when the ele-
ment loses focus.

189HTML/XHTML Quick Reference

onselect=”...” Intrinsic event that occurs when the
control is selected.

onchange=”...” Intrinsic event that occurs when the
control is changed.

<textarea>...</textarea>
Usage Creates an area for user input with multiple lines.

Attributes core, i18n, events.

name=”...” The name of the control.

rows=”...” The height in number of rows.

cols=”...” The width in number of columns.

disabled=”disabled” Disables the control.

readonly=”readonly” Sets the displayed text to read-
only status.

tabindex=”...” Sets the tabbing order between ele-
ments with a defined tabindex.

onfocus=”...” The event that occurs when the ele-
ment receives focus.

onblur=”...” The event that occurs when the ele-
ment loses focus.

onselect=”...” Intrinsic event that occurs when the
control is selected.

onchange=”...” Intrinsic event that occurs when the
control is changed.

Notes Text to be displayed is placed within the start and end
tags.

190 Appendix A

Scripts
Scripting language is made available to process data and performs other
dynamic events through the <script> element.

<script>...</script>
Usage The <script> element contains client-side scripts that

are executed by the browser.

Attributes type=”...” Script language Internet content type.

src=”...” The URL for the external script.

Notes You can set the default scripting language in the
<meta /> element.

<noscript>...</noscript>
Usage Provides alternative content for browsers unable to exe-

cute a script.

Attributes None.

Common Attributes and Events
Four attributes are abbreviated as core. They are

• id=”...” A global identifier.

• class=”...” A list of classes separated by spaces.

• style=”...” Style information.

• title=”...” Provides more information for a specific element,
as opposed to the <title> element, which entitles the entire
Web page.

Two attributes for internationalization (i18n) are abbreviated as i18n:

• lang=”...” The language identifier.

• dir=c The text direction (ltr, rtl).

191HTML/XHTML Quick Reference

The following intrinsic events are abbreviated events:

• OnClick=”...” A pointing device (such as a mouse) was
single-clicked.

• OnDblClick=”...” A pointing device (such as a mouse) was
double-clicked.

• OnMouseDown=”...” A mouse button was clicked and held
down.

• OnMouseUp=”...” A mouse button that was clicked and held
down was released.

• OnMouseOver=”...” A mouse moved the cursor over an object.

• OnMouseMove=”...” The mouse was moved.

• OnMouseOut=”...” A mouse moved the cursor off an object.

• OnKeyPress=”...” A key was pressed and released.

• OnKeyDown=”...” A key was pressed and held down.

• OnKeyUp=”...” A key that was pressed has been released.

APPENDIX B
Style Sheet
Quick
Reference

Cascading Style Sheets enable Web authors to attach styles (for example,
fonts, spacing, and colors) to HTML documents. By separating the pre-
sentation style of documents from the content of documents, the style
sheet specification simplifies Web authoring and site maintenance. This
appendix provides a quick reference to some of the most common style
sheet properties.

Note This appendix is based on the information pro-
vided in the CSS 2.1 Specification W3C
Recommendation (revised on June 15, 2005). The
latest version of this standard can be found at
www.w3.org/TR/CSS21/.

To make the information readily accessible, this appendix organizes style
sheet properties by their function in the following order:

• Text and fonts

• Typography

• Colors and backgrounds

• Borders and tables

• Lists

• Layout

www.w3.org/TR/CSS21/

The elements are listed alphabetically within each section, and the follow-
ing information is presented:

• Usage A general description of the property.

• Values Lists the values of the property with a short description
of their effect.

• Initial Value Lists the default value of the property. It is not
necessary to set this value.

• Notes Relates any special considerations when using the property.

Text and Fonts
Sets the fonts, colors, positioning, and other styles for the text elements.

Tip Links can use all the same properties as other text
elements, but you need to remember the link types:

• a:link

• a:visited

• a:active

• a:hover

font-family
Usage Sets the font to be used.

Values <family name> The name of the font family (such
as Arial) as it appears in your editor.

<generic family> Sets a generic font set depen-
dent on the user’s computer (such as, serif, sans-
serif, cursive, fantasy, and monospace).

inherit The same as the parent element.

Initial Value Depends on the browser setting.

194 Appendix B

font-size
Usage Sets the font size.

Values <absolute-size> The size of the font expressed in
points (pt), inches (in), centimeters (cm), pixels (px),
or one of the absolute keywords (xx-small, x-small,
small, medium, large, x-large, xx-large, smaller,
or larger) which determines the size of the font rela-
tive to the default value.

inherit The same as the parent element.

Initial Value medium; typically 12 points.

font-style
Usage Sets the style of the font.

Values normal No special format to the font.

italic The font appears in italics.

inherit The same as the parent element.

Initial Value normal.

Tip Because not all computer systems ship with the
same fonts, there are only a few sure-fire fonts worth
specifying:

• Arial

• Arial Black

• Comic Sans

• Courier New

• Georgia

• Impact

• Times New Roman

• Trebuchet

• Verdana

195Style Sheet Quick Reference

font-weight
Usage Sets the weight of the font.

Values <weight> The weight of the font may be extra-
light, light, demi-light, medium, normal, demi-
bold, bold, or extra-bold.

<relative-weight> The weight of the font may be
relative to some inherited value (for example, bolder
or lighter)

100–900 The weight of the font as a specific numer-
ical value, where 400 is approximately the same as
normal and 700 is approximately the same as bold.

inherit The same as the parent element.

Initial Value normal.

font-variant
Usage Changes the appearance of the font.

Values small-caps Transforms all text into small caps.

inherit The same as the parent element.

Initial Value normal.

text-decoration
Usage Sets the format of the text element.

Values underline A line appears under the text.

overline A line appears over the text.

line-through A line appears horizontally through
the center of the text.

blink The text blinks.

inherit The same as the parent element.

Initial Value none (or underline for links).

196 Appendix B

text-transform
Usage Sets the format of the text element.

Values capitalize Transforms the case of the first letter of
every word to uppercase.

uppercase All text appears uppercase.

lowercase All text appears lowercase.

inherit The same as the parent element.

Initial Value none.

Typography
This sets the style that determines the spacing and alignment of text ele-
ments.

word-spacing
Usage Sets the spacing between words.

Values <length> The spacing may be expressed in inches
(in), centimeters (cm), points (pt), and pixels (px).

inherit The same as the parent element.

Initial Value normal

letter-spacing
Usage Sets the spacing between letters, also known as

kerning.

Values <length> The spacing may be expressed in inches
(in), centimeters (cm), points (pt), and pixels (px).

inherit The same as the parent element.

Initial Value normal

197Style Sheet Quick Reference

line-height
Usage Sets the total height of a line of text, including the

space above and below the text.

Values <length> The spacing may be expressed in inches
(in), centimeters (cm), points (pt), and pixels (px).

inherit The same as the parent element.

Initial Value normal

Tip Each of these properties may also be expressed
as a negative (for example, letter-spacing:-10px),
which decreases the normal spacing to create interest-
ing effects.

text-align
Usage Sets the alignment of the text element.

Values left The text is aligned on the left side.

right The text is aligned on the right side.

center The text is centered.

justify The text is aligned on both the left and
right sides.

inherit The same as the parent element.

Initial Value Depends on the browser settings.

vertical-align
Usage Sets the vertical alignment of the element relative to

the surrounding elements.

Values baseline The element aligns with the baseline of
surrounding elements.

sub or super The element is subscripted or super-
scripted respectively.

198 Appendix B

top, middle, bottom The element is aligned with
the top, middle, or bottom of surrounding elements
respectively.

text-top or text-bottom The element is aligned
with the top or bottom of surrounding text elements.

inherit The same as the parent element.

Initial Value baseline.

text-indent
Usage Sets the spacing before the text element relative to the

surrounding elements.

Values <length> The indent spacing is a fixed length
expressed in inches (in), centimeters (cm), points (pt),
or pixels (px).

<percentage> The indent spacing is a percentage of
the containing element (usually the browser window
or the table cell).

inherit The same as the parent element.

Initial Value 0.

Colors and Backgrounds
This sets the style for the background of the text, page, table, or other ele-
ments.

Caution As with other elements, color does not appear
the same on all computers; however, most monitors will
display a 256-color palette (with 216 of those colors con-
sistent across all platforms). Lynda Weinmann’s website
(www.lynda.com/hex.html) contains two charts sorting
these browser-safe colors sorted by both value and hue.
They are well worth checking out.

www.lynda.com/hex.html

199Style Sheet Quick Reference

background-color
Usage Sets the background color of an element.

Values <color> The hex number (or text equivalent) of the
preferred color.

transparent The same background as the underly-
ing element.

Initial Value transparent

background-image
Usage Sets the background image for an element.

Values url(“...”) The URL for the background image.

none No image.

Initial Value none

background-position
Usage Sets the position of the background image. The val-

ues always appear in pairs—the first number refers to
the horizontal positioning of the image; the second to
the vertical positioning. For example, background-
position: 0% 100% will place the image at the top
right of the browser window.

Values <percentage> The position of the background
image.

top Corresponds to 0%.

bottom Corresponds to 100%.

left Corresponds to 0%.

right Corresponds to 100%.

center Corresponds to 50%.

Initial Value none.

200 Appendix B

background-repeat
Usage Sets the pattern of repeats for the background image.

Values <no-repeat> The background image does not repeat.

<repeat> The background image repeats both hori-
zontally and vertically (as normal) to fill the entire
space.

<repeat-x> The background image repeats horizon-
tally only to fill the entire space.

<repeat-y> The background image repeats verti-
cally only to fill the entire space.

Initial Value repeat.

color
Usage Sets the color of the font.

Values <color> The hex number (or text equivalent) of the
preferred color.

inherit The same as the parent element.

Initial Value Depends on the browser setting.

Tip Some colors have been defined in the style sheet
specification by a name, not a hexadecimal code. The
following 16 are guaranteed to appear the same in all
resolutions.

• aqua

• black

• blue

• fuchsia

• gray

• green

• lime

• maroon

• navy

• olive

• purple

• red

• silver

• teal

• white

• yellow

Borders and Tables
These set the border styles for the page, text, table, and image elements.

201Style Sheet Quick Reference

border-color
Usage Sets the border color for an element.

Values <color> The hex number (or text equivalent) of the
preferred color.

inherit The same as the parent element.

none No image.

Initial Value transparent.

Notes Set the color for specific borders using the border-
top-color, border-right-color, border-bottom-
color, and border-left-color properties.

border-style
Usage Sets the style of the border for an element.

Values dotted A series of small dots form the border.

dashed A series of dashes form the border.

solid A narrow, solid line forms the border.

double Double, narrow, solid lines form the border.

groove A narrow carved line forms the border.

ridge A narrow raised line forms the border.

inset The border makes the entire element appear
to be embedded.

outset The border makes the entire element appear
to be raised.

inherit The same as the parent element.

none No border.

Initial Value none.

Notes Set the position of the border with the border-top-
style, border-right-style, border-bottom-style,
and border-left-style properties.

202 Appendix B

border-width
Usage Sets the width of the border for an element.

Values <width> The width is a fixed length expressed in
inches (in), centimeters (cm), points (pt), or pixels (px).

thin A thin line forms the border.

medium A medium line forms the border.

thick A thick line forms the border.

inherit The same as the parent element.

Initial Value medium.

Notes Set the width of specific borders using the border-
top-width, border-right-width, border-bottom-
width, and border-left-width properties.

caption-side
Usage Sets the position of the caption relative to the table.

Values top The caption appears at the top of the table.

bottom The caption appears at the bottom of the
table.

inherit The same as the parent element.

Initial Value 0.

empty-cells
Usage Specifies the treatment of empty table cells.

Values show Empty cells are treated the same as nonempty
cells.

hide Empty cells are not displayed.

inherit The same as the parent element.

Initial Value show.

203Style Sheet Quick Reference

float
Usage Sets the spacing before the text element relative to the

surrounding elements.

Values left The content of the element floats to the left.

right The content of the element floats to the right.

none The content does not float.

inherit The same as the parent element.

Initial Value none.

Lists
These styles set styles (for example, the bullet type) for ordered and
unordered lists. Combine these styles with margins and indents.

list-style-image
Usage Sets an image to replace the list bullets.

Values url(“...”) The URL for the image.

none No images.

inherit The same as the parent element.

Initial Value none

list-style-type
Usage Sets the style of the unordered list bullets (or numbers

in ordered lists).

Values <shape> The bullets can be set to disc (closed cir-
cle), circle (open circle), or square (closed square).

<alignment> The bullets can be aligned around
decimal or decimal-leading-zero.

204 Appendix B

<text> Numbers in an ordered list can be Roman
numerals (lower-roman, upper-roman), Latin numer-
als (lower-latin, upper-latin), or American alpha-
bet characters (lower-alpha, upper-alpha).

inherit The same as the parent element.

Initial Value disc.

Layout
These styles can be used in combination with any of the previous style
types to affect the entire page, or components of the page.

margin
Usage Sets the margins for the page.

Values <margin-width> The width of the margin in per-
centage or in fixed width.

inherit The same as the parent element.

Initial Value 0.

Notes Set specific margins using the margin-top, margin-
right, margin-bottom, and margin-left properties.

padding
Usage Sets the space that surrounds the element.

Values <length> Sets the table padding to a fixed length.

<percentage> Sets the table padding to a percent-
age.

Initial Value 0.

Notes Set specific padding using the padding-top,
padding-right, padding-bottom, and padding-left
properties.

APPENDIX C
Special
Characters

Symbols (such as & and ‘) are used in everyday writing. HTML uses a
shorthand code to display certain characters correctly. The most fre-
quently used characters are referenced in the following tables. As with
any code, review your finished pages in the browser before sending your
work to the Internet.

Caution The entity references in the tables that
follow are case sensitive.

Symbol Entities
Character Description Entity Reference Entity Number

“ quotation mark " "

‘ apostrophe ' (does not '
work in IE)

& ampersand & &

< less-than < <

> greater-than > >

non-breaking
space

¡ inverted ¡ ¡
exclamation mark

continues

206 Appendix C

� currency ¤ ¤

¢ cent ¢ ¢

£ pound £ £

¥ yen ¥ ¥

| broken vertical bar ¦ ¦

§ section § §

¨ spacing diaeresis ¨ ¨

© copyright © ©

ª feminine ordinal ª ª
indicator

« angle quotation « «
mark (left)

¬ negation ¬ ¬

soft hyphen ­ ­

® registered ® ®
trademark

™ trademark ™ ™

¯ spacing macron ¯ ¯

° degree ° °

± plus-or-minus ± ±

2 superscript 2 ² ²

3 superscript 3 ³ ³

´ spacing acute ´ ´

µ micro µ µ

¶ paragraph ¶ ¶

· middle dot · ·

¸ spacing cedilla ¸ ¸

Character Description Entity Reference Entity Number

207Special Characters

1 superscript 1 ¹ ¹

º masculine º º
ordinal indicator

» angle quotation » »
mark (right)

1⁄4 fraction 1/4 ¼ ¼

1⁄2 fraction 1/2 ½ ½

3⁄4 fraction 3/4 ¾ ¾

¿ inverted question ¿ ¿
mark

× multiplication × ×

÷ division ÷ ÷

Character Entities
Entity Entity

Character Description Reference Number

À capital a, grave accent À À

Á capital a, acute accent Á Á

Â capital a, circumflex accent Â Â

Ã capital a, tilde Ã Ã

Ä capital a, umlaut mark Ä Ä

Å capital a, ring Å Å

Æ capital ae Æ Æ

Ç capital c, cedilla Ç Ç

È capital e, grave accent È È

É capital e, acute accent É É

Character Description Entity Reference Entity Number

continues

208 Appendix C

Ê capital e, circumflex accent Ê Ê

Ë capital e, umlaut mark Ë Ë

Ì capital i, grave accent Ì Ì

Í capital i, acute accent Í Í

Î capital i, circumflex accent Î Î

Ï capital i, umlaut mark Ï Ï

capital eth, Icelandic Ð Ð

Ñ capital n, tilde Ñ Ñ

Ò capital o, grave accent Ò Ò

Ó capital o, acute accent Ó Ó

Ô capital o, circumflex accent Ô Ô

Õ capital o, tilde Õ Õ

Ö capital o, umlaut mark Ö Ö

Ø capital o, slash Ø Ø

Ù capital u, grave accent Ù Ù

Ú capital u, acute accent Ú Ú

Û capital u, circumflex accent Û Û

Ü capital u, umlaut mark Ü Ü

Ý capital y, acute accent Ý Ý

capital THORN, Icelandic Þ Þ

ß small sharp s, German ß ß

à small a, grave accent à à

á small a, acute accent á á

â small a, circumflex accent â â

ã small a, tilde ã ã

ä small a, umlaut mark ä ä

Entity Entity
Character Description Reference Number

209Special Characters

å small a, ring å å

æ small ae æ æ

ç small c, cedilla ç ç

è small e, grave accent è è

é small e, acute accent é é

ê small e, circumflex accent ê ê

ë small e, umlaut mark ë ë

ì small i, grave accent ì ì

í small i, acute accent í í

î small i, circumflex accent î î

ï small i, umlaut mark ï ï

small eth, Icelandic ð ð

ñ small n, tilde ñ ñ

ò small o, grave accent ò ò

ó small o, acute accent ó ó

ô small o, circumflex accent ô ô

õ small o, tilde õ õ

ö small o, umlaut mark ö ö

ø small o, slash ø ø

ù small u, grave accent ù ù

ú small u, acute accent ú ú

û small u, circumflex accent û û

ü small u, umlaut mark ü ü

ý small y, acute accent ý ý

small thorn, Icelandic þ þ

ÿ small y, umlaut mark ÿ ÿ

Entity Entity
Character Description Reference Number

210 Appendix C

Greek Entities
Entity Entity

Character Description Reference Number

Greek capital letter alpha Α Α

Greek capital letter beta Β Β

Greek capital letter gamma Γ Γ

Greek capital letter delta Δ Δ

Greek capital letter epsilon Ε Ε

Greek capital letter zeta Ζ Ζ

Greek capital letter eta Η Η

Greek capital letter theta Θ Θ

Greek capital letter iota Ι Ι

Greek capital letter kappa Κ Κ

Greek capital letter lambda Λ Λ

Greek capital letter mu Μ Μ

Greek capital letter nu Ν Ν

Greek capital letter xi Ξ Ξ

Greek capital letter omicron Ο Ο

Greek capital letter pi Π Π

Greek capital letter rho Ρ Ρ

Greek capital letter sigma Σ Σ

Greek capital letter tau Τ Τ

Greek capital letter upsilon Υ Υ

Greek capital letter phi Φ Φ

Greek capital letter chi Χ Χ

Greek capital letter psi Ψ Ψ

211Special Characters

Greek capital letter omega Ω Ω

Greek small letter alpha α α

Greek small letter beta β β

Greek small letter gamma γ γ

Greek small letter delta δ δ

Greek small letter epsilon ε ε

Greek small letter zeta ζ ζ

Greek small letter eta η η

Greek small letter theta θ θ

Greek small letter iota ι ι

Greek small letter kappa κ κ

Greek small letter lambda λ λ

µ Greek small letter mu μ μ

Greek small letter nu ν ν

Greek small letter xi ξ ξ

Greek small letter omicron ο ο

Greek small letter pi π π

Greek small letter rho ρ ρ

Greek small letter final sigma ς ς

Greek small letter sigma σ σ

Greek small letter tau τ τ

Greek small letter upsilon υ υ

Greek small letter phi φ φ

Greek small letter chi χ χ

Entity Entity
Character Description Reference Number

continues

212 Appendix C

Greek small letter psi ψ ψ

Greek small letter omega ω ω

Greek small letter theta symbol ϑ ϑ
(does not
work in IE)

Greek upsilon with hook ϒ ϒ
symbol (does not

work in IE)

Greek pi symbol ϖ (does ϖ
not work in IE)

Other Entities
Entity Entity

Character Description Reference Number

Œ capital ligature OE Œ Œ

œ small ligature oe œ œ

Š capital S with caron Š Š

š small S with caron š š

Ÿ capital Y with diaeres Ÿ Ÿ

ˆ modifier letter circumflex ˆ ˆ
accent

˜ small tilde ˜ ˜

en space    

em space    

thin space    

Entity Entity
Character Description Reference Number

213Special Characters

– en dash – –

— em dash — —

‘ left single quotation mark ‘ ‘

’ right single quotation mark ’ ’

‚ single low-9 quotation mark ‚ ‚

“ left double quotation mark “ “

” right double quotation mark ” ”

„ double low-9 quotation mark „ „

† dagger † †

‡ double dagger ‡ ‡

… horizontal ellipsis … …

‰ per mille ‰ ‰

‹ single left-pointing ‹ ‹
angle quotation

› single right-pointing › ›
angle quotation

euro € €

Entity Entity
Character Description Reference Number

This page intentionally left blank

SYMBOLS

<!--…--> tag, 182
´ (acute accent), 24
& (ampersand) symbol, 24
© (copyright) symbol, 24
<!DOCTYPE> tag, 171
/ (forward slash), 92

HTML tag pairs, 13
hyperlinks, 34

` (grave accent), 24
> (greater than) symbol, 24
< (less than) symbol, 24
- (minus) symbol, 24
 (non-breaking space) special

character, 25
(number) symbol, 24
% (percent) symbol, 24, 92
+ (plus) symbol, 24
“ ” (quotes), 165
® (registered trademark) symbol, 24
_ (underscore), 17

A
<a href> tag, 36, 104
<a> tag, 32, 177-178

href attribute, 33, 36
id attribute, 35
sound/video, 116

a:active selector, 51

a:hover selector, 51
a:link selector, 50
a:visited selector, 50
<absolute-size> tag, 194
action attribute, 105
active frames, 102
active Web pages, 134

ActiveX, 137-138
DHTML, 135-136
Java, 137-138

ActiveX, 137-138
acute accent (´), 24
Add Me Web site, 156
adding

images, 71
sound, 116-119
styles, 44-45
text links for image maps, 87-88
text pop-ups, 73-74
video, 116-119
Web sites to search engines,

155-156
<address> tag, 173
addresses (URLs), 32-33
Adobe GoLive, 149
Advanced Research Projects Agency

(ARPA), 5
advertising, 157
align attribute

 tag, 76
<table> tag, 66

INDEX

216 ALIGNMENT

alignment
tables, 66
text, 76, 197

alt attribute, 74
alternate fonts, 127
Amazon Web site, 82
American Idol Web site, 69
ampersand (&) symbol, 24
analyzing data, 160
anchor (<a>) tag, 32
anchors, 35-37
AnyBrowser Web site, 9
appearance attribute, 119
<area> tag, 86
ARPA (Advanced Research Projects

Agency), 5
ARPAnet, 5
attributes

action, 105
align, 66, 76
alt, 74
appearance, 119
autorewind, 119
autostart, 119
bgcolor, 66
border, 66
cellpadding, 66
cellspacing, 66
class, 41-43, 190
classid, 137
codebase, 137
cols, 91
colspan, 66-68
controls, 118
core, 190
dir, 190
height, 75-76
hidden, 119
href, 33, 36
<html> tag, 16
id, 35, 92, 190
 tag, 75-76
internationalization, 190
lang, 26, 190
loop, 119
marginheight, 93
marginwidth, 93

method, 105
name, 92-93
noresize, 93
quotes, 165
refresh, 29
rows, 91
rowspan, 66-68
scrolling, 93
src, 71, 92
style, 190
target, 34, 99
title, 190
type, 108, 139
usemap, 87
valign, 66
value, 61
width, 66, 75-76, 118

audio. See sound
autorewind attribute, 119
autostart attribute, 119

B
 tag, 175
background property, 47, 52
background-color property, 51, 199
background-image property, 199
background-position property, 199
background-repeat property, 200
backgrounds

color, 66, 199
images, 130-132, 199
repeating, 200
style sheet properties, 198-200

BBEdit, 149
bgcolor attribute, 66
<big> tag, 175
<blockquote> tag, 173
</body> tag, 12
<body> tag, 12, 171
boldface text, 21
border attribute, 66
border-color property, 201
border-style property, 201
border-width property, 202
borders

color, 201
frames, 93

217CSS

style sheet properties, 200-203
styles, 201
tables, 66, 69
width, 202

 tag, 20, 173
browsers

compatibility, 8, 163
copying URLs from, 33
event handler support, 141
<iframe> tag support, 96
image compatibility, 74
limitations, 8
Lynx, 8
new windows, 34
paragraph text, reading, 19
source code, 14
style sheets

precedence, 46
properties, 50

text, 46
Web page formatting, 8

bulleted lists, 57
formatting, 58-59
images, 203

<button> tag, 184

C
caption-side property, 202
<caption> tag, 178
captions (tables), 202
Cascading Style Sheets. See CSS
case sensitivity, 17
cellpadding attribute, 66
cells, 64, 202
cellspacing attribute, 66
Cerious Software Thumbs Plus, 79
character entities, list of, 207-209
check boxes, 109-110
choosing

colors, 51
style sheets, 43

class attribute, 41-43, 190
classid attribute, 137
client-side images, 85

CNET
plug-ins Web site, 120
Web Hosting Buying Guide

Web site, 152
CNN Web site, 69
code, testing, 163
codebase attribute, 137
color

backgrounds, 66, 199
borders, 201
charts online, 126
designs, 126-128
formatting, 51-52, 200

color property, 47, 51-52, 200
<color> tag, 200
cols attribute, 91
colspan attribute, 66-68
commands, 14
comments, 182
complex tables, 68
connecting to Internet, 9
content (designs), 124
controls attribute, 118
coordinates (image maps), 83-85
copying

images, 80
URLs, 33

copyright symbol (©), 24
core attributes, 190
Corel® Paint Shop Pro Web site, 83
crawlers, 153-154
creating

expiration dates, 30
hyperlinks

anchors, 35-37
email, 34
files, 33-34
Web pages, 33

paragraphs, 19-20
splash pages, 29

CSS (Cascading Style Sheets),
22, 39

backgrounds, 198-200
borders, 200-203
choosing, 43
class attribute, 41-43
color, 200

How can we make this index more useful? Email us at indexes@samspublishing.com

218 CSS

conflicts, 166
declarations, 40
defined, 39
embedded, 39, 44
fonts, 193-194
horizontal lines, adding, 53-55
inline, 40, 45
layout, 204
linked, 40, 44-45
lists, 203-204
margins, 55
precedence, 46
properties

background-color, 199
background-image, 199
background-position, 199
background-repeat, 200
border-color, 201
border-style, 201
border-width, 202
browser compatibility, 50
caption-side, 202
color, 52, 200
empty-cells, 202
float, 203
font-family, 193
font-size, 194
font-style, 194
font-variant, 195
font-weight, 195
letter-spacing, 196
line-height, 197
links, 51
list-style-image, 203
list-style-type, 203
margin, 204
padding, 204
text, 47-48
text-align, 197
text-decoration, 195
text-indent, 198
text-transform, 196
vertical-align, 197
word-spacing, 196

resources, 56
rules, 40-41
selectors, 40

<style> tag, 184
text, formatting, 46-49

color, 51
links, 50-51
properties, 195

typography, 196-198
XML templates, 161-163

D
data

analyzing, 160
forms, receiving, 114-115

<dd> tag, 62, 176
declarations (style sheets), 40
defaults

browser text, 46
drop-down menus, 110

definition lists, 62
definition terms tag (<dt>), 62
deleting underlines, 51
deprecation of tags, 22
designs

color, 126-128
content, 124
fonts, 126-128
images, 129-132
layout, 124-125
navigation, 125
paper versus online, 122-124

DHTML (Dynamic HTML), 135-136
dir attribute, 190
<div> tag, 173
<dl> tag, 176
<!DOCTYPE> tag, 14-15
Document Type Definitions

(DTDs), 159
documents

HTML
commands, 14
previewing, 13
reading, 6
required elements, 12
saving, 13
style sheets, 22

XHTML, 14-16

219FORMS

Dreamweaver, 146-149
drop-down menus, 110-111
<dt> tag, 62, 177
DTDs (Document Type

Definitions), 159
Dynamic HTML (DHTML),

135-136

E
editing text, 167
elements

active, 134
ActiveX, 137-138
DHTML, 135-136
Java, 137-138

embedded content, 182-184
forms, 184-189
frames, 180-182
HTML documents, 12
links, 177-178
lists, 176-177
margins, 55
required, 170-172
scripting, 189
style sheets, 184
tables, 178-180
text, 173-176

 tag, 174
email hyperlinks, creating, 34
<embed> tag, 117-120
embedding

content, 182-184
style sheets, 39, 44

empty cells, 202
empty-cells property, 202
equations (math), 25
etiquette (images), 79-80
events, 140, 190
expiration dates, 30
eXtensible Hypertext Markup

Language. See XHTML
eXtensible Markup Language.

See XML

F
<family name> tag, 193
fields (forms)

check boxes, 109-110
drop-down menus, 110-111
file browse boxes, 112
radio buttons, 109-110
Submit/Reset buttons, 113
text areas/boxes, 108-109

file browse boxes, 112
finding plug-ins, 120
float property, 203
font-family property, 48, 51, 193
font-size property, 48, 194
font-style property, 48, 194
font-variant property, 195
font-weight property, 48, 195
fonts

alternate, 127
appearances, 195
designs, 126-128
families, 193
headings, 23
size, 194
style sheets, 193-194
weight, 195

foreign (non-English) text, 26-27
<form> tag, 105, 185
formatting

bulleted lists, 58-59
color, 51
links, 50-51
numbered lists, 60
style sheets, 22
tables, 65-67
tags, 30
text, 21-22, 46-49
Web pages, 8

forms
data, receiving, 114-115
fields

check boxes, 109-110
drop-down menus, 110-111
file browse boxes, 112
radio buttons, 109-110
Submit/Reset buttons, 113
text areas/boxes, 108-109

How can we make this index more useful? Email us at indexes@samspublishing.com

220 FORMS

<form> tag, 105, 184-189
forward slash (/), 92

HTML tag pairs, 13
hyperlinks, 34

<frame> tag, 92-93, 104, 180
frameborder attribute, 93
frames, 14

active, 102
advantages, 103
borders, 93
disadvantages

frameset URL, 100
printing, 101-103
Why Frames Suck (Most of

the Time) Web site, 100
<frame> tag, 92-93, 104, 180
<frameset> tag, 91-92, 104, 181
framesets, 89-91
linking, 98-99
names, 92
nesting, 95-97
<noframes> tag, 93-94, 104, 182
orientation, 91
overview, 89
printing, 103
resizing, 93
scrolling, 93
size, 91-92
tags, list of, 180-182
target, 99

Frameset <!DOCTYPE> tag
variation, 15

<frameset> tag, 91-92, 104, 181
framesets

defined, 89
example, 90-91
URLs, 100

FreeWebs Web site, 152
FrontPage, 143-146
Fusion, 149

G
<generic family> tag, 193
GIFs (Graphics Interface Format), 71
GoLive, 149
Google Advertising Programs Web

site, 155

graphics. See images
grave accent (`), 24
greater than (>) symbol, 24
Greek entities, list of, 210-212

H
<h1> tag, 23, 174
<h6> tag, 23, 174
</head> tag, 12
<head> tag, 12, 172
heading tags, 23
headings, 23, 64
height attribute, 75-76
hidden attribute, 119
highlighting hyperlinks, 33
HomeSite, 149
horizontal lines, adding, 52-55
hosting (Web), 151-152
<hr> tag, 52, 56, 175
href attribute, 33, 36
.htm files, 13
HTML (Hypertext Markup

Language), 6
defined, 6
Dynamic (DHTML), 135-136
new standards, 35
overview, 6
resources, 168
XML, compared, 158-159

</html> tag, 12
<html> tag, 12, 16, 172
HTTP (Hypertext Transfer

Protocol), 6
hyperlinks, 32

<a> tag, 32
anchors, 35-37
email, 34
files, 33-34
formatting, 50-51
highlighting, 33
images as, 78-79
opening new windows, 34
redirecting, 29
slashes, 34
tags, 38, 177-178
testing, 167

221LANGUAGES

text, 87-88
underlining, 51
Web pages, 33

Hypertext Markup Language. See
HTML

Hypertext Transfer Protocol
(HTTP), 6

I
I Have A Dream speech Web site, 116
<i> tag, 175
IBM Web site, 69
id attribute, 190

<a> tag, 35
<frame> tag, 92

<iframe> tag, 96-97, 104, 181
image maps

client-side/server-side, 85-87
coordinates, 83-85
defined, 82
examples, 82
shapes, 84
text links, 87-88

images
adding, 71
aligning with text, 76
backgrounds, 130-132, 199
borders, 200-203
browser compatibility, 74
bulleted lists, 203
copying, 80
designs, 129
etiquette, 79-80
faster loading, 76
GIFs, 71
JPEGs, 71
as links, 78-79
loading speed, 129
PNGs, 71
size, 75-76
text pop-ups, 73-74

 tag, 71
 tag (attributes), 182

align, 76
alt, 74
height/width, 75-76
usemap, 87

inclusions, 182-184
indenting text, 198
indexes, 152-153
inline style sheets, 40, 45
<input> tag, 108, 186
Interactive Advertising Bureau Web

site, 157
international text, 26-27
internationalization attributes, 190
Internet

ARPAnet, 5
connecting to, 9
history and emergence, 5
IP, 5
ISPs, 9
overview, 5
Web hosts, 10
WPPs, 9

intranets, 10
IP (Internet Protocol), 5
ISPs (Internet Service Providers), 9
italic text, 21

J–K
Java, 137-138
JavaScript, 138-140
Johnson’s Baby Soft Web site, 83
JPEGs (Joint Photographic Experts

Group), 71

kerning text, 196

L
<label> tag, 187
lang attribute, 26, 190
languages

DHTML, 135-136
international, 26-27
Java, 137-138
JavaScript, 138-140
markup, 7
XHTML, 7

attribute quotes, 165
basic principles, 17-18
documents, 14-16
style sheets, 166

How can we make this index more useful? Email us at indexes@samspublishing.com

222 LANGUAGES

syntax, 164-165
tags. See XHTML, tags

XML, 7
data, analyzing, 160
HTML, compared,

158-159
Resource Center Web

site, 168
resources, 168
standards, 160
style sheet templates,

161-163
tags, 166

layout, 124-125
style sheet properties, 204
tables for, 68-69

<legend> tag, 187
<length> tag, 197
less than (<) symbol, 24
letter-spacing property, 196
 tag, 57, 177
line-height property, 197
lines

adding, 52-55
breaks, 20-21

linking
frames, 98-99
style sheets, 40, 44-45

links. See hyperlinks
list item tag (), 57
The List Web site, 152
list-style-image property, 203
list-style-type property, 203
lists

bulleted, 57
formatting, 58-59
images, 203

definition, 62
numbered, 59-61
style sheet properties, 203-204
tags, list of, 176-177
types, 203

loading images, 129
loop attribute, 119
looping sound/video, 119
Lynx, 8

M
Macromedia Dreamweaver, 146-149
<map> tag, 87, 183
mapping images

client-side/server-side, 85-87
coordinates, 83-85
defined, 82
examples, 82
shapes, 84
text links, 87-88

margin property, 204
margin-left property, 55
margin-right property, 55
margin-top property, 55
<margin-width> tag, 204
marginheight attribute, 93
margins, 55, 204
marginwidth attribute, 93
markup languages, 7
mathematical notations, 25-26
menus

drop-down, 110-111
navigational, 136

meta information, 27
expiration dates, 30
refreshing pages, 29
scripts, 139
searches, 28-29
spiders, 153
splash pages, 29

<meta> tag, 27-29, 153, 172
method attribute, 105
Microsoft

FrontPage, 143-146
Web sites, 69

CSS tutorial, 56
DHTML, 135
FrontPage, 145, 152
typography, 48

minus (-) symbol, 24

N
name attribute, 92
names

anchors, 37
frames, 92

223PROPERTIES

navigation designs, 125, 136
nesting

frames, 95-97
tags, 166

NetMechanic Web site, 163
NetObjects Fusion, 149
Netscape

DHTML Web site, 135
plug-in archive Web site, 120

networks
ARPAnet, 5
intranets, 10

new standards (HTML), 35
Nielsen, Jakob, 100
<no-repeat> tag, 200
<noembed> tag, 118-120
<noframes> tag, 93-94, 104, 182
non-breaking space () special

character, 25
noresize attribute, 93
<noscript> tag, 189
number (#) symbol, 24
numbered lists, 59-61

O
<object> tag

embedding applications, 137
inclusions, 183
sound/video, 119-120

 tag, 59-61, 177
onclick events, 140, 190
ondblclick events, 140, 190
OnKeyDown events, 190
OnKeyPress events, 190
OnKeyUp events, 190
online designs, 122-124
onload events, 140
OnMouseDown events, 190
onmousemove events, 140, 190
onmouseout events, 140, 190
onmouseover events, 140, 190
OnMouseUp events, 190
onreset events, 140
onsubmit events, 140
onunload events, 140
<option> tag, 110, 187

ordered list tag (), 59-61, 177
ordered lists, 59-61
organizing

tables, 64
Web pages

bulleted lists, 57-59
definition lists, 62
numbered lists, 59-61

P
</p> tag, 19
<p> tag, 19, 174
padding property, 204
padding Web pages, 204
Paint Shop Pro Web site, 83
paper designs, 122-124
paragraphs

creating, 19-20
tags, 19, 173-175

percent (%) symbol, 24, 92
<percentage> tag, 198
pixels, 67
plug-ins, 120
plus (+) symbol, 24
PNGs (Portable Network

Graphics), 71
<pre> tag, 174
precedence (style sheets), 46
previewing HTML documents, 13
printing frames, 101-103
properties

background, 47, 52
background-color, 51, 199
background-image, 199
background-position, 199
background-repeat, 200
border-color, 201
border-style, 201
border-width, 202
browser compatibility, 50
caption-side, 202
color, 47, 51-52, 200
empty-cells, 202
float, 203
font-family, 48, 51, 193
font-size, 48, 194

How can we make this index more useful? Email us at indexes@samspublishing.com

224 PROPERTIES

font-style, 48, 194
font-variant, 195
font-weight, 48, 195
letter-spacing, 196
line-height, 197
links, 51
list-style-image, 203
list-style-type, 203
margin, 204
margin-left, 55
margin-right, 55
margin-top, 55
padding, 204
text, 47-48
text-align, 48, 197
text-decoration, 48, 51, 195
text-indent, 48, 198
text-transform, 196
vertical-align, 197
word-spacing, 196

Properties inspector
(Dreamweaver), 147

protocols
HTTP, 6
IP, 5

Q–R
quotes (“ ”), 165

radio buttons, 109-110
reading HTML documents, 6
receiving form data, 114-115
redirecting hyperlinks, 29
refresh attribute, 29
refreshing Web pages, 29
Register FrontPage Hosts Web

site, 152
registered trademark (®) symbol, 24
<relative-weight> tag, 195
<repeat> tag, 200
<repeat-x> tag, 200
<repeat-y> tag, 200
repeating backgrounds, 200
required elements (documents), 170

HTML
<body> & </body> tags,

12, 171
<!DOCTYPE> tag, 171

<head> & </head> tags,
12, 172

<html> & </html> tags,
12, 172

<meta> tag, 172
<title> & </title> tags,

12, 172
XHTML, 14-16

Reset buttons, 113
resizing

frames, 93
images, 76

rewinding sound/video, 119
robots, 153-154
rows (tables), 64
rows attribute, 91
rowspan attribute, 66-68
rules (style sheets), 40-41

S
saving HTML documents, 13
scientific notations, 25-26
<script> tag, 138, 189
scripting, 138-140, 189
scrolling attribute, 93
scrolling frames, 93
search engines

defined, 152
indexes, 153
meta information, 28-29
spiders, 153-154
Web sites, adding, 155-156

<select> tag, 110, 187
selecting. See choosing
selectors, 40

a:active, 51
a:hover
a:link, 50
a:visited, 50
links, formatting, 51

server-side images, 85
size

fonts
headings, 23
style sheets, 194

frames, 91-92

225TEXT

images, 75-76
pixels, 67

<small> tag, 176
sound

adding, 116-119
looping, 119
plug-ins, 120
rewinding, 119
starting, 119

source code, 14
special characters, 24-25, 212-213
spiders, 153-154
splash pages, 29
src attribute

<frame> tag, 92
 tag, 71

start values (numbered lists), 61
starting sound/video, 119
storing Web pages, 9
Strict <!DOCTYPE> tag

variation, 15
 tag, 174
style attribute, 66, 190
style sheets. See CSS
<style> tag, 48, 56, 184
styles

borders, 201
fonts, 194

<sub> tag, 25, 175
Submit buttons, 113
subscript tag (<sub>), 25, 175
<sup> tag, 25, 175
superscript numbers, 24
superscript tag (<sup>), 25, 175
symbols, 24-25

Greek entities, list of, 210-212
list of, 205-207, 212-213

syntax, checking, 164-165

T
<table> tag, 64, 178
tables, 64

alignment, 66
background color, 66
borders, 66, 69, 200-203
captions, 202

cell spacing, 66
cells, 64
complex, 68
empty cells, 202
formatting, 65-67
headings, 64
organizing, 64
page layout, 68-69
rows, 64
style attributes, 66
tags, list of, 69, 178-180
width, 66

tags, 6. See also names of
specific tags

deprecation, 22
XHTML

case sensitivity, 17
<!DOCTYPE>, 14-15
<html>, 16
required, 18

target attribute, 34, 99
target frames, 99
<td> tag, 64, 179
testing

code, 163
colors, 52
links, 167
tag syntax, 164-165

text
alignment, 76, 197
borders, 200-203
browser default, 46
editing, 167
formatting, 21-22, 175-176.

See also CSS
forms, 108-109
headings, 23
image map links, 87-88
indenting, 198
international, 26-27
kerning, 196
line breaks, 20
lists

bulleted, 57-59
definition, 62
images as bullets, 203

How can we make this index more useful? Email us at indexes@samspublishing.com

226 TEXT

numbered, 59-61
style sheet properties,

203-204
types, 203

mathematical notations, 25-26
paragraphs, 19-20, 173-175
phrases, 173-175
pop-ups, 73-74
scientific notations, 25-26
special characters, 24-25
typography, 196-198
word spacing, 196
wrapping, 20

text-align property, 48, 197
text-decoration property, 48, 51, 195
text-indent property, 48, 198
text-transform property, 196
<textarea> tag, 109, 188
<th> tag, 64, 179
thumbnails, 78-79
Thumbs Plus, 79
title attribute, 190
</title> tag, 12
<title> tag, 12, 172
tools (Web authoring)

BBEdit, 149
Dreamweaver, 146-149
FrontPage, 143-146
Fusion, 149
GoLive, 149
HomeSite, 149

<tr> tag, 64, 180
Transitional <!DOCTYPE> tag

variation, 15
Travel Alberta Web site, 82
Tripod Web site, 152
<tt> tag, 176
type attribute

<input> tag, 108
<script> tag, 139

typography, 196-198

U
 tag, 57, 177
underlining links, 51
underscore (_), 17

unordered list tag (), 57, 177
unordered lists. See bulleted lists
URIs (Uniform Resource

Identifiers), 32
URLs (Uniform Resource

Locators), 32
copying, 33
framesets, 100

usemap attribute, 87

V
valign attribute, 66
value attribute, 61
VBScript, 138-140
vertical-align property, 197
video

adding, 116-119
looping, 119
plug-ins, 120
rewinding, 119
starting, 119

viewing
commands, 14
documents, 13
images, 74
source code, 14
Web pages, 8-9

W
W3C (World Wide Web

Consortium), 6
CSS properties, 56
HTML and XHTML

Specifications, 168
math notation products, 26
schools, 168
style sheet recommendations, 192
table attributes, 66
XML 1.0 Recommendation, 168

WANs (Wide Area Networks), 5
Web

authoring tools
BBEdit, 149
Dreamweaver, 146,

148-149

227WEB SITES

FrontPage, 143, 145-146
Fusion, 149
GoLive, 149
HomeSite, 149

browsers. See browsers
hosts, 10, 151-152

Web Developer
CSS tutorial Web site, 56
JavaScript samples, 139
Journal compatibility table Web

site, 141
Web Hosting Buying Guide Web

site, 152
Web pages

active, 134
ActiveX, 137-138
DHTML, 135-136
Java, 137-138

addresses, 32-33, 100
color, testing, 52
creating, 11
expiration dates, 30
formatting, 8
frames, 14
layout

style sheet properties, 204
tables for, 68-69

margins, 204
organizing

bulleted lists, 57-59
definition lists, 62
numbered lists, 59-61

padding, 204
refreshing, 29
storing, 9
viewing, 8-9

Web Presence Providers (WPPs), 9
Web sites

ActiveX downloads, 138
Add Me, 156
adding to search engines,

155-156
Adobe GoLive, 149
Amazon, 82
American Idol, 69
AnyBrowser, 9
BBEdit, 149

color charts, 126
CNET

plug-ins, 120
Web Hosting Buying

Guide, 152
CNN, 69
FreeWebs, 152
Google Advertising

Programs, 155
HomeSite, 149
I Have a Dream speech, 116
IBM, 69
Interactive Advertising

Bureau, 157
Java, 138
Johnson’s Baby Soft, 83
language support, 26
The List, 152
Microsoft, 69

CSS tutorial, 56
DHTML, 135
FrontPage, 145
Register FrontPage

Hosts, 152
typography, 48

NetMechanic, 163
NetObjects Fusion, 149
Netscape

DHTML, 135
plug-in archive, 120

Paint Shop Pro, 83
tables for page layout

examples, 69
Thumbs Plus, 79
Travel Alberta, 82
Tripod, 152
W3C

CSS properties, 56
HTML and XHTML

Specifications, 168
math notation products, 26
schools, 168
style sheet recommenda-

tions, 192
table attributes, 66
XML 1.0 Recommendation,

168

How can we make this index more useful? Email us at indexes@samspublishing.com

228 WEB SITES

Web Developer
CSS tutorial, 56
JavaScript samples, 139
Journal compatibility

table, 141
Webmaster Stop style sheet

properties, 50
WebSideStory StatMarket®, 98
Why Frames Suck (Most of the

Time), 100
XML Resource Center, 168
XML, Java, and the Future of

the Web, 168
Yahoo!

Geocities, 152
Suggest a Site, 155

Webmaster Stop style sheet
properties Web site, 50

WebSideStory StatMarket® Web
site, 98

weight (fonts), 195
<weight> tag, 195
Weinmann, Lynda, 126
What You See Is What You Get

(WYSIWYG), 11
whitespace, 124
Why Frames Suck (Most of the

Time) Web site, 100
Wide Area Networks (WANs), 5
width

borders, 202
tables, 66

width attribute
<embed> tag, 118
 tag, 75-76
<table> tag, 66

windows, opening, 34
word processors, 11
word-spacing property, 196
World Wide Web Consortium.

See W3C
WPPs (Web Presence Providers), 9
wrapping text, 20
WYSIWYG (What You See Is What

You Get), 11

X–Z
XHTML (eXtensible Hypertext

Markup Language), 7
attribute quotes, 165
basic principles, 17-18
documents, 14-16
style sheets, 166
syntax, 164-165
tags

case sensitivity, 17
<!DOCTYPE>, 14-15
<html>, 16
nesting, 166

XML (eXtensible Markup
Language), 7, 158

data, analyzing, 160
HTML, compared, 158-159
Resource Center Web site, 168
resources, 168
standards, 160
style sheet templates, 161-163
tags, 166

XML, Java, and the Future of the
Web site, 168

Yahoo!
Geocities Web site, 152
Suggest a Site Web site, 155

800 East 96th Street, Indianapolis, Indiana, 46240 USA

in 24HoursMichael Moncur

JavaScript

Teach
Yourself
Teach
Yourself

Sams Teach Yourself JavaScript in 24 Hours
Copyright 2007 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been
taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

International Standard Book Number: 0-672-32879-8

Library of Congress Catalog Card Number: 2005909315

Printed in the United States of America

First Printing: July 2006

09 08 07 06 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Sams Publishing
cannot attest to the accuracy of this information. Use of a term in this
book should not be regarded as affecting the validity of any trademark
or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accu-
rate as possible, but no warranty or fitness is implied. The information
provided is on an “as is” basis. The author and the publisher shall have
neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this
book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in
quantity for bulk purchases or special sales. For more information,
please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Acquisitions Editor
Betsy Brown

Development Editor
Songlin Qiu

Managing Editor
Patrick Kanouse

Senior Project Editor
Matthew Purcell

Copy Editor
Jessica McCarty

Indexer
Tim Wright

Proofreader
Carla Lewis

Technical Editor
Jim O’Donnell

Publishing Coordinator
Vanessa Evans

Book Designer
Gary Adair

Page Layout
TnT Design, Inc.

Contents at a Glance
Introduction. 1

Part I: Introducing the Concept of Web Scripting
and the JavaScript Language

HOUR 1 Understanding JavaScript . 7

2 Creating Simple Scripts . 23

3 Getting Started with JavaScript Programming . 37

4 Working with the Document Object Model (DOM) . 49

Part II: Learning JavaScript Basics

HOUR 5 Using Variables, Strings, and Arrays . 63

6 Using Functions and Objects . 85

7 Controlling Flow with Conditions and Loops . 101

8 Using Built-in Functions and Libraries . 121

Part III: Learning More About the DOM

HOUR 9 Responding to Events . 139

10 Using Windows and Frames . 157

11 Getting Data with Forms . 173

12 Working with Style Sheets . 191

13 Using the W3C DOM . 207

14 Using Advanced DOM Features. 219

Part IV: Working with Advanced JavaScript Features

HOUR 15 Unobtrusive Scripting . 235

16 Debugging JavaScript Applications. 255

17 AJAX: Remote Scripting . 273

18 Greasemonkey: Enhancing the Web with JavaScript . 293

Part V: Building Multimedia Applications with JavaScript

HOUR 19 Using Graphics and Animation . 313

20 Working with Sound and Plug-ins . 329

Part VI: Creating Complex Scripts

HOUR 21 Building JavaScript Drop-down Menus . 345

22 Creating a JavaScript Game . 359

23 Creating JavaScript Applications . 377

24 Your Future with JavaScript . 393

Part VII: Appendixes

A Other JavaScript Resources . 409

B Tools for JavaScript Developers . 411

C Glossary. 415

D JavaScript Quick Reference . 419

E DOM Quick Reference . 427

Index . 433

Table of Contents

Part I: Introducing the Concept of Web Scripting and the JavaScript
Language

HOUR 1: Understanding JavaScript 7

Learning Web Scripting Basics . 7

How JavaScript Fits into a Web Page . 9

Browsers and JavaScript . 12

Specifying JavaScript Versions . 15

JavaScript Beyond the Browser . 16

Exploring JavaScript’s Capabilities . 16

Alternatives to JavaScript . 17

HOUR 2: Creating Simple Scripts 23

Tools for Scripting . 23

Displaying Time with JavaScript . 25

Beginning the Script . 26

Adding JavaScript Statements . 26

Creating Output . 27

Adding the Script to a Web Page . 28

Testing the Script . 29

HOUR 3: Getting Started with JavaScript Programming 37

Basic Concepts . 37

JavaScript Syntax Rules . 42

Using Comments . 43

Best Practices for JavaScript . 44

HOUR 4: Working with the Document Object Model (DOM) 49

Understanding the Document Object Model (DOM) . 49

Using Window Objects . 51

Working with Web Documents . 52

Accessing Browser History . 55

Working with the Location Object . 55

Part II: Learning JavaScript Basics

HOUR 5: Using Variables, Strings, and Arrays 63

Using Variables . 63

Understanding Expressions and Operators . 67

Data Types in JavaScript . 68

Converting Between Data Types . 69

Using String Objects . 70

Working with Substrings . 74

Using Numeric Arrays . 76

Using String Arrays . 77

Sorting a Numeric Array . 79

HOUR 6: Using Functions and Objects 85

Using Functions . 85

Introducing Objects . 90

Using Objects to Simplify Scripting . 91

Extending Built-in Objects . 94

HOUR 7: Controlling Flow with Conditions and Loops 101

The if Statement . 102

Using Shorthand Conditional Expressions . 105

Testing Multiple Conditions with If and Else . 105

Using Multiple Conditions with switch . 107

Using for Loops . 109

Using While Loops . 111

Using Do…While Loops . 112

Working with Loops. 112

Looping Through Object Properties . 114

HOUR 8: Using Built-in Functions and Libraries 121

Using the Math Object . 121

Working with Math Functions . 123

Using the with Keyword . 125

vi

Sams Teach Yourself JavaScript in 24 Hours

Working with Dates . 126

Using Third-Party Libraries . 128

Other Libraries . 130

Part III: Learning More About the DOM

HOUR 9: Responding to Events 139

Understanding Event Handlers . 139

Using Mouse Events . 144

Using Keyboard Events . 149

Using the onLoad and onUnload Events . 151

HOUR 10: Using Windows and Frames 157

Controlling Windows with Objects . 157

Moving and Resizing Windows . 160

Using Timeouts . 162

Displaying Dialog Boxes . 164

Working with Frames . 166

HOUR 11: Getting Data with Forms 173

The Basics of HTML Forms . 173

Using the Form Object with JavaScript . 174

Scripting Form Elements . 176

Displaying Data from a Form . 182

Sending Form Results by Email . 184

HOUR 12: Working with Style Sheets 191

Style and Substance . 191

Defining and Using CSS Styles . 192

Using CSS Properties . 195

Creating a Simple Style Sheet . 198

Using External Style Sheets . 200

Controlling Styles with JavaScript . 201

Contents

vii

HOUR 13: Using the W.3C DOM 207

The DOM and Dynamic HTML . 207

Understanding DOM Structure . 208

Creating Positionable Elements (Layers) . 210

HOUR 14: Using Advanced DOM Features 219

Working with DOM Nodes . 219

Hiding and Showing Objects . 222

Modifying Text Within a Page . 223

Adding Text to a Page . 225

Part IV: Working with Advanced JavaScript Features

HOUR 15: Unobtrusive Scripting 235

Scripting Best Practices . 235

Reading Browser Information . 242

Cross-Browser Scripting . 245

Supporting Non-JavaScript Browsers . 247

HOUR 16: Debugging JavaScript Applications 255

Avoiding Bugs . 255

Basic Debugging Tools . 258

Creating Error Handlers . 260

Advanced Debugging Tools. 263

HOUR 17: AJAX: Remote Scripting 273

Introducing AJAX . 273

Using XMLHttpRequest . 277

Creating a Simple AJAX Library . 279

Creating an AJAX Quiz Using the Library . 280

Debugging AJAX Applications. 285

HOUR 18: Greasemonkey: Enhancing the Web with JavaScript 293

Introducing Greasemonkey . 293

Working with User Scripts . 296

Creating Your Own User Scripts . 299

viii

Sams Teach Yourself JavaScript in 24 Hours

Part V: Building Multimedia Applications with JavaScript

HOUR 19: Using Graphics and Animation 313

Using Dynamic Images . 313

Creating Rollovers . 315

A Simple JavaScript Slideshow . 319

HOUR 20: Working with Sound and Plug-Ins 329

Introducing Plug-Ins . 329

JavaScript and Flash . 332

Playing Sounds with JavaScript . 333

Testing Sounds in JavaScript . 336

Part VI: Creating Complex Scripts

HOUR 21: Building JavaScript Drop-Down Menus 345

Designing Drop-Down Menus . 345

Scripting Drop-Down Menu Behavior . 350

HOUR 22: Creating a JavaScript Game 359

About the Game . 359

Creating the HTML Document. 361

Creating the Script . 363

Adding Style with CSS . 368

HOUR 23: Creating JavaScript Applications 377

Creating a Scrolling Window. 377

Style Sheet Switching with JavaScript . 380

HOUR 24: Your Future with JavaScript 393

Learning Advanced JavaScript Techniques . 393

Future Web Technologies . 394

Planning for the Future . 397

Moving on to Other Languages . 398

Contents

ix

Part VII: Appendixes

APPENDIX A: Other JavaScript Resources 409

Other Books . 409

JavaScript Websites . 409

Web Development Sites . 410

This Book’s Website . 410

APPENDIX B: Tools for JavaScript Developers 411

HTML and Text Editors . 411

HTML Validators . 413

Debugging Tools . 413

APPENDIX C: Glossary 415

APPENDIX D: JavaScript Quick Reference 419

Built-in Objects . 419

Creating and Customizing Objects . 423

JavaScript Statements . 424

JavaScript Built-in Functions . 426

APPENDIX E: DOM Quick Reference 427

DOM Level 0 . 427

DOM Level 1 . 429

Index . 433

About the Author
Michael Moncur is a freelance webmaster and author. He runs a network of websites,

including the Web’s oldest site about famous quotations, online since 1994. He wrote Sams

Teach Yourself DHTML in 24 Hours, and has also written several bestselling books about net-

working, certification programs, and databases. He lives with his wife in Salt Lake City,

Utah.

Dedication
To my family, and especially Laura. Thanks for all your love and support.

Acknowledgments
I’d like to thank everyone at Sams for their help with this book, and for the opportunity to

write it. In particular, Betsy Brown got this edition started and kept it moving. Songlin Qiu

managed the development of the book. Project editor Matt Purcell handled the editing

process, and the copy editor, Jessica McCarty, saved me from many embarrassing errors.

The technical reviewer, Jim O’Donnell, painstakingly tested the scripts and helped keep the

writing grounded in reality.

I am grateful to everyone involved with previous editions of this book, including Scott

Meyers, David Mayhew, Sean Medlock, Susan Hobbs, Michelle Wyner, Jeff Schultz, Amy

Patton, George Nedeff, and Phil Karras. I’d also like to thank Neil Salkind and the rest of

the team at Studio B for their help throughout this project.

Finally, personal thanks go to my wife, Laura; my parents, Gary and Susan Moncur; the

rest of the family; and my friends, particularly Chuck Perkins, Matt Strebe, Cory Storm,

Robert Parsons, Dylan Winslow, Ray Jones, Tyson Jensen, Curt Siffert, Richard Easlick, and

Henry J. Tillman. I couldn’t have done it without your support.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value

your opinion and want to know what we’re doing right, what we could do better, what

areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass

our way.

You can email or write me directly to let me know what you did or didn’t like about this

book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and

that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name

and phone or email address. I will carefully review your comments and share them with the

author and editors who worked on the book.

Email: webdev@samspublishing.com

Mail: Mark Taber

Associate Publisher

Sams Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at www.samspublishing.com/register for convenient

access to any updates, downloads, or errata that might be available for this book.

xii

Sams Teach Yourself JavaScript in 24 Hours

www.samspublishing.com/register

Introduction

The World Wide Web began as a simple repository for information, but it has grown into

much more—it entertains, teaches, advertises, and communicates. As the Web has evolved,

the tools have also evolved. Simple markup tools such as HTML have been joined by true

programming languages—including JavaScript.

Now don’t let the word “programming” scare you. For many, the term conjures up images of

long nights staring at the screen, trying to remember which sequence of punctuation marks

will produce the effect you need. (Don’t get me wrong—some of us enjoy that sort of thing.)

Although JavaScript is programming, it’s a very simple language. As a matter of fact, if you

haven’t programmed before, it makes a great introduction to programming. It requires very

little knowledge to start programming with JavaScript—you’ll write your first program in

Hour 2, “Creating Simple Scripts.”

If you can create a web page with HTML, you can easily use JavaScript to improve a page.

JavaScript programs can range from a single line to a full-scale application. In this book,

you’ll start with simple scripts, and proceed to complex applications, such as a card game.

You’ll also explore some of the most recent uses of JavaScript, such as AJAX remote scripting.

If you’ve spent much time developing pages for the Web, you know that the Web is con-

stantly changing, and it can be hard to keep up with the latest languages and tools. This

book will help you add JavaScript to your web development toolbox, and I think you’ll

enjoy learning it.

JavaScript and Web Standards
When JavaScript first appeared in browsers, it had rather limited capabilities, and

JavaScript programmers have always pushed the envelope to take maximum advantage of

what the language was capable of. Unfortunately, this resulted in some bad practices, such

as scripts that only worked in one browser, and JavaScript gained a bit of a bad reputation.

Now, thanks to wide browser support for standards established by the W3C (World Wide

Web Consortium) and new technologies such as AJAX, JavaScript’s future is looking brighter

than ever, and a new, more responsible style of scripting is gaining favor. Unobtrusive

scripting focuses on adding interactive features while keeping the HTML simple and

standards-compliant.

Throughout this book, you’ll learn the best practices for using JavaScript responsibly and fol-

lowing web standards. All of the examples in this book avoid browser-specific techniques in

favor of standard techniques, and all of the examples will work in most modern browsers.

How to Use This Book
This book is divided into 24 lessons. Each covers a single JavaScript topic, and should take

about an hour to complete. The lessons start with the basics of JavaScript, and continue

with more advanced topics. You can study an hour a day, or whatever pace suits you. (If

you choose to forego sleep and do your studying in a single 24-hour period, you might have

what it takes to be a computer book author.)

Organization of This Book
This book is divided into six parts, each focusing on one area of JavaScript:

. Part I, “Introducing the Concept of Web Scripting and the JavaScript Language,”

introduces JavaScript, describes how it fits in with other languages, and explains the

basic language features of JavaScript. It also introduces the DOM (Document Object

Model), which connects JavaScript to web documents.

. Part II, “Learning JavaScript Basics,” covers the fundamentals of the JavaScript lan-

guage: variables, functions, objects, loops and conditions, and built-in functions.

You’ll also learn about third-party libraries that add functionality to JavaScript.

. Part III, “Learning More About the DOM,” digs deeper into the DOM objects you’ll use

in nearly every JavaScript program. It covers events, windows, and web forms. You’ll

also learn about CSS style sheets, and the DOM features that enable you to change

styles. Finally, you’ll learn about the W3C DOM, which enables you to modify any

part of a page using JavaScript.

. Part IV, “Working with Advanced JavaScript Features,” begins with a look at unobtrusive

scripting techniques to keep JavaScript from intruding on the functionality and validity

of HTML documents. You’ll also learn how to debug JavaScript applications, and finally

take a look at two cutting-edge JavaScript features: AJAX and Greasemonkey.

. Part V, “Building Multimedia Applications with JavaScript,” describes JavaScript’s fea-

tures for working with graphics, animation, sound, and browser plug-ins.

. Part VI, “Creating Complex Scripts,” focuses on helping you create complete

JavaScript applications. You’ll learn how to create drop-down menus, a card game

written in JavaScript, and other examples. In the last hour, you’ll learn about what’s

in store for JavaScript and what other languages you might want to learn next.

2

Sams Teach Yourself JavaScript in 24 Hours

▼

Conventions Used in This Book
This book contains special elements as described by the following:

These boxes highlight information that can make your JavaScript
programming more efficient and effective.

These boxes provide additional information related to material you just
read.

These boxes focus your attention on problems or side effects that can
occur in specific situations.

A special monospace font is used on programming-related terms and language.

Try It Yourself
The Try It Yourself section at the end of each chapter guides you through the process of

creating your own script or applying the techniques learned throughout the hour. This

will help you create practical applications of JavaScript based on what you’ve learned.

Q&A, Quiz, and Exercises
At the end of each hour’s lesson, you’ll find three final sections. Q&A answers a few of the

most common questions about the hour’s topic. The Quiz tests your knowledge of the skills

you learned in that hour, and the Exercises offer ways for you to gain more experience with

the techniques the hour covers.

This Book’s Website
Because JavaScript and the Web are constantly changing, you’ll need to stay up-to-date

after reading this book. This book’s website includes the latest updates as well as download-

able versions of the listings and graphics for the examples used in this book. To access the

book’s website, register your book at http://www.samspublishing.com/register.

Introduction

3

Did you
Know?

By the
Way

Watch
Out!

▲

http://www.samspublishing.com/register

The Author’s Website
The author of this book, Michael Moncur, maintains a website about JavaScript at

http://www.jsworkshop.com/. There you’ll find regular updates on the JavaScript language

and the DOM, links to script examples, and detailed tutorial articles.

If you have questions or comments about this book, have noticed an error, or have

trouble getting one of the scripts to work, you can also reach the author by email at

js4@starlingtech.com. (Please check the website first to see if your question has been

answered.)

4

Sams Teach Yourself JavaScript in 24 Hours

http://www.jsworkshop.com/

PART I:

Introducing the Concept of
Web scripting and the
JavaScript Language

HOUR 1 Understanding JavaScript 7

HOUR 2 Creating Simple Scripts 23

HOUR 3 Getting Started with JavaScript Programming 37

HOUR 4 Working with the Document Object Model (DOM) 49

This page intentionally left blank

HOUR 1

Understanding JavaScript

What You’ll Learn in This Hour:
. What web scripting is and what it’s good for
. How scripting and programming are different (and similar)
. What JavaScript is and where it came from
. How to include JavaScript commands in a web page
. How different browsers handle JavaScript
. What JavaScript can do for your web pages
. How to choose between JavaScript and alternative languages

The World Wide Web (WWW) began as a text-only medium—the first browsers didn’t even

support images within web pages. Although it’s still not quite ready to give television a

run for its money, the Web has come a long way since then.

Today’s websites can include a wealth of features: graphics, sounds, animation, video, and

occasionally useful content. Web scripting languages, such as JavaScript, are one of the

easiest ways to spice up a web page and to interact with users in new ways.

The first hour of this book introduces the concept of web scripting and the JavaScript lan-

guage. It also describes how JavaScript fits in with other web languages.

Learning Web Scripting Basics
In the world of science fiction movies (and many other movies that have no excuse), com-

puters are often seen obeying commands in English. Although this might indeed happen

in the near future, computers currently find it easier to understand languages such as

BASIC, C, and Java.

If you know how to use HTML (Hypertext Markup Language) to create a web document,

you’ve already worked with one computer language. You use HTML tags to describe how

8 HOUR 1: Understanding JavaScript

you want your document formatted, and the browser obeys your commands and

shows the formatted document to the user.

Because HTML is a simple text markup language, it can’t respond to the user, make

decisions, or automate repetitive tasks. Interactive tasks such as these require a more

sophisticated language: a programming language, or a scripting language.

Although many programming languages are complex, scripting languages are gen-

erally simple. They have a simple syntax, can perform tasks with a minimum of

commands, and are easy to learn. Web scripting languages enable you to combine

scripting with HTML to create interactive web pages.

Scripts and Programs
A movie or a play follows a script—a list of actions (or lines) for the actors to per-

form. A web script provides the same type of instructions for the web browser. A

script in JavaScript can range from a single line to a full-scale application. (In either

case, JavaScript scripts usually run within a browser.)

Is JavaScript a scripting language or a programming language? It depends on who
you ask. We’ll refer to scripting throughout this book, but feel free to include
JavaScript programming on your résumé after you’ve finished this book.

Some programming languages must be compiled, or translated, into machine code

before they can be executed. JavaScript, on the other hand, is an interpreted lan-

guage: The browser executes each line of script as it comes to it.

There is one main advantage to interpreted languages: Writing or changing a script

is very simple. Changing a JavaScript script is as easy as changing a typical HTML

document, and the change is enacted as soon as you reload the document in the

browser.

Interpreted languages have their disadvantages—they can’t execute really quickly,
so they’re not ideally suited for complicated work, such as graphics. Also, they
require the interpreter (in JavaScript’s case, usually a browser) in order to work.

Introducing JavaScript
JavaScript was developed by Netscape Communications Corporation, the maker of

the Netscape web browser. JavaScript was the first web scripting language to be sup-

ported by browsers, and it is still by far the most popular.

By the
Way

By the
Way

How JavaScript Fits into a Web Page 9

A bit of history: JavaScript was originally called LiveScript and was first introduced
in Netscape Navigator 2.0 in 1995. It was soon renamed JavaScript to indicate a
marketing relationship with Sun’s Java language.

JavaScript is almost as easy to learn as HTML, and it can be included directly in

HTML documents. Here are a few of the things you can do with JavaScript:

. Display messages to the user as part of a web page, in the browser’s status

line, or in alert boxes

. Validate the contents of a form and make calculations (for example, an order

form can automatically display a running total as you enter item quantities)

. Animate images or create images that change when you move the mouse over

them

. Create ad banners that interact with the user, rather than simply displaying a

graphic

. Detect the browser in use or its features and perform advanced functions only

on browsers that support them

. Detect installed plug-ins and notify the user if a plug-in is required

. Modify all or part of a web page without requiring the user to reload it

. Display or interact with data retrieved from a remote server

You can do all this and more with JavaScript, including creating entire applications.

We’ll explore the uses of JavaScript throughout this book.

How JavaScript Fits into a Web Page
As you hopefully already know, HTML is the language you use to create web docu-

ments. To refresh your memory, Listing 1.1 shows a short but sadly typical web

document.

LISTING 1.1 A Simple HTML Document
<html>
<head>
<title>Our Home Page</title>
</head>
<body>
<h1>The American Eggplant Society</h1>
<p>Welcome to our Web page. Unfortunately,
it’s still under construction.</p>
</body>
</html>

By the
Way

10 HOUR 1: Understanding JavaScript

This document consists of a header within the <head> tags and the body of the page

within the <body> tags. To add JavaScript to a page, you’ll use a similar tag:

<script>.

The <script> tag tag>>tells the browser to start treating the text as a script, and

the closing </script> tag tells the browser to return to HTML mode. In most cases,

you can’t use JavaScript statements in an HTML document except within <script>

tags. The exception is event handlers, described later in this hour.

JavaScript and HTML
Using the <script> tag>>tag, you can add a short script (in this case, just one line)

to a web document, as shown in Listing 1.2.

If you want to try this example in a browser but don’t want to type it, the HTML
document is available on this book’s website (as are all of the other listings).

LISTING 1.2 A Simple HTML Document with a Simple Script
<html>
<head>
<title>Our Home Page</title>
</head>
<body>
<h1>The American Eggplant Society</h1>
<p>Welcome to our Web page. Unfortunately,
it’s still under construction.
We last worked on it on this date:
<script language=”JavaScript” type=”text/javascript”>
document.write(document.lastModified);
</script>
</p>
</body>
</html>

JavaScript’s document.write statement, which you’ll learn more about later, sends

output as part of the web document. In this case, it displays the modification date of

the document.

Notice that the <script> tag in Listing 1.2 includes the parameter
type=”text/javascript”. This specifies the scripting language to the browser.
You can also specify a JavaScript version, as you’ll learn later in this hour.

In this example, we placed the script within the body of the HTML document. There

are actually four different places where you might use scripts:

Did you
Know?

By the
Way

How JavaScript Fits into a Web Page 11

. In the body of the page—In this case, the script’s output is displayed as part of

the HTML document when the browser loads the page.

. In the header of the page between the <head> tags—Scripts in the header

don’t immediately affect the HTML document, but can be referred to by other

scripts. The header is often used for functions—groups of JavaScript statements

that can be used as a single unit. You will learn more about functions in Hour

3, “Getting Started with JavaScript Programming.”

. Within an HTML tag, such as <body> or <form>—This is called an event han-

dler and enables the script to work with HTML elements. When using JavaScript

in event handlers, you don’t need to use the <script> tag. You’ll learn more

about event handlers in Hour 3.

. In a separate file entirely—JavaScript supports the use of files with the .js

extension containing scripts; these can be included by specifying a file in the

<script> tag.

Using Separate JavaScript Files
When you create more complicated scripts, you’ll quickly find your HTML documents

become large and confusing. To avoid this, you can use one or more external JavaScript

files. These are files with the .js extension that contain JavaScript statements.

External scripts are supported by all modern browsers. To use an external script, you

specify its filename in the <script> tag:

<script language=”JavaScript” type=”text/javascript” src=”filename.js”>
</script>

Because you’ll be placing the JavaScript statements in a separate file, you don’t need

anything between the opening and closing <script> tags—in fact, anything between

them will be ignored by the browser.

You can create the .js file using a text editor. It should contain one or more

JavaScript commands, and only JavaScript—don’t include <script> tags, other

HTML tags, or HTML comments. Save the .js file in the same directory as the HTML

documents that refer to it. See the Try It Yourself section of Hour 2 for an example of

separate HTML and script files.

External JavaScript files have a distinct advantage: You can link to the same .js
file from two or more HTML documents. Because the browser stores this file in its
cache, this can reduce the time it takes your web pages to display.

Did you
Know?

12 HOUR 1: Understanding JavaScript

Events
Many of the useful things you can do with JavaScript involve interacting with the

user, and that means responding to events—for example, a link or a button being

clicked. You can define event handlers within HTML tags to tell the browser how to

respond to an event. For example, Listing 1.3 defines a button that displays a mes-

sage when clicked.

LISTING 1.3 A Simple Event Handler
<html>
<head>
<title>Event Test</title>
</head>
<body>
<h1>Event Test</h1>
<button onclick=”alert(‘You clicked the button.’)”>
</body>
</html>

In Hour 9, “Responding to Events,” you’ll learn more about JavaScript’s event model

and creating simple and complex event handlers.

You can also use an external script to define event handlers. This is a good prac-
tice because it lets you keep all of your JavaScript in one place, rather than scat-
tered across the HTML document. See Hour 9 for details.

Browsers and JavaScript
Like HTML, JavaScript requires a web browser to be displayed, and different browsers

may display it differently. Unlike HTML, the results of a browser incompatibility

with JavaScript are more drastic: Rather than simply displaying your text incorrect-

ly, the script may not execute at all, may display an error message, or may even

crash the browser.

We’ll take a quick look at the way different browsers—and different versions of the

same browser—treat JavaScript in the following sections.

The DOM (Document Object Model)
Let’s start with one reason you shouldn’t have to think too much about different

browsers. Almost everything you do with JavaScript involves working with the

Document Object Model (DOM)—a standardized set of objects that represent a web

document.

By the
Way

Browsers and JavaScript 13

The DOM includes objects that enable you to work with all aspects of the current

document. For example, you can read the value the user types in a form field, or the

filename of the current page.

The DOM is defined by the W3C (World Wide Web Consortium) and the latest

browsers support DOM levels 1 and 2, which enable you to control all parts of a web

page with JavaScript.

Early versions of the DOM only allowed JavaScript to manipulate certain parts of a
page—such as form elements and links. The new DOM enables you to work with
every element defined in HTML.

Internet Explorer
Microsoft’s Internet Explorer (IE) browser was a latecomer to the Internet, but has

now become the most popular browser. The latest versions of IE support most of

JavaScript 1.5 and the W3C DOM.

At this writing, IE 6.0 is the latest released version, and IE 7.0 is in beta. Although

most of the examples in this book will work in IE 5.0 and later, I recommend testing

your scripts with the latest browsers.

Netscape and Firefox
Netscape, which for a time made the Web’s most popular browser, established the

Mozilla Foundation to maintain an open-source version of the browser. This led to

the Mozilla browser and more recently, Firefox, a streamlined browser based on the

Mozilla engine.

Firefox has recently begun to challenge Microsoft’s browser dominance, with an esti-

mated 10% of web users. That might not sound like many, but ignoring Firefox

means ignoring at least 10% of your audience, and on many sites the percentage is

much higher.

Firefox is available for Windows, Macintosh, and Linux platforms and is free, open-

source software. You can download Firefox from the Mozilla website at

http://www.mozilla.org/.

At this writing, the current version of Firefox is 1.5. Most of the scripts in this book will

work with Firefox 1.0 or later, as well as versions 6 and 7 of the Netscape browser.

Did you
Know?

http://www.mozilla.org/

14 HOUR 1: Understanding JavaScript

Netscape 4.0 and Internet Explorer 4.0 supported incompatible versions of
Dynamic HTML (DHTML)—an attempt to overcome the limits of the current DOM.
The new W3C DOM eliminates the need for these proprietary models, and you can
now write standard code that will work on most modern browsers.

Other Browsers
Although Internet Explorer and Firefox are the most popular browsers, there are

many other browsers. Here are two less-common browsers you’ll probably hear

about:

. Safari, Apple’s browser, is included with MacOS and is the default browser on

most Macintosh computers.

. Opera, from Opera Software, is an alternative browser notable for its support

of many platforms, including mobile phones. The latest version of Opera, 8.0,

supports the W3C DOM and JavaScript 1.5, and should work with most scripts

in this book.

There are many other browsers out there, but you don’t need to know all of them
to create working scripts—as long as you follow the standards, your scripts will
work on browsers that support JavaScript almost every time. This book will focus
on teaching standards-based scripting that will work in all modern browsers.

Versions of JavaScript
The JavaScript language has evolved since its original release in Netscape 2.0. There

have been several versions of JavaScript:

. JavaScript 1.0, the original version, is supported by Netscape 2.0 and Internet

Explorer 3.0.

. JavaScript 1.1 is supported by Netscape 3.0 and mostly supported by Internet

Explorer 4.0.

. JavaScript 1.2 is supported by Netscape 4.0 and partially supported by Internet

Explorer 4.0.

. JavaScript 1.3 is supported by Netscape 4.5 and Internet Explorer 5.0 and 6.0.

. JavaScript 1.5 is partially supported by Internet Explorer 6.0, and supported by

Netscape 6.0 and Firefox 1.0.

. JavaScript 1.6 is currently supported by Firefox 1.5.

By the
Way

Did you
Know?

Specifying JavaScript Versions 15

Each of these versions is an improvement over the previous version and includes a

number of new features. With rare exception, browsers that support the new version

will also support scripts written for earlier versions.

The European Computer Manufacturing Association (ECMA) has finalized the ECMA-

262 specification for ECMAScript, a standardized version of JavaScript. JavaScript 1.3

follows the ECMA-262 standard, and JavaScript 1.5 follows ECMA-262 revision 3.

Another language you might hear of is JScript. This is how Microsoft refers to its
implementation of JavaScript, which is generally compatible with the standard version.

The Mozilla Foundation, the open-source offshoot of Netscape that develops the

Firefox browser, is also working with ECMA on JavaScript 2.0, a future version that

will correspond with the fourth edition of the ECMAScript standard. JavaScript 2.0

will improve upon earlier versions with a more modular approach, better object sup-

port, and features to make JavaScript useful as a general-purpose scripting language

as well as a web language.

Specifying JavaScript Versions
As mentioned earlier in this hour, you can specify a version of JavaScript in the

<script> tag. For example, this tag specifies JavaScript version 1.3:

<script language=”JavaScript1.3” type=”text/javascript”>

There are two ways of specifying the JavaScript language in the <script> tag. The

old method uses the language attribute, and the new method recommended by the

HTML 4.0 specification uses the type attribute. To maintain compatibility with older

browsers, you can use both attributes.

When you specify a version number in the language attribute, this allows your script

to execute only if the browser supports the version you specified or a later version.

When the <script> tag doesn’t specify a version number, all browsers that support

JavaScript will run the script. Because most of the JavaScript language has remained

the same since version 1.0, you will rarely need to worry about JavaScript versions.

In most cases, you shouldn’t specify a JavaScript version at all. This allows your
script to run on all of the browsers that support JavaScript. You should only speci-
fy a particular version when your script uses features unique to a specific version.

By the
Way

Did you
Know?

16 HOUR 1: Understanding JavaScript

JavaScript Beyond the Browser
Although JavaScript programs traditionally run within a web browser, and web-

based JavaScript is the focus of this book, JavaScript is becoming increasingly popu-

lar in other applications. Here are a few examples:

. Adobe Dreamweaver and Flash, used for web applications and multimedia,

can be extended with JavaScript.

. Several server-side versions of JavaScript are available. These run within a web

server rather than a browser.

. Microsoft’s Windows Scripting Host (WSH) supports JScript, Microsoft’s imple-

mentation of JavaScript, as a general-purpose scripting language for

Windows. Unfortunately, the most popular applications developed for WSH so

far have been email viruses.

. Microsoft’s Common Language Runtime (CLR), part of the .NET framework,

supports JavaScript.

Along with these examples, many of the changes in the upcoming JavaScript 2.0

are designed to make it more suitable as a general-purpose scripting language.

Exploring JavaScript’s Capabilities
If you’ve spent any time browsing the Web, you’ve undoubtedly seen lots of exam-

ples of JavaScript in action. Here are some brief descriptions of typical applications

for JavaScript, all of which you’ll explore further, later in this book.

Improving Navigation
Some of the most common uses of JavaScript are in navigation systems for websites.

You can use JavaScript to create a navigation tool—for example, a drop-down menu

to select the next page to read, or a submenu that pops up when you hover over a

navigation link.

When it’s done right, this kind of JavaScript interactivity can make a site easier to

use, while remaining usable for browsers that don’t support JavaScript.

Validating Forms
Form validation is another common use of JavaScript. A simple script can read val-

ues the user types into a form and make sure they’re in the right format, such as

with ZIP Codes or phone numbers. This allows users to notice common errors and

Alternatives to JavaScript 17

fix them without waiting for a response from the web server. You’ll learn how to

write form validation scripts in Hour 11, “Getting Data with Forms.”

Special Effects
One of the earliest and most annoying uses of JavaScript was to create attention-get-

ting special effects—for example, scrolling a message in the browser’s status line or

flashing the background color of a page.

These techniques have fortunately fallen out of style, but thanks to the W3C DOM

and the latest browsers, some more impressive effects are possible with JavaScript—

for example, creating objects that can be dragged and dropped on a page, or creat-

ing fading transitions between images in a slideshow.

Remote Scripting (AJAX)
For a long time, the biggest limitation of JavaScript was that there was no way for it

to communicate with a web server. For example, you could use it to verify that a

phone number had the right number of digits, but not to look up the user’s location

in a database based on the number.

Now that some of JavaScript’s advanced features are supported by most browsers,

this is no longer the case. Your scripts can get data from a server without loading a

page, or send data back to be saved. These features are collectively known as AJAX

(Asynchronous JavaScript And XML), or remote scripting. You’ll learn how to develop

AJAX scripts in Hour 17, “AJAX: Remote Scripting.”

You’ve seen AJAX in action if you’ve used Google’s Gmail mail application, or recent

versions of Yahoo! Mail or Microsoft Hotmail. All of these use remote scripting to

present you with a responsive user interface that works with a server in the back-

ground.

Alternatives to JavaScript
JavaScript is not the only language used on the Web, and in some cases, it may not

be the right tool for the job. Other languages, such as Java, can do some things bet-

ter than JavaScript. In the following sections, we’ll look at a few other commonly

used web languages and their advantages.

Java
Java is a programming language developed by Sun Microsystems that can be used

to create applets, or programs that execute within a web page.

18 HOUR 1: Understanding JavaScript

Java is a compiled language, but the compiler produces code for a virtual machine

rather than a real computer. The virtual machine is a set of rules for bytecodes and

their meanings, with capabilities that fit well into the scope of a web browser.

The virtual machine code is then interpreted by a web browser. This allows the same

Java applet to execute the same way on PCs, Macintoshes, and UNIX machines, and

on different browsers.

Java is also a densely populated island in Indonesia and a slang term for coffee.
This has resulted in a widespread invasion of coffee-related terms in computer
literature.

At this point, we need to make one thing clear: Java is a fine language, but you

won’t be learning it in this book. Although their names and some of their com-

mands are similar, JavaScript and Java are entirely different languages.

ActiveX
ActiveX is a specification developed by Microsoft that enables ordinary Windows

programs to be run within a web page. ActiveX programs can be written in lan-

guages such as Visual C++ and Visual Basic, and they are compiled before being

placed on the web server.

ActiveX applications, called controls, are downloaded and executed by the web

browser, like Java applets. Unlike Java applets, controls can be installed permanent-

ly when they are downloaded, eliminating the need to download them again.

ActiveX’s main advantage is that it can do just about anything. This can also be a

disadvantage: Several enterprising programmers have already used ActiveX to bring

exciting new capabilities to web pages, such as “the web page that turns off your

computer” and “the web page that formats your disk drive.”

Fortunately, ActiveX includes a signature feature that identifies the source of the con-

trol and prevents controls from being modified. Although this won’t prevent a control

from damaging your system, you can specify which sources of controls you trust.

ActiveX has two main disadvantages: First, it isn’t as easy to program as a scripting

language or Java. Second, ActiveX is proprietary—it works only in Microsoft Internet

Explorer, and only under Windows platforms.

VBScript
VBScript, sometimes known as Visual Basic Scripting Edition, is Microsoft’s answer to

JavaScript. Just as JavaScript’s syntax is loosely based on Java, VBScript’s syntax is

By the
Way

Alternatives to JavaScript 19

loosely based on Microsoft Visual Basic, a popular programming language for

Windows machines.

Like JavaScript, VBScript is a simple scripting language, and you can include

VBScript statements within an HTML document. VBScript can work with the DOM in

the same way as JavaScript. To begin a VBScript script, you use the <script LAN-

GUAGE=”VBScript”> tag.

VBScript can do many of the same things as JavaScript, and it even looks similar in

some cases. It has two main advantages:

. For those who already know Visual Basic, it may be easier to learn than

JavaScript.

. It is closely integrated with ActiveX, Microsoft’s standard for web-embedded

applications.

VBScript’s main disadvantage is that it is supported only by Microsoft Internet

Explorer. JavaScript, on the other hand, is supported by Netscape, Internet Explorer,

and several other browsers. JavaScript is a much more popular language, and you

can see it in use all over the Web.

CGI and Server-Side Scripting
CGI (Common Gateway Interface) is not really a language, but a specification that

enables programs to run on web servers. CGI programs can be written in any num-

ber of languages, including Perl, C, and Visual Basic.

Along with traditional CGI, scripting languages such as Microsoft’s Active Server

Pages, Java Server Pages, Cold Fusion, and PHP are often used on web servers. A

server-side implementation of JavaScript is also available.

Server-side programs are heavily used on the Web. Almost every time you type infor-

mation into a form and press a button to send it to a website, the data is processed

by a server-side application.

The main difference between JavaScript and server-side languages is that JavaScript

applications execute on the client (the web browser) and server-side applications

execute on the web server. The main disadvantage of this approach is that, because

the data must be sent to the web server and back, response time might be slow.

On the other hand, CGI can do things JavaScript can’t do. In particular, it can read

and write files on the server and interact with other server components, such as

databases. Although a client-side JavaScript program can read information from a

form and then manipulate it, it can’t store the data on the web server.

20 HOUR 1: Understanding JavaScript

JavaScript is often used in conjunction with server-side languages. In its simplest

form, this means JavaScript handles client-side chores such as form validation,

whereas a server-side language receives data and stores it in a database. Using

AJAX, this interaction can be instantaneous and does not even require loading a

new page.

CGI and server-side programming are outside the focus of this book. You can
learn more about these technologies with other Sams books, including Teach
Yourself CGI Programming in 24 Hours, Teach Yourself Perl in 24 Hours, and Teach
Yourself PHP in 24 Hours. See Appendix A, “Other JavaScript Resources,” for more
sources of information.

Summary
During this hour, you’ve learned what web scripting is and what JavaScript is.

You’ve also learned how to insert a script into an HTML document or refer to an

external JavaScript file, what sorts of things JavaScript can do, and how JavaScript

differs from other web languages.

If you’re waiting for some real JavaScript code, look no further. The next hour,

“Creating Simple Scripts,” guides you through the process of creating several work-

ing JavaScript examples. You’ll also learn about the tools you’ll need to work with

JavaScript.

Q&A
Q. Do I need to test my JavaScript on more than one browser?

A. In an ideal world, any script you write that follows the standards for

JavaScript will work in all browsers, and 90% of the time that’s true in the real

world. But browsers do have their quirks, and you should test your scripts on

Internet Explorer and Firefox at a minimum.

Q. If I plan to learn Java or CGI anyway, will I have any use for JavaScript?

A. Certainly. JavaScript is the ideal tool for many applications, such as form vali-

dation. Although Java and CGI have their uses, they can’t do all that

JavaScript can do.

Q. Are there browsers out there that don’t support JavaScript?

A. Yes. A few niche browsers, such as text-based browsers and tools for blind

users, have partial JavaScript support or no support. Mobile phone browsers

Did you
Know?

Quiz Answers 21

often support little or no JavaScript. Finally, many users of Internet Explorer or

Firefox have JavaScript support turned off, and some corporate firewalls and

ad-blocking software block JavaScript. Hour 2 describes how to account for

browsers that don’t support JavaScript.

Quiz Questions
Test your knowledge of JavaScript by answering the following questions:

1. Why do JavaScript and Java have similar names?

a. JavaScript is a stripped-down version of Java.

b. Netscape’s marketing department wanted them to sound related.

c. They both originated on the island of Java.

2. When a user views a page containing a JavaScript program, which machine

actually executes the script?

a. The user’s machine running a web browser

b. The web server

c. A central machine deep within Netscape’s corporate offices

3. Which of the following languages is supported by both Microsoft Internet

Explorer and Netscape?

a. VBScript

b. ActiveX

c. JavaScript

Quiz Answers
1. b. Although some of the syntax is similar, JavaScript got its Java-based name

mostly because of a marketing relationship.

2. a. JavaScript programs execute on the web browser. (There is actually a server-

side version of JavaScript, but that’s another story.)

3. c. JavaScript is supported by both Netscape and Internet Explorer, although

the implementations are not identical.

22 HOUR 1: Understanding JavaScript

Exercises
If you want to learn a bit about JavaScript or check out the latest developments

before you proceed with the next hour, perform these activities:

. Visit this book’s website to check for news about JavaScript and updates to the

scripts in this book.

. View some of the examples on this book’s website to see JavaScript in action.

HOUR 2

Creating Simple Scripts

What You’ll Learn in This Hour:
. The software tools you will need to create and test scripts
. Beginning and ending scripts
. Formatting JavaScript statements
. How a script can display a result
. Including a script within a web document
. Testing a script using browsers
. Modifying a script
. Dealing with errors in scripts
. Moving scripts into separate files

As you learned in Hour 1, “Understanding JavaScript,” JavaScript is a scripting language

for web pages. You can include JavaScript commands directly in the HTML document, and

the script will be executed when the page is viewed in a browser.

During this hour, you will create a simple script, edit it, and test it using a web browser.

Along the way you’ll learn the basic tasks involved in creating and using scripts.

Tools for Scripting
Unlike many programming languages, you won’t need any special software to create

JavaScript scripts. In fact, you probably already have everything you need.

Text Editors
The first tool you’ll need to work with JavaScript is a text editor. JavaScript scripts are

stored in simple text files, usually as part of HTML documents. Any editor that can store

ASCII text files will work.

24 HOUR 2: Creating Simple Scripts

You can choose from a wide range of editors, from simple text editors to word

processors. If you don’t have a favorite editor already, a simple editor is most likely

included with your computer. For Windows computers, the Notepad accessory will

work just fine.

If you use a word processor to create JavaScript programs, be sure you save the
files as ASCII text rather than as word processing documents. Otherwise, the
browser might not recognize them.

A variety of dedicated HTML editors is also available and will work with JavaScript.

In fact, many include features specifically for JavaScript—for example, color-coding

the various JavaScript statements to indicate their purposes, or even creating simple

scripts automatically.

For Windows computers, here are a few recommended editors:

. HomeSite—An excellent HTML editor that includes JavaScript support. HomeSite

is included as part of Adobe Dreamweaver and is also available separately.

. Microsoft FrontPage 2003—Microsoft’s visual HTML editor. The Script Builder

component enables you to easily create simple scripts.

. TextPad—A powerful text editor that includes a number of features missing

from Notepad. TextPad’s view of a JavaScript document is shown in Figure 2.1.

Watch
Out!

FIGURE 2.1
A text editor
(TextPad) with a
JavaScript docu-
ment.

Displaying Time with JavaScript 25

The following editors are available for both Windows and Macintosh:

. Adobe Dreamweaver—A visually oriented editor that works with HTML,

JavaScript, and Macromedia’s Flash plug-in.

. Adobe GoLive—A visual and HTML editor that also includes features for

designing and organizing the structure of large sites.

Additionally for the Macintosh, BBEdit, TextWrangler, and Alpha are good HTML

editors that you can use to create web pages and scripts.

Appendix B, “Tools for JavaScript Developers,” includes web addresses to down-
load these and other HTML and JavaScript editors.

Browsers
You’ll need two other things to work with JavaScript: a web browser and a computer

to run it on. Because this book covers new features introduced up to JavaScript 1.5

and the latest W3C DOM, I recommend that you use the latest version of Mozilla

Firefox or Microsoft Internet Explorer. See the Mozilla (http://www.mozilla.com) or

Microsoft (http://www.microsoft.com) website to download a copy.

At a minimum, you should have Firefox 1.0, Netscape 7.0, or Internet Explorer 6.0

or later. Although Netscape 4.x and Internet Explorer 4 will run many of the scripts

in this book, they don’t support a lot of the latest features you’ll learn about.

You can choose whichever browser you like for your web browsing, but for develop-

ing JavaScript you should have more than one browser—at a minimum, Firefox and

Internet Explorer. This will allow you to test your scripts in the common browsers

users will employ on your site.

If you plan on making your scripts available over the Internet, you’ll also need a
web server, or access to one. However, you can use most of the JavaScript exam-
ples in this book directly from your computer’s hard disk.

Displaying Time with JavaScript
One common and easy use for JavaScript is to display dates and times. Because

JavaScript runs on the browser, the times it displays will be in the user’s current time

zone. However, you can also use JavaScript to calculate “universal” (UTC) time.

By the
Way

By the
Way

http://www.mozilla.com
http://www.microsoft.com

26 HOUR 2: Creating Simple Scripts

UTC stands for Universal Time (Coordinated), and is the atomic time standard
based on the old GMT (Greenwich Mean Time) standard. This is the time at the
Prime Meridian, which runs through Greenwich, London, England.

As a basic introduction to JavaScript, you will now create a simple script that displays

the current time and the UTC time within a web page.

Beginning the Script
Your script, like most JavaScript programs, begins with the HTML <script> tag. As

you learned in Hour 1, you use the <script> and </script> tags to enclose a script

within the HTML document.

Remember to include only valid JavaScript statements between the starting and
ending <script> tags. If the browser finds anything but valid JavaScript state-
ments within the <script> tags, it will display a JavaScript error message.

To begin creating the script, open your favorite text editor and type the beginning

and ending <script> tags as shown.

<script LANGUAGE=”JavaScript” type=”text/javascript”>
</script>

Because this script does not use any of the new features of JavaScript 1.1 or later,

you won’t need to specify a version number in the <script> tag. This script should

work with all browsers going back to Netscape 2.0 or Internet Explorer 3.0.

Adding JavaScript Statements
Your script now needs to determine the local and UTC times, and then display them

to the browser. Fortunately, all of the hard parts, such as converting between date

formats, are built in to the JavaScript interpreter.

Storing Data in Variables
To begin the script, you will use a variable to store the current date. You will learn
more about variables in Hour 5, “Using Variables, Strings, and Arrays.” A variable is
a container that can hold a value—a number, some text, or in this case, a date.

To start writing the script, add the following line after the first <script> tag. Be sure
to use the same combination of capital and lowercase letters in your version because
JavaScript commands and variable names are case sensitive.

now = new Date();

By the
Way

Watch
Out!

Creating Output 27

This statement creates a variable called now and stores the current date and time in

it. This statement and the others you will use in this script use JavaScript’s built-in

Date object, which enables you to conveniently handle dates and times. You’ll learn

more about working with dates in Hour 8, “Using Built-in Functions and Libraries.”

Notice the semicolon at the end of the previous statement. This tells the browser
that it has reached the end of a statement. Semicolons are optional, but using them
helps you avoid some common errors. We’ll use them throughout this book for clarity.

Calculating the Results
Internally, JavaScript stores dates as the number of milliseconds since January 1,

1970. Fortunately, JavaScript includes a number of functions to convert dates and

times in various ways, so you don’t have to figure out how to convert milliseconds to

day, date, and time.

To continue your script, add the following two statements before the final </script>

tag:

localtime = now.toString();
utctime = now.toGMTString();

These statements create two new variables: localtime, containing the current time

and date in a nice readable format, and utctime, containing the UTC equivalent.

The localtime and utctime variables store a piece of text, such as January 1,
2001 12:00 PM. In programming parlance, a piece of text is called a string. You
will learn more about strings in Hour 5.

Creating Output
You now have two variables—localtime and utctime—which contain the results

we want from our script. Of course, these variables don’t do us much good unless we

can see them. JavaScript includes a number of ways to display information, and one

of the simplest is the document.write statement.

The document.write statement displays a text string, a number, or anything else

you throw at it. Because your JavaScript program will be used within a web page,

the output will be displayed as part of the page. To display the result, add these

statements before the final </script> tag:

document.write(“Local time: “ + localtime + “
”);
document.write(“UTC time: “ + utctime);

By the
Way

By the
Way

28 HOUR 2: Creating Simple Scripts

These statements tell the browser to add some text to the web page containing your

script. The output will include some brief strings introducing the results, and the

contents of the localtime and utctime variables.

Notice the HTML tags, such as , within the quotation marks—because

JavaScript’s output appears within a web page, it needs to be formatted using

HTML. The
 tag in the first line ensures that the two times will be displayed on

separate lines.

Notice the plus signs (+) used between the text and variables in the previous
statements. In this case, it tells the browser to combine the values into one string
of text. If you use the plus sign between two numbers, they are added together.

Adding the Script to a Web Page
You should now have a complete script that calculates a result and displays it. Your

listing should match Listing 2.1.

LISTING 2.1 The Complete Date and Time Script
<script language=”JavaScript” type=”text/javascript”>
now = new Date();
localtime = now.toString();
utctime = now.toGMTString();
document.write(“Local time: “ + localtime + “
”);
document.write(“UTC time: “ + utctime);
</script>

To use your script, you’ll need to add it to an HTML document. In its most basic

form, the HTML document should include opening and closing <html> tags, <head>

tags, and <body> tags.

If you add these tags to the document containing your script along with a descrip-

tive heading, you should end up with something like Listing 2.2.

LISTING 2.2 The Date and Time Script in an HTML Document
<html>
<head><title>Displaying Times and Dates</title></head>
<body>
<h1>Current Date and Time</h1>
<p>
<script language=”JavaScript” type=”text/javascript”>
now = new Date();
localtime = now.toString();
utctime = now.toGMTString();
document.write(“Local time: “ + localtime + “
”);

By the
Way

Testing the Script 29

document.write(“UTC time: “ + utctime);
</script>
</p>
</body>
</html>

Now that you have a complete HTML document, save it with the .htm or .html

extension.

Notepad and other Windows text editors might try to be helpful and add the .txt
extension to your script. Be sure your saved file has the correct extension.

Testing the Script
To test your script, you simply need to load the HTML document you created in a

web browser. Start Netscape or Internet Explorer and select Open from the File

menu. Click the Choose File or Browse button, and then find your HTML file. After

you’ve selected it, click the Open button to view the page.

If you typed the script correctly, your browser should display the result of the script,

as shown in Figure 2.2. (Of course, your result won’t be the same as mine, but it

should be the same as the setting of your computer’s clock.)

A note about Internet Explorer 6.0 and above: Depending on your security settings,

the script might not execute, and a yellow highlighted bar on the top of the browser

might display a security warning. In this case, click the yellow bar and select Allow

Blocked Content to allow your script to run. (This happens because the default secu-

rity settings allow JavaScript in online documents, but not in local files.)

By the
Way

FIGURE 2.2
Firefox displays
the results of
the Date and
Time script.

You can download the HTML document for this hour from this book’s website. If
the version you type doesn’t work, try downloading the online version.

Did you
Know?

30 HOUR 2: Creating Simple Scripts

Modifying the Script
Although the current script does indeed display the current date and time, its display

isn’t nearly as attractive as the clock on your wall or desk. To remedy that, you can

use some additional JavaScript features and a bit of HTML to display a large clock.

To display a large clock, we need the hours, minutes, and seconds in separate vari-

ables. Once again, JavaScript has built-in functions to do most of the work:

hours = now.getHours();
mins = now.getMinutes();
secs = now.getSeconds();

These statements load the hours, mins, and secs variables with the components of

the time using JavaScript’s built-in date functions.

After the hours, minutes, and seconds are in separate variables, you can create doc-

ument.write statements to display them:

document.write(“<h1>”);
document.write(hours + “:” + mins + “:” + secs);
document.write(“</h1>”);

The first statement displays an HTML <h1> header tag to display the clock in a large

typeface. The second statement displays the hours, mins, and secs variables, sepa-

rated by colons, and the third adds the closing </h1> tag.

You can add the preceding statements to the original date and time script to add the

large clock display. Listing 2.3 shows the complete modified version of the script.

LISTING 2.3 The Date and Time Script with Large Clock Display
<html>
<head><title>Displaying Times and Dates</title></head>
<body>
<h1>Current Date and Time</h1>
<p>
<script language=”JavaScript”>
now = new Date();
localtime = now.toString();
utctime = now.toGMTString();
document.write(“Local time: “ + localtime + “
”);
document.write(“UTC time: “ + utctime);
hours = now.getHours();
mins = now.getMinutes();
secs = now.getSeconds();
document.write(“<h1>”);
document.write(hours + “:” + mins + “:” + secs);
document.write(“</h1>”);
</script>
</p>
</body>
</html>

Testing the Script 31

Now that you have modified the script, save the HTML file and open the modified

file in your browser. If you left the browser running, you can simply use the Reload

button to load the new version of the script. Try it and verify that the same time is

displayed in both the upper portion of the window and the new large clock. Figure

2.3 shows the results.

FIGURE 2.3
Internet Explorer
displays the
modified Date
and Time script.

The time formatting produced by this script isn’t perfect: Hours after noon are in
24-hour time, and there are no leading zeroes, so 12:04 is displayed as 12:4.
See Hour 8, “Using Built-in Functions and Libraries,” for solutions to these issues.

Dealing with JavaScript Errors
As you develop more complex JavaScript applications, you’re going to run into

errors from time to time. JavaScript errors are usually caused by mistyped JavaScript

statements.

To see an example of a JavaScript error message, modify the statement you added in

the previous section. We’ll use a common error: omitting one of the parentheses.

Change the last document.write statement in Listing 2.3 to read

document.write(“</h1>”;

Save your HTML document again and load the document into the browser.

Depending on the browser version you’re using, one of two things will happen:

Either an error message will be displayed, or the script will simply fail to execute.

If an error message is displayed, you’re halfway to fixing the problem by adding the

missing parenthesis. If no error was displayed, you should configure your browser to

display error messages so that you can diagnose future problems:

. In Netscape or Firefox, type javascript: into the browser’s Location field to

display the JavaScript Console. In Firefox, you can also select Tools, JavaScript

Console from the menu. The console is shown in Figure 2.4, displaying the

error message you created in this example.

By the
Way

▼

32 HOUR 2: Creating Simple Scripts

. In Internet Explorer, select Tools, Internet Options. On the Advanced page,

uncheck the Disable Script Debugging box and check the Display a

Notification About Every Script Error box. (If this is disabled, a yellow icon in

the status bar will still notify you of errors.)

Notice the field at the top of the JavaScript Console. This enables you to type a
JavaScript statement, which will be executed immediately. This is a handy way to
test JavaScript’s features.

By the
Way

FIGURE 2.4
Firefox’s
JavaScript
Console dis-
plays an error
message.

The error we get in this case is missing) after argument list (Firefox) or

Expected ‘)’ (Internet Explorer), which turns out to be exactly the problem. Be

warned, however, that error messages aren’t always this enlightening.

While Internet Explorer displays error dialog boxes for each error, Firefox’s

JavaScript Console displays a single list of errors and allows you to test commands.

For this reason, you might find it useful to install Firefox for debugging and testing

JavaScript, even if Internet Explorer is your primary browser.

As you develop larger JavaScript applications, finding and fixing errors becomes
more important. You’ll learn more about dealing with JavaScript errors in Hour 16,
“Debugging JavaScript Applications.”

Try It Yourself

Using a Separate JavaScript File
Although simple scripts like this one can be embedded in an HTML file, as in the

previous example, it’s good practice to separate the HTML and JavaScript by using a

separate JavaScript file. This has a few advantages:

. Browsers with JavaScript disabled, or older browsers that don’t support it, will

ignore the script.

Did you
Know?

Testing the Script 33

. When multiple pages on your site use the same script, the browser only has to

load the JavaScript file once, and use a cached copy on other pages.

. It’s easier to maintain the HTML and JavaScript code when they’re separated,

especially if different people are working on the design and the scripting.

We’ll also be using separate JavaScript files for most of the examples in this book, so

you should be familiar with this technique.

To use a separate JavaScript file with the date and time example, you will need two

files. A quick way to create them is to save the combined HTML/JavaScript file in

Listing 2.3 to two files, and then edit them.

The first file, datetime.html, will be the HTML file. Remove everything between the

<script> tags, and add the src=”datetime.js” attribute to the opening <script>

tag. The resulting file is shown in Listing 2.4.

LISTING 2.4 HTML File for the Date and Time Script (datetime.html)
<html>
<head><title>Displaying Times and Dates</title></head>
<body>
<h1>Current Date and Time</h1>
<p>
<script language=”JavaScript” type=”text/javascript”
src = “datetime.js”>
</script>
</p>
</body>
</html>

The second file, datetime.js, will contain only JavaScript commands—the same

ones you removed from the HTML file. This file should not include <script> tags, or

any HTML tags. The JavaScript file is shown in Listing 2.5.

LISTING 2.5 The Date and Time Script (datetime.js)
now = new Date();
localtime = now.toString();
utctime = now.toGMTString();
document.write(“Local time: “ + localtime + “
”);
document.write(“UTC time: “ + utctime);
hours = now.getHours();
mins = now.getMinutes();
secs = now.getSeconds();
document.write(“<h1>”);
document.write(hours + “:” + mins + “:” + secs);
document.write(“</h1>”);

34 HOUR 2: Creating Simple Scripts

If Internet Explorer displays a warning message in a yellow bar at the top of the
browser window instead of executing your script, simply click the bar and select
Allow Blocked Content.

As you create larger scripts, you’ll find it far less confusing to keep the HTML and

JavaScript in separate files. The next hour discusses this and other best practices for

JavaScript.

Summary
During this hour, you wrote a simple JavaScript program and tested it using a

browser. You learned about the tools you need to work with JavaScript—basically, an

editor and a browser. You also learned how to modify and test scripts, and what

happens when a JavaScript program runs into an error. Finally, you learned how to

use scripts in separate JavaScript files.

In the process of writing this script, you have used some of JavaScript’s basic fea-

tures: variables, the document.write statement, and functions for working with

dates and times.

Now that you’ve learned a bit of JavaScript syntax, you’re ready to learn more of

the details. You’ll do that in Hour 3, “Getting Started with JavaScript Programming.”

Q&A
Q. Why do I need more than one browser to test scripts? Won’t JavaScript

behave the same way on both browsers?

A. Although JavaScript is standardized, the browsers don’t interpret it in exactly

the same way. Your script might have minor flaws that have no effect in one

browser but cause an error in another. Also, as you move on to more

advanced features of JavaScript, you’ll need to deal with browsers in different

ways, as described in Hour 15, “Unobtrusive Scripting,” and you’ll need to test

each one.

Q. When I try to run my script, the browser displays the actual script in the
browser window instead of executing it. What did I do wrong?

By the
Way

▲

Quiz Questions 35

A. This is most likely caused by one of three errors. First, you might be missing

the beginning or ending <script> tags. Check them, and verify that the first

reads <script LANGUAGE=”JavaScript” type=”text/javascript”>. Second,

your file might have been saved with a .txt extension, causing the browser to

treat it as a text file. Rename it to .htm or .html to fix the problem. Third,

make sure your browser supports JavaScript, and that it is not disabled in the

Preferences dialog.

Q. Why are the and
 tags allowed in the statements to print the time?
I thought HTML tags weren’t allowed within the <script> tags.

A. Because this particular tag is inside quotation marks, it’s considered a valid part

of the script. The script’s output, including any HTML tags, is interpreted and

displayed by the browser. You can use other HTML tags within quotation marks

to add formatting, such as the <h1> tags we added for the large clock display.

Quiz Questions
Test your knowledge of JavaScript by answering the following questions:

1. What software do you use to create and edit JavaScript programs?

a. A browser

b. A text editor

c. A pencil and a piece of paper

2. What are variables used for in JavaScript programs?

a. Storing numbers, dates, or other values

b. Varying randomly

c. Causing high school algebra flashbacks

3. What should appear at the very end of a JavaScript script embedded in an

HTML file?

a. The <script LANGUAGE=”JavaScript”> tag

b. The </script> tag

c. The END statement

36 HOUR 2: Creating Simple Scripts

Quiz Answers
1. b. Any text editor can be used to create scripts. You can also use a word

processor if you’re careful to save the document as a text file with the .html

or .htm extension.

2. a. Variables are used to store numbers, dates, or other values.

3. b. Your script should end with the </script> tag.

Exercises
To further your knowledge of JavaScript, perform the following exercises:

. Add a millisecond field to the large clock. You can use the getMilliseconds

function, which works just like getSeconds but returns milliseconds.

. Modify the script to display the time, including milliseconds, twice. Notice

whether any time passes between the two time displays when you load the

page.

HOUR 3

Getting Started with
JavaScript Programming

What You’ll Learn in This Hour:
. Organizing scripts using functions
. What objects are and how JavaScript uses them
. How JavaScript can respond to events
. An introduction to conditional statements and loops
. How browsers execute scripts in the proper order
. Syntax rules for avoiding JavaScript errors
. Adding comments to document your JavaScript code

You’ve reached the halfway point of Part I of this book. In the first couple of hours, you’ve

learned what JavaScript is, learned the variety of things JavaScript can do, and created a

simple script.

In this hour, you’ll learn a few basic concepts and script components that you’ll use in just

about every script you write. This will prepare you for the remaining hours of this book, in

which you’ll explore specific JavaScript functions and features.

Basic Concepts
There are a few basic concepts and terms you’ll run into throughout this book. In the fol-

lowing sections, you’ll learn about the basic building blocks of JavaScript.

38 HOUR 3: Getting Started with JavaScript Programming

Statements
Statements are the basic units of a JavaScript program. A statement is a section of

code that performs a single action. For example, the following three statements are

from the date and time example in Hour 2, “Creating Simple Scripts”:

hours = now.getHours();
mins = now.getMinutes();
secs = now.getSeconds();

Although a statement is typically a single line of JavaScript, this is not a rule—it’s

possible to break a statement across multiple lines, or to include more than one

statement in a single line.

A semicolon marks the end of a statement. You can also omit the semicolon if you

start a new line after the statement. If you combine statements into a single line,

you must use semicolons to separate them.

Combining Tasks with Functions
In the basic scripts you’ve examined so far, you’ve seen some JavaScript statements

that have a section in parentheses, like this:

document.write(“Testing.”);

This is an example of a function. Functions provide a simple way to handle a task,

such as adding output to a web page. JavaScript includes a wide variety of built-in

functions, which you will learn about throughout this book. A statement that uses a

function, as in the preceding example, is referred to as a function call.

Functions take parameters (the expression inside the parentheses) to tell them what

to do. Additionally, a function can return a value to a waiting variable. For exam-

ple, the following function call prompts the user for a response and stores it in the

text variable:

text = prompt(“Enter some text.”)

You can also create your own functions. This is useful for two main reasons: First,

you can separate logical portions of your script to make it easier to understand.

Second, and more importantly, you can use the function several times or with differ-

ent data to avoid repeating script statements.

You will learn how to define, call, and return values from your own functions in
Hour 6, “Using Functions and Objects.”

By the
Way

Basic Concepts 39

Variables
In Hour 2, you learned that variables are containers that can store a number, a

string of text, or another value. For example, the following statement creates a vari-

able called fred and assigns it the value 27:

var fred = 27;

JavaScript variables can contain numbers, text strings, and other values. You’ll learn

more about them in Hour 5, “Using Variables, Strings, and Arrays.”

Understanding Objects
JavaScript also supports objects. Like variables, objects can store data—but they can

store two or more pieces of data at once.

The items of data stored in an object are called the properties of the object. For

example, you could use objects to store information about people such as in an

address book. The properties of each person object might include a name, an

address, and a telephone number.

JavaScript uses periods to separate object names and property names. For example,

for a person object called Bob, the properties might include Bob.address and

Bob.phone.

Objects can also include methods. These are functions that work with the object’s

data. For example, our person object for the address book might include a dis-

play() method to display the person’s information. In JavaScript terminology, the

statement Bob.display() would display Bob’s details.

The document.write function we discussed earlier this hour is actually the
write method of the document object. You will learn more about this object in
Hour 4, “Working with the Document Object Model (DOM).”

Don’t worry if this sounds confusing—you’ll be exploring objects in much more

detail later in this book. For now, you just need to know the basics. JavaScript sup-

ports three kinds of objects:

. Built-in objects are built in to the JavaScript language. You’ve already encoun-

tered one of these, Date, in Hour 2. Other built-in objects include Array and

String, which you’ll explore in Hour 5, and Math, which is explained in Hour

8, “Using Built-in Functions and Libraries.”

. DOM (Document Object Model) objects represent various components of the

browser and the current HTML document. For example, the alert() function

By the
Way

40 HOUR 3: Getting Started with JavaScript Programming

you used earlier in this hour is actually a method of the window object. You’ll

explore these in more detail in Hour 4.

. Custom objects are objects you create yourself. For example, you could create a

person object, as in the examples in this section. You’ll learn to use custom

objects in Hour 6.

Conditionals
Although event handlers notify your script when something happens, you might

want to check certain conditions yourself. For example, did the user enter a valid

email address?

JavaScript supports conditional statements, which enable you to answer questions like

this. A typical conditional uses the if statement, as in this example:

if (count==1) alert(“The countdown has reached 1.”);

This compares the variable count with the constant 1, and displays an alert mes-

sage to the user if they are the same. You will use conditional statements like this in

most of your scripts.

You’ll learn more about conditionals in Hour 7, “Controlling Flow with Conditions
and Loops.”

Loops
Another useful feature of JavaScript—and most other programming languages—is

the capability to create loops, or groups of statements that repeat a certain number

of times. For example, these statements display the same alert 10 times, greatly

annoying the user:

for (i=1; i<=10; i++) {
Alert(“Yes, it’s yet another alert!”);

}

The for statement is one of several statements JavaScript uses for loops. This is the

sort of thing computers are supposed to be good at: performing repetitive tasks. You

will use loops in many of your scripts, in much more useful ways than this example.

Loops are covered in detail in Hour 7.

By the
Way

By the
Way

Basic Concepts 41

Event Handlers
As mentioned in Hour 1, “Understanding JavaScript,” not all scripts are located

within <script> tags. You can also use scripts as event handlers. Although this might

sound like a complex programming term, it actually means exactly what it says:

Event handlers are scripts that handle events.

In real life, an event is something that happens to you. For example, the things you

write on your calendar are events: “Dentist appointment” or “Fred’s birthday.” You

also encounter unscheduled events in your life: for example, a traffic ticket, an IRS

audit, or an unexpected visit from relatives.

Whether events are scheduled or unscheduled, you probably have normal ways of

handling them. Your event handlers might include things such as When Fred’s birth-

day arrives, send him a present or When relatives visit unexpectedly, turn out the lights and

pretend nobody is home.

Event handlers in JavaScript are similar: They tell the browser what to do when a

certain event occurs. The events JavaScript deals with aren’t as exciting as the ones

you deal with—they include such events as When the mouse button clicks and When

this page is finished loading. Nevertheless, they’re a very useful part of JavaScript.

Many JavaScript events (such as mouse clicks) are caused by the user. Rather than

doing things in a set order, your script can respond to the user’s actions. Other

events don’t involve the user directly—for example, an event is triggered when an

HTML document finishes loading.

Each event handler is associated with a particular browser object, and you can spec-

ify the event handler in the tag that defines the object. For example, images and

text links have an event, onMouseOver, that happens when the mouse pointer

moves over the object. Here is a typical HTML image tag with an event handler:

You specify the event handler as an attribute to the HTML tag and include the

JavaScript statement to handle the event within the quotation marks. This is an

ideal use for functions because function names are short and to the point and can

refer to a whole series of statements.

See the Try It Yourself section at the end of this hour for a complete example of an

event handler within an HTML document.

You can also define event handlers within JavaScript without using HTML attrib-
utes. You’ll learn this technique, and more about event handlers, in Hour 9,
“Responding to Events.”

By the
Way

42 HOUR 3: Getting Started with JavaScript Programming

Which Script Runs First?
You can actually have several scripts within a web document: one or more sets of

<script> tags, external JavaScript files, and any number of event handlers. With all

of these scripts, you might wonder how the browser knows which to execute first.

Fortunately, this is done in a logical fashion:

. Sets of <script> tags within the <head> section of an HTML document are

handled first, whether they include embedded code or refer to a JavaScript file.

Because these scripts cannot create output in the web page, it’s a good place to

define functions for use later.

. Sets of <script> tags within the <body> section of the HTML document are

executed after those in the <head> section, while the web page loads and dis-

plays. If there is more than one script in the body, they are executed in order.

. Event handlers are executed when their events happen. For example, the

onLoad event handler is executed when the body of a web page loads. Because

the <head> section is loaded before any events, you can define functions there

and use them in event handlers.

JavaScript Syntax Rules
JavaScript is a simple language, but you do need to be careful to use its syntax—the

rules that define how you use the language—correctly. The rest of this book covers

many aspects of JavaScript syntax, but there are a few basic rules you should under-

stand to avoid errors.

Case Sensitivity
Almost everything in JavaScript is case sensitive: you cannot use lowercase and capi-

tal letters interchangeably. Here are a few general rules:

. JavaScript keywords, such as for and if, are always lowercase.

. Built-in objects such as Math and Date are capitalized.

. DOM object names are usually lowercase, but their methods are often a com-

bination of capitals and lowercase. Usually capitals are used for all but the

first word, as in toLowerCase and getElementById.

When in doubt, follow the exact case used in this book or another JavaScript refer-

ence. If you use the wrong case, the browser will usually display an error message.

Using Comments 43

Variable, Object, and Function Names
When you define your own variables, objects, or functions, you can choose their

names. Names can include uppercase letters, lowercase letters, numbers, and the

underscore (_) character. Names must begin with a letter or underscore.

You can choose whether to use capitals or lowercase in your variable names, but

remember that JavaScript is case sensitive: score, Score, and SCORE would be consid-

ered three different variables. Be sure to use the same name each time you refer to a

variable.

Reserved Words
One more rule for variable names—they must not be reserved words. These include the

words that make up the JavaScript language, such as if and for, DOM object names

such as window and document, and built-in object names such as Math and Date. A com-

plete list of reserved words is included in Appendix D, “JavaScript Quick Reference.”

Spacing
Blank space (known as whitespace by programmers) is ignored by JavaScript. You can

include spaces and tabs within a line, or blank lines, without causing an error. Blank

space often makes the script more readable.

Using Comments
JavaScript comments enable you to include documentation within your script. This

will be useful if someone else tries to understand the script, or even if you try to

understand it after a long break. To include comments in a JavaScript program, begin

a line with two slashes, as in this example:

//this is a comment.

You can also begin a comment with two slashes in the middle of a line, which is use-

ful for documenting a script. In this case, everything on the line after the slashes is

treated as a comment and ignored by the browser. For example,

a = a + 1; // add one to the value of a

JavaScript also supports C-style comments, which begin with /* and end with */.

These comments can extend across more than one line, as the following example

demonstrates:

/*This script includes a variety
of features, including this comment. */

44 HOUR 3: Getting Started with JavaScript Programming

Because JavaScript statements within a comment are ignored, C-style comments are

often used for commenting out sections of code. If you have some lines of JavaScript

that you want to temporarily take out of the picture while you debug a script, you

can add /* at the beginning of the section and */ at the end.

Because these comments are part of JavaScript syntax, they are only valid inside
<script> tags or within an external JavaScript file.

Best Practices for JavaScript
You should now be familiar with the basic rules for writing valid JavaScript. Along

with following the rules, it’s also a good idea to follow best practices. The following

practices may not be required, but you’ll save yourself and others some headaches if

you follow them.

. Use comments liberally—These make your code easier for others to under-

stand, and also easier for you to understand when you edit them later. They

are also useful for marking the major divisions of a script.

. Use a semicolon at the end of each statement, and only use one statement

per line—This will make your scripts easier to debug.

. Use separate JavaScript files whenever possible—This separates JavaScript

from HTML and makes debugging easier, and also encourages you to write

modular scripts that can be reused.

. Avoid being browser-specific—As you learn more about JavaScript, you’ll

learn some features that only work in one browser. Avoid them unless

absolutely necessary, and always test your code in more than one browser.

. Keep JavaScript optional—Don’t use JavaScript to perform an essential func-

tion on your site—for example, the primary navigation links. Whenever possi-

ble, users without JavaScript should be able to use your site, although it may

not be quite as attractive or convenient. This strategy is known as progressive

enhancement.

There are many more best practices involving more advanced aspects of JavaScript.

These are covered in detail in Hour 15, “Unobtrusive Scripting.”

By the
Way

▼

Best Practices for JavaScript 45

Try It Yourself

Using an Event Handler
To conclude this hour, here’s a simple example of an event handler. This will

demonstrate how you set up an event, which you’ll use throughout this book, and

how JavaScript works without <script> tags. Listing 3.1 shows an HTML document

that includes a simple event handler.

LISTING 3.1 An HTML Document with a Simple Event Handler
<html>
<head>
<title>Event Handler Example</title>
</head>
<body>
<h1>Event Handler Example</h1>
<p>
<a href=”http://www.jsworkshop.com/”
onClick=”alert(‘Aha! An Event!’);”>Click this link
to test an event handler.
</p>
</body>
</html>

The event handler is defined with the following onClick attribute within the <a> tag

that defines a link:

onClick=”alert(‘Aha! An Event!’);”

This event handler uses the built-in alert() function to display a message when

you click on the link. In more complex scripts, you will usually define your own

function to act as an event handler. Figure 3.1 shows this example in action.

You’ll use other event handlers similar to this in the next hour, and events will be

covered in more detail in Hour 9.

Notice that after you click the OK button on the alert, the browser follows the link
defined in the <a> tag. Your event handler could also stop the browser from fol-
lowing the link, as described in Hour 9.

Did you
Know?

46 HOUR 3: Getting Started with JavaScript Programming

Summary
During this hour, you’ve been introduced to several components of JavaScript pro-

gramming and syntax: functions, objects, event handlers, conditions, and loops. You

also learned how to use JavaScript comments to make your script easier to read, and

looked at a simple example of an event handler.

In the next hour, you’ll look at the Document Object Model (DOM) and learn how

you can use the objects within the DOM to work with web pages and interact with

users.

Q&A
Q. I’ve heard the term object-oriented applied to languages such as C++ and

Java. If JavaScript supports objects, is it an object-oriented language?

A. Yes, although it might not fit some people’s strict definitions. JavaScript objects

do not support all of the features that languages such as C++ and Java support,

although the latest versions of JavaScript have added more object-oriented

features.

Q. Having several scripts that execute at different times seems confusing. Why
would I want to use event handlers?

▲

FIGURE 3.1
The browser dis-
plays an alert
when you click
the link.

Quiz Questions 47

A. Event handlers are the ideal way (and in JavaScript, the only way) to handle

gadgets within the web page, such as buttons, check boxes, and text fields. It’s

actually more convenient to handle them this way. Rather than writing a

script that sits and waits for a button to be pushed, you can simply create an

event handler and let the browser do the waiting for you.

Q. Some examples in other books suggest enclosing scripts in HTML comments
(<!-- and -->) to hide the script from older browsers. Is this necessary?

A. This technique was only necessary for supporting very old browsers, such as

Netscape 2.0. I no longer recommend this because all modern browsers handle

JavaScript correctly. If you are still concerned about non-JavaScript browsers,

the best way to hide your script is to use an external JavaScript file, as

described in Hour 2.

Quiz Questions
Test your knowledge of JavaScript by answering the following questions:

1. A script that executes when the user clicks the mouse button is an example of

what?

a. An object

b. An event handler

c. An impossibility

2. Which of the following are capabilities of functions in JavaScript?

a. Accept parameters

b. Return a value

c. Both of the above

3. Which of the following is executed first by a browser?

a. A script in the <head> section

b. A script in the <body> section

c. An event handler for a button

48 HOUR 3: Getting Started with JavaScript Programming

Quiz Answers
1. b. A script that executes when the user clicks the mouse button is an event

handler.

2. c. Functions can accept both parameters and return values.

3. a. Scripts defined in the <head> section of an HTML document are executed

first by the browser.

Exercises
To further explore the JavaScript features you learned about in this hour, you can

perform the following exercises:

. Examine the Date and Time script you created in Hour 2 and find any exam-

ples of functions and objects being used.

. Add JavaScript comments to the Date and Time script to make it more clear

what each line does. Verify that the script still runs properly.

HOUR 4

Working with the Document
Object Model (DOM)

What You’ll Learn in This Hour:
. How to access the various objects in the DOM
. Working with windows using the window object
. Working with web documents using the document object
. Using objects for links and anchors
. Using the location object to work with URLs
. Creating JavaScript-based Back and Forward buttons

You’ve reached the end of Part I. In this hour, you’ll be introduced to one of the most
important tools you’ll use with JavaScript: the Document Object Model (DOM), which lets
your scripts manipulate web pages, windows, and documents.

Without the DOM, JavaScript would be just another scripting language—with the DOM, it
becomes a powerful tool for making pages dynamic. This hour will introduce the idea of
the DOM and some of the objects you’ll use most often.

Understanding the Document Object
Model (DOM)
One advantage that JavaScript has over basic HTML is that scripts can manipulate the
web document and its contents. Your script can load a new page into the browser, work
with parts of the browser window and document, open new windows, and even modify
text within the page dynamically.

To work with the browser and documents, JavaScript uses a hierarchy of parent and child
objects called the Document Object Model (DOM). These objects are organized into a tree-
like structure, and represent all of the content and components of a web document.

50 HOUR 4: Working with the Document Object Model (DOM)

The DOM is not part of the JavaScript language—rather, it’s an API (application
programming interface) built in to the browser. While the DOM is most often used
with JavaScript, it can also be used by other languages, such as VBScript and
Java.

The objects in the DOM have properties—variables that describe the web page or

document, and methods—functions that enable you to work with parts of the web

page.

When you refer to an object, you use the parent object name followed by the child

object name or names, separated by periods. For example, JavaScript stores objects

to represent images in a document as children of the document object. The following

refers to the image9 object, a child of the document object, which is a child of the

window object:

window.document.image9

The window object is the parent object for all of the objects we will be looking at in

this hour. Figure 4.1 shows this section of the DOM object hierarchy and a variety of

its objects.

By the
Way

FIGURE 4.1
The DOM object
hierarchy. document

history

links[]

anchors[]

images[]

forms[]

DOM Level 1
Objects

form
elements

location

window
(parent, frames[],

self, top)

This diagram only includes the basic browser objects that will be covered in this
hour. These are actually a small part of the DOM, which you’ll learn more about in
Part III, “Learning More About the DOM.”

History of the DOM
Starting with the introduction of JavaScript 1.0 in Netscape 2.0, browsers have includ-

ed objects that represent parts of a web document and other browser features.

However, there was never a true standard. While both Netscape and Microsoft Internet

By the
Way

Using window Objects 51

Explorer included many of the same objects, there was no guarantee that the same

objects would work the same way in both browsers, let alone in less common browsers.

The bad news is that there are still differences between the browsers—but here’s the

good news. Since the release of Netscape 3.0 and Internet Explorer 4.0, all of the

basic objects (those covered in this hour) are supported in much the same way in

both browsers. With more recent browser releases, a much more advanced DOM is

supported.

DOM Levels
The W3C (World Wide Web Consortium) developed the DOM level 1 recommenda-

tion. This is a standard that defines not only basic objects, but an entire set of

objects that encompass all parts of an HTML document. A level 2 DOM standard

has also been released, and level 3 is under development.

Netscape 4 and Internet Explorer 4 supported their own DOMs that allowed more

control over documents, but weren’t standardized. Fortunately, starting with Internet

Explorer 5 and Netscape 6, both support the W3C DOM, so you can support both

browsers with simple, standards-compliant code. All of today’s current browsers sup-

port the W3C DOM.

The basic object hierarchy described in this hour is informally referred to as DOM

level 0, and the objects are included in the DOM level 1 standard. You’ll learn how

to use the W3C DOM to work with any part of a web document later in this book.

The W3C DOM allows you to modify a web page in real time after it has loaded.
You’ll learn how to do this in Part III.

Using window Objects
At the top of the browser object hierarchy is the window object, which represents a

browser window. You’ve already used at least one method of the window object: the

window.alert() method, or simply alert(), displays a message in an alert box.

There can be several window objects at a time, each representing an open browser

window. Frames are also represented by window objects. You’ll learn more about

windows and frames in Hour 10, “Using Windows and Frames.”

Layers, which enable you to include, modify, and position dynamic content within a
web document, are also similar to window objects. These are explained in Hour
13, “Using the W3C DOM.”

Did you
Know?

By the
Way

52 HOUR 4: Working with the Document Object Model (DOM)

Working with Web Documents
The document object represents a web document, or page. Web documents are dis-

played within browser windows, so it shouldn’t surprise you to learn that the docu-

ment object is a child of the window object.

Because the window object always represents the current window (the one containing

the script), you can use window.document to refer to the current document. You can

also simply refer to document, which automatically refers to the current window.

You’ve already used the document.write method to display text within a web doc-
ument. The examples in earlier hours only used a single window and document,
so it was unnecessary to use window.document.write—but this longer syntax
would have worked equally well.

If multiple windows or frames are in use, there might be several window objects,

each with its own document object. To use one of these document objects, you use

the name of the window and the name of the document.

In the following sections, you will look at some of the properties and methods of the

document object that will be useful in your scripting.

Getting Information About the Document
Several properties of the document object include information about the current doc-

ument in general:

. document.URL specifies the document’s URL. This is a simple text field. You

can’t change this property. If you need to send the user to a different location,

use the window.location object, described later in this hour.

. document.title lists the title of the current page, defined by the HTML

<title> tag.

. document.referrer is the URL of the page the user was viewing prior to the

current page—usually, the page with a link to the current page.

. document.lastModified is the date the document was last modified. This

date is sent from the server along with the page.

. document.bgColor and document.fgColor are the background and fore-

ground (text) colors for the document, corresponding to the BGCOLOR and TEXT

attributes of the <body> tag.

By the
Way

Working with Web Documents 53

. document.linkColor, document.alinkColor, and document.vlinkColor

are the colors for links within the document. These correspond to the LINK,

ALINK, and VLINK attributes of the <body> tag.

. document.cookie enables you to read or set a cookie for the document. See

http://www.jsworkshop.com/cookies.html for information about cookies.

As an example of a document property, Listing 4.1 shows a short HTML document

that displays its last modified date using JavaScript.

LISTING 4.1 Displaying the Last Modified Date
<html><head><title>Test Document</title></head>
<body>
<p>This page was last modified on:
<script language=”JavaScript” type=”text/javascript”>
document.write(document.lastModified);
</script>
</p>
</body>
</html>

This can tell the user when the page was last changed. If you use JavaScript, you
don’t have to remember to update the date each time you modify the page. (You
could also use the script to always print the current date instead of the last modified
date, but that would be cheating.)

You might find that the document.lastModified property doesn’t work on your
web pages, or returns the wrong value. The date is received from the web server,
and some servers do not maintain modification dates correctly.

Writing Text in a Document
The simplest document object methods are also the ones you will use most often. In
fact, you’ve used one of them already. The document.write method prints text as
part of the HTML page in a document window. This statement is used whenever you
need to include output in a web page.

An alternative statement, document.writeln, also prints text, but it also includes a
newline (\n) character at the end. This is handy when you want your text to be the
last thing on the line.

Bear in mind that the newline character is displayed as a space by the browser,
except inside a <pre> container. You will need to use the
 tag if you want an
actual line break.

By the
Way

Watch
Out!

http://www.jsworkshop.com/cookies.html

54 HOUR 4: Working with the Document Object Model (DOM)

You can use these methods only within the body of the web page, so they will be

executed when the page loads. You can’t use these methods to add to a page that

has already loaded without reloading it.

You can also directly modify the text of a web page on newer browsers using the
features of the new DOM. You’ll learn these techniques in Hour 14.

The document.write method can be used within a <script> tag in the body of an

HTML document. You can also use it in a function, provided you include a call to

the function within the body of the document.

Using Links and Anchors
Another child of the document object is the link object. Actually, there can be mul-

tiple link objects in a document. Each one includes information about a link to

another location or an anchor.

Anchors are named places in an HTML document that can be jumped to directly.
You define them with a tag like this: . You can then link to
them: .

You can access link objects with the links array. Each member of the array is one

of the link objects in the current page. A property of the array,

document.links.length, indicates the number of links in the page.

Each link object (or member of the links array) has a list of properties defining the

URL. The href property contains the entire URL, and other properties define portions

of it. These are the same properties as the location object, defined later in this hour.

You can refer to a property by indicating the link number and property name. For

example, the following statement assigns the entire URL of the first link to the vari-

able link1:

link1 = links[0].href;

The anchor objects are also children of the document object. Each anchor object rep-

resents an anchor in the current document—a particular location that can be

jumped to directly.

Like links, you can access anchors with an array: anchors. Each element of this

array is an anchor object. The document.anchors.length property gives you the

number of elements in the anchors array.

By the
Way

Did you
Know?

Working with the location Object 55

Accessing Browser History
The history object is another child (property) of the window object. This object

holds information about the URLs that have been visited before and after the cur-

rent one, and it includes methods to go to previous or next locations.

The history object has one property you can access:

. history.length keeps track of the length of the history list—in other words,

the number of different locations that the user has visited.

The history object has current, previous, and next properties that store URLs
of documents in the history list. However, for security and privacy reasons, these
objects are not normally accessible in today’s browsers.

The history object has three methods you can use to move through the history list:

. history.go() opens a URL from the history list. To use this method, specify a

positive or negative number in parentheses. For example, history.go(-2) is

equivalent to pressing the Back button twice.

. history.back() loads the previous URL in the history list—equivalent to

pressing the Back button.

. history.forward() loads the next URL in the history list, if available. This is

equivalent to pressing the Forward button.

You’ll use these methods in the Try It Yourself section at the end of this hour.

Working with the location Object
A third child of the window object is the location object. This object stores informa-

tion about the current URL stored in the window. For example, the following state-

ment loads a URL into the current window:

window.location.href=”http://www.starlingtech.com”;

The href property used in this statement contains the entire URL of the window’s

current location. You can also access portions of the URL with various properties of

the location object. To explain these properties, consider the following URL:

http://www.jsworkshop.com:80/test.cgi?lines=1#anchor

By the
Way

▼

56 HOUR 4: Working with the Document Object Model (DOM)

The following properties represent parts of the URL:

. location.protocol is the protocol part of the URL (http: in the example).

. location.hostname is the host name of the URL (www.jsworkshop.com in the

example).

. location.port is the port number of the URL (80 in the example).

. location.pathname is the filename part of the URL (test.cgi in the example).

. location.search is the query portion of the URL, if any (lines=1 in the

example). Queries are used mostly by CGI scripts.

. location.hash is the anchor name used in the URL, if any (#anchor in the

example).

The link object, introduced earlier this hour, also includes this list of properties for

accessing portions of the URL.

Although the location.href property usually contains the same URL as the
document.URL property described earlier in this hour, you can’t change the
document.URL property. Always use location.href to load a new page.

The location object has two methods:

. location.reload() reloads the current document. This is the same as the

Reload button on the browser’s toolbar. If you optionally include the true

parameter, it will ignore the browser’s cache and force a reload whether the

document has changed or not.

. location.replace() replaces the current location with a new one. This is

similar to setting the location object’s properties yourself. The difference is

that the replace method does not affect the browser’s history. In other words,

the Back button can’t be used to go to the previous location. This is useful for

splash screens or temporary pages that it would be useless to return to.

Try It Yourself

Creating Back and Forward Buttons
You can use the back and forward methods of the history object to add your own

Back and Forward buttons to a web document. The browser already has Back and

Forward buttons, of course, but it’s occasionally useful to include your own links

that serve the same purpose.

By the
Way

www.jsworkshop.com

Working with the location Object 57

You will now create a script that displays Back and Forward buttons and use these

methods to navigate the browser. Here’s the code that will create the Back button:

<input type=”button”
onClick=”history.back();” value=”<-- Back”>

The <input> tag defines a button labeled Back. The onClick event handler uses the

history.back() method to go to the previous page in history. The code for the

Forward button is similar:

<input type=”button”
onClick=”history.forward();” value=”Forward -->”>

With these out of the way, you just need to build the rest of the HTML document.

Listing 4.2 shows the complete HTML document, and Figure 4.2 shows a browser’s

display of the document. After you load this document into a browser, visit other

URLs and make sure the Back and Forward buttons work.

LISTING 4.2 A Web Page That Uses JavaScript to Include Back and
Forward Buttons
<html>
<head><title>Back and Forward Buttons</title>
</head>
<body>
<h1>Back and Forward Buttons</h1>
<p>This page allows you to go back or forward to pages in the history list.
These should be equivalent to the back and forward arrow buttons in the
browser’s toolbar.</p>
<p>
<input type=”button”

onClick=”history.back();” value=”<-- Back”>
<input type=”button”

onClick=”history.forward();” value=”Forward -->”>
</p>
</body>
</html>

FIGURE 4.2
The Back and
Forward buttons
in Internet
Explorer.

▲

58 HOUR 4: Working with the Document Object Model (DOM)

Summary
In this hour, you’ve learned about the Document Object Model (DOM), JavaScript’s

hierarchy of web page objects. You’ve learned how you can use the document object

to work with documents, and used the history and location objects to control the

current URL displayed in the browser.

You should now have a basic understanding of the DOM and some of its objects—

you’ll learn about more of the objects throughout this book.

Congratulations! You’ve reached the end of Part I of this book. In Part II, you’ll get

back to learning the JavaScript language, starting with Hour 5, “Using Variables,

Strings, and Arrays.”

Q&A
Q. I can use history and document instead of window.history and window.docu-

ment. Can I leave out the window object in other cases?

A. Yes. For example, you can use alert instead of window.alert to display a

message. The window object contains the current script, so it’s treated as a

default object. However, be warned that you shouldn’t omit the window

object’s name when you’re using frames, layers, or multiple windows, or in an

event handler.

Q. I used the document.lastModified method to display a modification date for
my page, but it displays a date in 1970, or a date that I know is incorrect.
What’s wrong?

A. This function depends on the server sending the last modified date of the doc-

ument to the browser. Some web servers don’t do this properly, or require spe-

cific file attributes in order for this to work.

Q. Can I change history entries, or prevent the user from using the Back and
Forward buttons?

A. You can’t change the history entries. You can’t prevent the use of the Back and

Forward buttons, but you can use the location.replace() method to load a

series of pages that don’t appear in the history. There are a few tricks for pre-

venting the Back button from working properly, but I don’t recommend

them—that’s the sort of thing that gives JavaScript a bad name.

Exercises 59

Quiz Questions
Test your knowledge of JavaScript by answering the following questions:

1. Which of the following objects can be used to load a new URL into the browser
window?

a. document.url

b. window.location

c. window.url

2. Which object contains the alert() method?

a. window

b. document

c. location

3. Which of the following DOM levels describes the objects described in this hour?

a. DOM level 0

b. DOM level 1

c. DOM level 2

Quiz Answers
1. b. The window.location object can be used to send the browser to a new URL.

2. a. The window object contains the alert() method.

3. a. The objects described in this hour fall under the informal DOM level 0 spec-
ification.

Exercises
To further explore the JavaScript features you learned about in this hour, you can
perform the following exercises:

. Modify the Back and Forward example in Listing 4.2 to include a Reload but-
ton along with the Back and Forward buttons. (This button would trigger the
location.reload() method.)

. Modify the Back and Forward example to display the current number of histo-
ry entries.

This page intentionally left blank

PART II:

Learning JavaScript Basics

HOUR 5 Using Variables, Strings, and Arrays 63

HOUR 6 Using Functions and Objects 85

HOUR 7 Controlling Flow with Conditions and Loops 101

HOUR 8 Using Built-in Functions and Libraries 121

This page intentionally left blank

HOUR 5

Using Variables, Strings, and
Arrays

What You’ll Learn in This Hour:
. Naming and declaring variables
. Choosing whether to use local or global variables
. Assigning values to variables
. How to convert between different data types
. Using variables and literals in expressions
. How strings are stored in String objects
. Creating and using String objects
. Creating and using arrays of numbers and strings

Welcome to the beginning of Part II of this book. Now that you have learned some of the

fundamentals of JavaScript and the DOM, it’s time to dig into more details of the

JavaScript language.

In this hour, you’ll learn three tools for storing data in JavaScript: variables, which store

numbers or text; strings, which are special variables for working with text; and arrays,

which are multiple variables you can refer to by number.

Using Variables
Unless you skipped the first few hours of this book, you’ve already used a few variables.

You probably can also figure out how to use a few more without any help. Nevertheless,

there are some aspects of variables you haven’t learned yet. We will now look at some of

the details.

64 HOUR 5: Using Variables, Strings, and Arrays

Choosing Variable Names
Variables are named containers that can store data (for example, a number, a text

string, or an object). As you learned earlier in this book, each variable has a name.

There are specific rules you must follow when choosing a variable name:

. Variable names can include letters of the alphabet, both upper- and lowercase.

They can also include the digits 0–9 and the underscore (_) character.

. Variable names cannot include spaces or any other punctuation characters.

. The first character of the variable name must be either a letter or an underscore.

. Variable names are case sensitive—totalnum, Totalnum, and TotalNum are

separate variable names.

. There is no official limit on the length of variable names, but they must fit

within one line.

Using these rules, the following are examples of valid variable names:

total_number_of_fish
LastInvoiceNumber
temp1
a
_var39

You can choose to use either friendly, easy-to-read names or completely cryptic
ones. Do yourself a favor: use longer, friendly names whenever possible. Although
you might remember the difference between a, b, x, and x1 right now, you might
not after a good night’s sleep.

Using Local and Global Variables
Some computer languages require you to declare a variable before you use it. JavaScript

includes the var keyword, which can be used to declare a variable. You can omit var in

many cases; the variable is still declared the first time you assign a value to it.

To understand where to declare a variable, you will need to understand the concept

of scope. A variable’s scope is the area of the script in which that variable can be

used. There are two types of variables:

. Global variables have the entire script (and other scripts in the same HTML doc-

ument) as their scope. They can be used anywhere, even within functions.

. Local variables have a single function as their scope. They can be used only

within the function they are created in.

By the
Way

Using Variables 65

To create a global variable, you declare it in the main script, outside any functions.

You can use the var keyword to declare the variable, as in this example:

var students = 25;

This statement declares a variable called students and assigns it a value of 25. If

this statement is used outside functions, it creates a global variable. The var key-

word is optional in this case, so this statement is equivalent to the previous one:

students = 25;

Before you get in the habit of omitting the var keyword, be sure you understand

exactly when it’s required. It’s actually a good idea to always use the var keyword—

you’ll avoid errors and make your script easier to read, and it won’t usually cause

any trouble.

For the most part, the variables you’ve used in earlier hours of this book have
been global.

A local variable belongs to a particular function. Any variable you declare with the

var keyword in a function is a local variable. Additionally, the variables in the func-

tion’s parameter list are always local variables.

To create a local variable within a function, you must use the var keyword. This

forces JavaScript to create a local variable, even if there is a global variable with the

same name.

You should now understand the difference between local and global variables. If

you’re still a bit confused, don’t worry—if you use the var keyword every time, you’ll

usually end up with the right type of variable.

Assigning Values to Variables
As you learned in Hour 2, “Creating a Simple Script,” you can use the equal sign to

assign a value to a variable. For example, this statement assigns the value 40 to the

variable lines:

lines = 40;

You can use any expression to the right of the equal sign, including other variables.

You have used this syntax earlier to add one to a variable:

lines = lines + 1;

By the
Way

66 HOUR 5: Using Variables, Strings, and Arrays

Because incrementing or decrementing variables is quite common, JavaScript

includes two types of shorthand for this syntax. The first is the += operator, which

enables you to create the following shorter version of the preceding example:

lines += 1;

Similarly, you can subtract a number from a variable using the -= operator:

lines -= 1;

If you still think that’s too much to type, JavaScript also includes the increment and

decrement operators, ++ and --. This statement adds one to the value of lines:

lines++;

Similarly, this statement subtracts one from the value of lines:

lines--;

You can alternately use the ++ or -- operators before a variable name, as in

++lines. However, these are not identical. The difference is when the increment or

decrement happens:

. If the operator is after the variable name, the increment or decrement hap-

pens after the current expression is evaluated.

. If the operator is before the variable name, the increment or decrement hap-

pens before the current expression is evaluated.

This difference is only an issue when you use the variable in an expression and

increment or decrement it in the same statement. As an example, suppose you have

assigned the lines variable the value 40. The following two statements have differ-

ent effects:

alert(lines++);
alert(++lines);

The first statement displays an alert with the value 40, and then increments lines

to 41. The second statement first increments lines to 41, then displays an alert with

the value 41.

These operators are strictly for your convenience. If it makes more sense to you
to stick to lines = lines + 1, do it—your script won’t suffer.

By the
Way

Understanding Expressions and Operators 67

Understanding Expressions and
Operators
An expression is a combination of variables and values that the JavaScript inter-

preter can evaluate to a single value. The characters that are used to combine these

values, such as + and /, are called operators.

Along with variables and constant values, you can also use calls to functions that
return results within an expression.

Using JavaScript Operators
You’ve already used some operators, such as the + sign (addition) and the increment

and decrement operators. Table 5.1 lists some of the most important operators you

can use in JavaScript expressions.

TABLE 5.1 Common JavaScript Operators

Operator Description Example

+ Concatenate (combine) strings message=”this is” + “ a test”;

+ Add result = 5 + 7;

- Subtract score = score - 1;

* Multiply total = quantity * price;

/ Divide average = sum / 4;

% Modulo (remainder) remainder = sum % 4;

++ Increment tries++;

-- Decrement total--;

Along with these, there are also many other operators used in conditional statements—

you’ll learn about these in Hour 7, “Controlling Flow with Conditions and Loops.”

Operator Precedence
When you use more than one operator in an expression, JavaScript uses rules of

operator precedence to decide how to calculate the value. Table 5.1 lists the operators

from lowest to highest precedence, and operators with highest precedence are evalu-

ated first. For example, consider this statement:

result = 4 + 5 * 3;

Did you
Know?

68 HOUR 5: Using Variables, Strings, and Arrays

If you try to calculate this result, there are two ways to do it. You could multiply 5 *

3 first and then add 4 (result: 19) or add 4 + 5 first and then multiply by 3 (result:

27). JavaScript solves this dilemma by following the precedence rules: Because multi-

plication has a higher precedence than addition, it first multiplies 5 * 3 and then

adds 4, producing a result of 19.

If you’re familiar with any other programming languages, you’ll find that the opera-
tors and precedence in JavaScript work, for the most part, the same way as those
in C, C++, and Java.

Sometimes operator precedence doesn’t produce the result you want. For example,

consider this statement:

result = a + b + c + d / 4;

This is an attempt to average four numbers by adding them all together and then

dividing by four. However, because JavaScript gives division a higher precedence

than addition, it will divide the d variable by 4 before adding the other numbers,

producing an incorrect result.

You can control precedence by using parentheses. Here’s the working statement to

calculate an average:

result = (a + b + c + d) / 4;

The parentheses ensure that the four variables are added first, and then the sum is

divided by four.

If you’re unsure about operator precedence, you can use parentheses to make
sure things work the way you expect and to make your script more readable.

Data Types in JavaScript
In some computer languages, you have to specify the type of data a variable will

store: for example, a number or a string. In JavaScript, you don’t need to specify a

data type in most cases. However, you should know the types of data JavaScript can

deal with.

These are the basic JavaScript data types:

. Numbers, such as 3, 25, or 1.4142138. JavaScript supports both integers and

floating-point numbers.

By the
Way

Did you
Know?

Converting Between Data Types 69

. Boolean, or logical values. These can have one of two values: true or false.

These are useful for indicating whether a certain condition is true.

You’ll learn more about Boolean values, and about using conditions in JavaScript,
in Hour 7.

. Strings, such as “I am a jelly doughnut”. These consist of one or more

characters of text. (Strictly speaking, these are String objects, which you’ll

learn about later in this hour.)

. The null value, represented by the keyword null. This is the value of an unde-

fined variable. For example, the statement document.write(fig) will result

in this value (and an error message) if the variable fig has not been previous-

ly used or defined.

Although JavaScript keeps track of the data type currently stored in each variable, it

doesn’t restrict you from changing types midstream. For example, suppose you

declared a variable by assigning it a value:

total = 31;

This statement declares a variable called total and assigns it the value of 31. This

is a numeric variable. Now suppose you changed the value of total:

total = “albatross”;

This assigns a string value to total, replacing the numeric value. JavaScript will not

display an error when this statement executes; it’s perfectly valid, although it’s prob-

ably not a very useful total.

Although this feature of JavaScript is convenient and powerful, it can also make it
easy to make a mistake. For example, if the total variable was later used in a
mathematical calculation, the result would be invalid—but JavaScript does not
warn you that you’ve made this mistake.

Converting Between Data Types
JavaScript handles conversions between data types for you whenever it can. For

example, you’ve already used statements like this:

document.write(“The total is “ + total);

By the
Way

By the
Way

70 HOUR 5: Using Variables, Strings, and Arrays

This statement prints out a message such as “The total is 40”. Because the doc-

ument.write function works with strings, the JavaScript interpreter automatically

converts any nonstrings in the expression (in this case, the value of total) to strings

before performing the function.

This works equally well with floating-point and Boolean values. However, there are

some situations where it won’t work. For example, the following statement will work

fine if the value of total is 40:

average = total / 3;

However, the total variable could also contain a string; in this case, the preceding

statement would result in an error.

In some situations, you might end up with a string containing a number, and need

to convert it to a regular numeric variable. JavaScript includes two functions for this

purpose:

. parseInt()—Converts a string to an integer number.

. parseFloat()—Converts a string to a floating-point number.

Both of these functions will read a number from the beginning of the string and

return a numeric version. For example, these statements convert the string “30

angry polar bears” to a number:

stringvar = “30 angry polar bears”;
numvar = parseInt(stringvar);

After these statements execute, the numvar variable contains the number 30. The

nonnumeric portion of the string is ignored.

These functions look for a number of the appropriate type at the beginning of the
string. If a valid number is not found, the function will return the special value
NaN, meaning not a number.

Using String Objects
You’ve already used several strings during the first few hours of this book. Strings

store a group of text characters, and are named similarly to other variables. As a

simple example, this statement assigns the string This is a test to a string vari-

able called test:

test = “This is a test”;

By the
Way

Using String Objects 71

Creating a String Object
JavaScript stores strings as String objects. You usually don’t need to worry about

this, but it will explain some of the techniques for working with strings, which use

methods (built-in functions) of the String object.

There are two ways to create a new String object. The first is the one you’ve already

used, whereas the second uses object-oriented syntax. The following two statements

create the same string:

test = “This is a test”;
test = new String(“This is a test”);

The second statement uses the new keyword, which you use to create objects. This

tells the browser to create a new String object containing the text This is a test,

and assigns it to the variable test.

Although you can create a string using object-oriented syntax, the standard
JavaScript syntax is simpler, and there is no difference in the strings created by
these two methods.

Assigning a Value
You can assign a value to a string in the same way as any other variable. Both of

the examples in the previous section assigned an initial value to the string. You can

also assign a value after the string has already been created. For example, the fol-

lowing statement replaces the contents of the test variable with a new string:

test = “This is only a test.”;

You can also use the concatenation operator (+) to combine the values of two strings.

Listing 5.1 shows a simple example of assigning and combining the values of strings.

LISTING 5.1 Assigning Values to Strings and Combining Them
<html>
<head>
<title>String Test</title>
</head>
<body>
<h1>String Test</h1>
<script language=”JavaScript” type=”text/javascript”>;
test1 = “This is a test. “;
test2 = “This is only a test.”;
both = test1 + test2;
alert(both);
</script>
</body>
</html>

By the
Way

72 HOUR 5: Using Variables, Strings, and Arrays

This script assigns values to two string variables, test1 and test2, and then dis-

plays an alert with their combined value. If you load this HTML document in a

browser, your output should resemble Figure 5.1.

FIGURE 5.1
The output of
the string exam-
ple script.

In addition to using the + operator to concatenate two strings, you can use the +=

operator to add text to a string. For example, this statement adds a period to the

current contents of the string sentence:

sentence += “.”;

The plus sign (+) is also used to add numbers in JavaScript. The browser knows
whether to use addition or concatenation based on the types of data you use with
the plus sign. If you use it between a number and a string, the number is convert-
ed to a string and concatenated.

Calculating the String’s Length
From time to time, you might find it useful to know how many characters a string

variable contains. You can do this with the length property of String objects,

which you can use with any string. To use this property, type the string’s name fol-

lowed by .length.

By the
Way

Using String Objects 73

For example, test.length refers to the length of the test string. Here is an exam-

ple of this property:

test = “This is a test.”;
document.write(test.length);

The first statement assigns the string This is a test to the test variable. The sec-

ond statement displays the length of the string—in this case, 15 characters. The

length property is a read-only property, so you cannot assign a value to it to

change a string’s length.

Remember that although test refers to a string variable, the value of
test.length is a number and can be used in any numeric expression.

Converting the String’s Case
Two methods of the String object enable you to convert the contents of a string to

all uppercase or all lowercase:

. toUpperCase()—Converts all characters in the string to uppercase.

. toLowerCase()—Converts all characters in the string to lowercase.

For example, the following statement displays the value of the test string variable

in lowercase:

document.write(test.toLowerCase());

Assuming that this variable contained the text This Is A Test, the result would

be the following string:

this is a test

Note that the statement doesn’t change the value of the text variable. These methods

return the upper- or lowercase version of the string, but they don’t change the string

itself. If you want to change the string’s value, you can use a statement like this:

test = test.toLowerCase();

Note that the syntax for these methods is similar to the length property intro-
duced earlier. The difference is that methods always use parentheses, whereas
properties don’t. The toUpperCase and toLowerCase methods do not take any
parameters, but you still need to use the parentheses.

By the
Way

By the
Way

74 HOUR 5: Using Variables, Strings, and Arrays

Working with Substrings
So far, you’ve worked with entire strings. JavaScript also enables you to work with

substrings, or portions of a string. You can use the substring method to retrieve a

portion of a string, or the charAt method to get a single character. These are

explained in the following sections.

Using Part of a String
The substring method returns a string consisting of a portion of the original string

between two index values, which you must specify in parentheses. For example, the

following statement displays the fourth through sixth characters of the text string:

document.write(text.substring(3,6));

At this point, you’re probably wondering where the 3 and the 6 come from. There

are three things you need to understand about the index parameters:

. Indexing starts with 0 for the first character of the string, so the fourth charac-

ter is actually index 3.

. The second index is noninclusive. A second index of 6 includes up to index 5

(the sixth character).

. You can specify the two indexes in either order. The smaller one will be assumed

to be the first index. In the previous example, (6,3) would have produced the

same result. Of course, there is rarely a reason to use the reverse order.

As another example, suppose you defined a string called alpha to hold the alphabet:

alpha = “ABCDEFGHIJKLMNOPQRSTUVWXYZ”;

The following are examples of the substring() method using this string:

. alpha.substring(0,4) returns ABCD.

. alpha.substring(10,12) returns KL.

. alpha.substring(12,10) also returns KL. Because it’s smaller, 10 is used as

the first index.

. alpha.substring(6,7) returns G.

. alpha.substring(24,26) returns YZ.

. alpha.substring(0,26) returns the entire alphabet.

. alpha.substring(6,6) returns the null value, an empty string. This is true

whenever the two index values are the same.

Working with Substrings 75

Getting a Single Character
The charAt method is a simple way to grab a single character from a string. You

specify the character’s index, or position, in parentheses. The indexes begin at 0 for

the first character. Here are a few examples using the alpha string:

. alpha.charAt(0) returns A.

. alpha.charAt(12) returns M.

. alpha.charAt(25) returns Z.

. alpha.charAt(27) returns an empty string because there is no character at

that position.

Finding a Substring
Another use for substrings is to find a string within another string. One way to do

this is with the indexOf method. To use this method, add indexOf to the string you

want to search, and specify the string to search for in the parentheses. This example

searches for “this” in the test string:

loc = test.indexOf(“this”);

As with most JavaScript methods and property names, indexOf is case sensitive.
Make sure you type it exactly as shown here when you use it in scripts.

The value returned in the loc variable is an index into the string, similar to the first

index in the substring method. The first character of the string is index 0.

You can specify an optional second parameter to indicate the index value to begin

the search. For example, this statement searches for the word fish in the temp

string, starting with the 20th character:

location = temp.indexOf(“fish”,19);

One use for the second parameter is to search for multiple occurrences of a
string. After finding the first occurrence, you search starting with that location for
the second one, and so on.

A second method, lastIndexOf(), works the same way, but finds the last occurrence

of the string. It searches the string backwards, starting with the last character. For

example, this statement finds the last occurrence of Fred in the names string:

location = names.lastIndexOf(“Fred”);

By the
Way

By the
Way

76 HOUR 5: Using Variables, Strings, and Arrays

As with indexOf(), you can specify a location to search from as the second parame-

ter. In this case, the string will be searched backward starting at that location.

Using Numeric Arrays
An array is a numbered group of data items that you can treat as a single unit. For

example, you might use an array called scores to store several scores for a game.

Arrays can contain strings, numbers, objects, or other types of data. Each item in an

array is called an element of the array.

Creating a Numeric Array
Unlike most other types of JavaScript variables, you typically need to declare an

array before you use it. The following example creates an array with four elements:

scores = new Array(4);

To assign a value to the array, you use an index in brackets. Indexes begin with 0, so

the elements of the array in this example would be numbered 0 to 3. These state-

ments assign values to the four elements of the array:

scores[0] = 39;
scores[1] = 40;
scores[2] = 100;
scores[3] = 49;

You can also declare an array and specify values for elements at the same time. This

statement creates the same scores array in a single line:

scores = new Array(39,40,100,49);

In JavaScript 1.2 and later, you can also use a shorthand syntax to declare an array

and specify its contents. The following statement is an alternative way to create the

scores array:

scores = [39,40,100,49];

Remember to use parentheses when declaring an array with the new keyword, as
in a=new Array(3,4,5), and use brackets when declaring an array without new,
as in a=[3,4,5]. Otherwise, you’ll run into JavaScript errors.

Did you
Know?

Using String Arrays 77

Understanding Array Length
Like strings, arrays have a length property. This tells you the number of elements in

the array. If you specified the length when creating the array, this value becomes the

length property’s value. For example, these statements would print the number 30:

scores = new Array(30);
document.write(scores.length);

You can declare an array without a specific length, and change the length later by

assigning values to elements or changing the length property. For example, these

statements create a new array and assign values to two of its elements:

test = new Array();
test[0]=21;
test[5]=22;

In this example, because the largest index number assigned so far is 5, the array

has a length property of 6—remember, elements are numbered starting at 0.

Accessing Array Elements
You can read the contents of an array using the same notation you used when

assigning values. For example, the following statements would display the values of

the first three elements of the scores array:

scoredisp = “Scores: “ + scores[0] + “,” + scores[1] + “,” + scores[2];
document.write(scoredisp);

Looking at this example, you might imagine it would be inconvenient to display all
the elements of a large array. This is an ideal job for loops, which enable you to
perform the same statements several times with different values. You’ll learn all
about loops in Hour 7.

Using String Arrays
So far, you’ve used arrays of numbers. JavaScript also allows you to use string arrays,

or arrays of strings. This is a powerful feature that enables you to work with a large

number of strings at the same time.

Did you
Know?

78 HOUR 5: Using Variables, Strings, and Arrays

Creating a String Array
You declare a string array in the same way as a numeric array—in fact, JavaScript

does not make a distinction between them:

names = new Array(30);

You can then assign string values to the array elements:

names[0] = “Henry J. Tillman”;
names[1] = “Sherlock Holmes”;

As with numeric arrays, you can also specify a string array’s contents when you cre-

ate it. Either of the following statements would create the same string array as the

preceding example:

names = new Array(“Henry J. Tillman”, “Sherlock Holmes”);
names = [“Henry J. Tillman”, “Sherlock Holmes”];

You can use string array elements anywhere you would use a string. You can even

use the string methods introduced earlier. For example, the following statement prints

the first five characters of the first element of the names array, resulting in Henry:

document.write(names[0].substring(0,5));

Splitting a String
JavaScript includes a string method called split, which splits a string into its com-

ponent parts. To use this method, specify the string to split and a character to divide

the parts:

test = “John Q. Public”;
parts = test.split(“ “);

In this example, the test string contains the name John Q. Public. The split

method in the second statement splits the name string at each space, resulting in

three strings. These are stored in a string array called parts. After the example

statements execute, the elements of parts contain the following:

. parts[0] = “John”

. parts[1] = “Q.”

. parts[2] = “Public”

JavaScript also includes an array method, join, which performs the opposite func-

tion. This statement reassembles the parts array into a string:

fullname = parts.join(“ “);

Sorting a Numeric Array 79

The value in the parentheses specifies a character to separate the parts of the array.

In this case, a space is used, resulting in the final string John Q. Public. If you do

not specify a character, commas are used.

Sorting a String Array
JavaScript also includes a sort method for arrays, which returns an alphabetically

sorted version of the array. For example, the following statements initialize an array

of four names and sort it:

names[0] = “Public, John Q.”;
names[1] = “Tillman, Henry J.”;
names[2] = “Bush, George W.”;
names[3] = “Mouse, Mickey”;
sortednames = names.sort();

The last statement sorts the names array and stores the result in a new array, sort-

ednames.

Sorting a Numeric Array
Because the sort method sorts alphabetically, it won’t work with a numeric array—

at least not the way you’d expect. If an array contains the numbers 4, 10, 30, and

200, for example, it would sort them as 10, 200, 30, 4—not even close. Fortunately,

there’s a solution: You can specify a function in the sort method’s parameters, and

that function will be used to compare the numbers. The following code sorts a

numeric array correctly:

function numcompare(a,b) {
return a-b;

}
nums = new Array(30, 10, 200, 4);
sortednums = nums.sort(numcompare);

This example defines a simple function, numcompare, which subtracts the two num-

bers. After you specify this function in the sort method, the array is sorted in the

correct numeric order: 4, 10, 30, 200.

JavaScript expects the comparison function to return a negative number if a
belongs before b, 0 if they are the same, or a positive number if a belongs after b.
This is why a-b is all you need for the function to sort numerically.

By the
Way

▼

80 HOUR 5: Using Variables, Strings, and Arrays

Try It Yourself

Sorting and Displaying Names
To gain more experience working with JavaScript’s string and array features, you
can create a script that enables the user to enter a list of names, and displays the list
in sorted form.

Because this will be a larger script, you will create separate HTML and JavaScript
files, as described in Hour 3, “Getting Started with JavaScript Programming.” First,
the sort.html file will contain the HTML structure and form fields for the script to
work with. Listing 5.2 shows the HTML document.

LISTING 5.2 The HTML Document for the Sorting Example
<html>
<head>
<title>Array Sorting Example</title>
<script type=”text/javascript” language=”javascript” src=”sort.js”>
</script>
</head>
<body>
<h1>Sorting String Arrays</h1>
<p>Enter two or more names in the field below,
and the sorted list of names will appear in the
text area.</p>
<form name=”theform”>
Name:
<input type=”text” name=”newname” size=”20”>
<input type=”button” name=”addname” value=”Add”
onclick=”SortNames();”>

<h2>Sorted Names</h2>
<textarea cols=”60” rows=”10” name=”sorted”>
The sorted names will appear here.
</textarea>
</form>
</body>
</html>

Because the script will be in a separate document, the <script> tag in the header of
this document uses the src attribute to include a JavaScript file called sort.js. You
will create this file next.

This document defines a form named theform, a text field named newname, an
addname button, and a textarea named sorted. Your script will use these form fields
as its user interface. Listing 5.3 shows the JavaScript file.

LISTING 5.3 The JavaScript File for the Sorting Example
// initialize the counter and the array
var numnames=0;
var names = new Array();
function SortNames() {

Sorting a Numeric Array 81

// Get the name from the text field
thename=document.theform.newname.value;
// Add the name to the array
names[numnames]=thename;
// Increment the counter
numnames++;
// Sort the array
names.sort();
document.theform.sorted.value=names.join(“\n”);

}

The script begins by defining two variables with the var keyword: numnames will be a
counter that increments as each name is added, and the names array will store the
names.

When you type a name into the text field and click the button, the onclick event
handler calls the SortNames function. This function stores the text field value in a
variable, thename, and then adds the name to the names array using numnames as
the index. It then increments numnames to prepare for the next name.

The final section of the script sorts the names and displays them. First, the sort()
method is used to sort the names array. Next, the join() method is used to combine
the names, separating them with line breaks, and display them in the textarea.

To test the script, save it as sort.js, and then load the sort.html file you created
previously into a browser. You can then add some names and test the script. Figure
5.2 shows the result after sorting several names.

FIGURE 5.2
The output of
the name-sort-
ing example.

▲

LISTING 5.3 Continued

82 HOUR 5: Using Variables, Strings, and Arrays

Summary
During this hour, you’ve focused on variables and how JavaScript handles them.
You’ve learned how to name variables, how to declare them, and the differences
between local and global variables. You also explored the data types supported by
JavaScript and how to convert between them.

You also learned about JavaScript’s more complex variables, strings and arrays, and
looked at the features that enable you to perform operations on them, such as con-
verting strings to uppercase or sorting arrays.

In the next hour, you’ll continue your JavaScript education by learning more about
two additional key features: functions and objects.

Q&A
Q. What is the importance of the var keyword? Should I always use it to

declare variables?

A. You only need to use var to define a local variable in a function. However, if

you’re unsure at all, it’s always safe to use var. Using it consistently will help

you keep your scripts organized and error free.

Q. Is there any reason I would want to use the var keyword to create a local
variable with the same name as a global one?

A. Not on purpose. The main reason to use var is to avoid conflicts with global

variables you might not know about. For example, you might add a global

variable in the future, or you might add another script to the page that uses a

similar variable name. This is more of an issue with large, complex scripts.

Q. What good are Boolean variables?

A. Often in scripts you’ll need a variable to indicate whether something has hap-

pened—for example, whether a phone number the user has entered is in the

right format. Boolean variables are ideal for this; they’re also useful in work-

ing with conditions, as you’ll see in Hour 7.

Q. Can I store other types of data in an array? For example, can I have an
array of dates?

A. Absolutely. JavaScript allows you to store any data type in an array.

Q. What about two-dimensional arrays?

A. These are arrays with two indexes (such as columns and rows). JavaScript does

not directly support this type of array, but you can use objects to achieve the

same effect. You will learn more about objects in the next hour.

Quiz Questions 83

Quiz Questions
Test your knowledge of JavaScript by answering the following questions:

1. Which of the following is not a valid JavaScript variable name?

a. 2names

b. first_and_last_names

c. FirstAndLast

2. If the statement var fig=2 appears in a function, which type of variable does

it declare?

a. A global variable

b. A local variable

c. A constant variable

3. If the string test contains the value The eagle has landed., what would be

the value of test.length?

a. 4

b. 21

c. The

4. Using the same example string, which of these statements would return the

word eagle?

a. test.substring(4,9)

b. test.substring(5,9)

c. test.substring(“eagle”)

5. What will be the result of the JavaScript expression 31 + “ angry polar

bears”?

a. An error message

b. 32

c. “31 angry polar bears”

84 HOUR 5: Using Variables, Strings, and Arrays

Quiz Answers
1. a. 2names is an invalid JavaScript variable name because it begins with a

number. The others are valid, although they’re probably not ideal choices for

names.

2. b. Because the variable is declared in a function, it is a local variable. The var

keyword ensures that a local variable is created.

3. b. The length of the string is 21 characters.

4. a. The correct statement is test.substring(4,9). Remember that the indexes

start with 0, and that the second index is noninclusive.

5. c. JavaScript converts the whole expression to the string “31 angry polar

bears”. (No offense to polar bears, who are seldom angry and rarely seen in

groups this large.)

Exercises
To further explore JavaScript variables, strings, and arrays, you can perform the fol-

lowing exercises:

. Modify the sorting example in Listing 5.3 to convert the names to all upper-

case before sorting and displaying them.

. Modify Listing 5.3 to display a numbered list of names in the textarea.

HOUR 6

Using Functions and Objects

What You’ll Learn in This Hour:
. Defining and calling functions
. Returning values from functions
. Understanding JavaScript objects
. Defining custom objects
. Working with object properties and values
. Defining and using object methods
. Using objects to store data and related functions

In this hour, you’ll learn about two more key JavaScript concepts that you’ll use throughout

the rest of this book. First, you’ll learn the details of using functions, which enable you to

group any number of statements into a block. This is useful for repeating sections of code,

and you can also create functions that accept parameters and return values for later use.

Whereas functions enable you to group sections of code, objects enable you to group

data—you can use them to combine related data items and functions for working with

the data.

Using Functions
The scripts you’ve seen so far are simple lists of instructions. The browser begins with the

first statement after the <script> tag and follows each instruction in order until it reaches

the closing </script> tag (or encounters an error).

Although this is a straightforward approach for short scripts, it can be confusing to read a

longer script written in this fashion. To make it easier for you to organize your scripts,

JavaScript supports functions, which you learned about in Hour 3, “Getting Started with

JavaScript Programming.” In this section, you will learn how to define and use functions.

86 HOUR 6: Using Functions and Objects

Defining a Function
Functions are groups of JavaScript statements that can be treated as a single unit. To

use a function, you must first define it. Here is a simple example of a function defi-

nition:

function Greet() {
alert(“Greetings.”);

}

This defines a function that displays an alert message to the user. This begins with

the function keyword. The function’s name is Greet. Notice the parentheses after

the function’s name. As you’ll learn next, the space between them is not always

empty.

The first and last lines of the function definition include braces ({ and }). You use

these to enclose all of the statements in the function. The browser uses the braces to

determine where the function begins and ends.

Between the braces, this particular function contains a single line. This uses the

built-in alert() function, which displays an alert message. The message will con-

tain the text “Greetings.”

Function names are case sensitive. If you define a function such as Greet() with
a capital letter, be sure you use the identical name when you call the function.

Now, about those parentheses. The current Greet() function always does the same

thing: Each time you use it, it displays the same message. Although this avoids a bit

of typing, it doesn’t really provide much of an advantage.

To make your function more flexible, you can add parameters, also known as argu-

ments. These are variables that are received by the function each time it is called.

For example, you can add a parameter called who that tells the function the name

of the person to greet. Here is the modified Greet() function:

function Greet(who) {
alert(“Greetings, “ + who);

}

Of course, to use this function, you should include it in an HTML document.

Traditionally, the best place for a function definition is within the <head> section of

the document. Because the statements in the <head> section are executed first, this

ensures that the function is defined before it is used.

Listing 6.1 shows the Greet() function embedded in the header section of an HTML

document.

By the
Way

Using Functions 87

LISTING 6.1 The Greet() Function in an HTML Document
<html>
<head>
<title>Functions</title>
<script language=”JavaScript” type=”text/javascript”>
function Greet(who) {

alert(“Greetings, “ + who);
}
</script>
</head>
<body>
This is the body of the page.
</body>
</html>

As usual, you can download the listings for this hour or view them online at this
book’s website.

Calling the Function
You have now defined a function and placed it in an HTML document. However, if

you load Listing 6.1 into a browser, you’ll notice that it does absolutely nothing.

This is because the function is defined—ready to be used—but we haven’t used it

yet.

Making use of a function is referred to as calling the function. To call a function, use

the function’s name as a statement in a script. You will need to include the paren-

theses and the values for the function’s parameters. For example, here’s a statement

that calls the Greet function:

Greet(“Fred”);

This tells the JavaScript interpreter to transfer control to the first statement in the

Greet function. It also passes the parameter “Fred” to the function. This value will

be assigned to the who variable inside the function.

Functions can have more than one parameter. To define a function with multiple
parameters, list a variable name for each parameter, separated by commas. To
call the function, specify values for each parameter separated by commas.

Listing 6.2 shows a complete HTML document that includes the function definition

and a second script in the body of the page that actually calls the function. To demon-

strate the usefulness of functions, we’ll call it twice to greet two different people.

By the
Way

By the
Way

88 HOUR 6: Using Functions and Objects

LISTING 6.2 The Complete Function Example
<html>
<head>
<title>Functions</title>
<script language=”JavaScript” type=”text/javascript”>
function Greet(who) {

alert(“Greetings, “ + who);
}
</script>
</head>
<body>
<h1>Function Example</h1>
<p>Prepare to be greeted twice.</p>
<script language=”JavaScript” type=”text/javascript”>
Greet(“Fred”);
Greet(“Ethel”);
</script>
</body>
</html>>

This listing includes a second set of <script> tags in the body of the page. The sec-

ond script includes two function calls to the Greet function, each with a different

name.

Now that you have a script that actually does something, try loading it into a

browser. You should see something like Figure 6.1, which shows the Greeting script

running in Firefox.

FIGURE 6.1
The output of
the Greeting
example.

By the
Way

Notice that the second alert message isn’t displayed until you press the OK but-
ton on the first alert. This is because JavaScript processing is halted while alerts
are displayed.

Returning a Value
The function you just created displays a message to the user, but functions can also

return a value to the script that called them. This allows you to use functions to cal-

culate values. As an example, you can create a function that averages four numbers.

Using Functions 89

Your function should begin with the function keyword, the function’s name, and

the parameters it accepts. We will use the variable names a, b, c, and d for the four

numbers to average. Here is the first line of the function:

function Average(a,b,c,d) {

I’ve also included the opening brace ({) on the first line of the function. This is a
common style, but you can also place the brace on the next line, or on a line by
itself.

Next, the function needs to calculate the average of the four parameters. You can

calculate this by adding them, and then dividing by the number of parameters (in

this case, 4). Thus, here is the next line of the function:

result = (a + b + c + d) / 4;

This statement creates a variable called result and calculates the result by adding

the four numbers, and then dividing by 4. (The parentheses are necessary to tell

JavaScript to perform the addition before the division.)

To send this result back to the script that called the function, you use the return

keyword. Here is the last part of the function:

return result;
}

Listing 6.3 shows the complete Average() function in an HTML document. This

HTML document also includes a small script in the <body> section that calls the

Average() function and displays the result.

LISTING 6.3 The Average() Function in an HTML Document
<html>_
<head>
<title>Function Example</title>
<script language=”JavaScript” type=”text/javascript”>
function Average(a,b,c,d) {
result = (a + b + c + d) / 4;
return result;
}
</script>
</head>
<body>
<p>The following is the result of the function call.</p>
<script LANGUAGE=”JavaScript” type=”text/javascript”>
score = Average(3,4,5,6);
document.write(“The average is: “ + score);
</script>_
</body>
</html>

By the
Way

90 HOUR 6: Using Functions and Objects

You can use a variable with the function call, as shown in this listing. This state-

ment averages the numbers 3, 4, 5, and 6 and stores the result in a variable called

score:

score = Average(3,4,5,6);

You can also use the function call directly in an expression. For example, you
could use the alert statement to display the result of the function:
alert(Average(1,2,3,4)) .

Introducing Objects
In the previous hour, you learned how to use variables to represent different kinds of

data in JavaScript. JavaScript also supports objects, a more complex kind of variable

that can store multiple data items and functions.

Although a variable can have only one value at a time, an object can contain mul-

tiple values, as well as functions for working with the values. This allows you to

group related data items and the functions that deal with them into a single object.

In this hour, you’ll learn how to define and use your own objects. You’ve already

worked with some objects:

. DOM objects—Allow your scripts to interact with web pages. You learned

about these in Hour 4, “Working with the Document Object Model (DOM).”

. Built-in objects—Include strings and arrays, which you learned about in Hour

5, “Using Variables, Strings, and Arrays.”

The syntax for working with all three types of objects—DOM objects, built-in objects,

and custom objects—is the same, so even if you don’t end up creating your own objects,

you should have a good understanding of JavaScript’s object terminology and syntax.

Creating Objects
When you created an array in the previous hour, you used the following JavaScript

statement:

scores = new Array(4);

The new keyword tells the JavaScript interpreter to use a function—in this case, the

built-in Array function—to create an object. You’ll create a function for a custom

object later in this hour.

Did you
Know?

Using Objects to Simplify Scripting 91

Object Properties and Values
Each object has one or more properties—essentially, variables that will be stored

within the object. For example, in Hour 4, you learned that the location.href

property gives you the URL of the current document. The href property is one of the

properties of the location object in the DOM.

You’ve also used the length property of String objects, as in the following example

from the previous hour:

test = “This is a test.”;
document.write(test.length);

Like variables, each object property has a value. To read a property’s value, you sim-

ply include the object name and property name, separated by a period, in any

expression, as in test.length previously. You can change a property’s value using

the = operator, just like a variable. The following example sends the browser to a

new URL by changing the location.href property:

location.href=”http://www.jsworkshop.com/”;

An object can also be a property of another object. This is referred to as a child
object.

Understanding Methods
Along with properties, each object can have one or more methods. These are func-
tions that work with the object’s data. For example, the following JavaScript state-
ment reloads the current document, as you learned in Hour 4:

location.reload();

When you use reload(), you’re using a method of the location object. Like normal

functions, methods can accept arguments in parentheses, and can return values.

Using Objects to Simplify Scripting
Although JavaScript’s variables and arrays are versatile ways to store data, some-
times you need a more complicated structure. For example, suppose you are creat-
ing a script to work with a business card database that contains names, addresses,
and phone numbers for a variety of people.

If you were using regular variables, you would need several separate variables for
each person in the database: a name variable, an address variable, and so on. This
would be very confusing.

By the
Way

92 HOUR 6: Using Functions and Objects

Arrays would improve things slightly. You could have a names array, an addresses

array, and a phone number array. Each person in the database would have an

entry in each array. This would be more convenient, but still not perfect.

With objects, you can make the variables that store the database as logical as busi-

ness cards. Each person is represented by a Card object, which has properties for

name, address, and phone number. You can even add methods to the object to dis-

play or work with the information.

In the following sections, you’ll use JavaScript to actually create the Card object and

its properties and methods. Later in this hour, you’ll use the Card object in a script

to display information for several members of the database.

Defining an Object
The first step in creating an object is to name it and its properties. We’ve already

decided to call the object a Card object. Each object will have the following proper-

ties:

. name

. address

. workphone

. homephone

The first step in using this object in a JavaScript program is to create a function to

make new Card objects. This function is called the constructor for an object. Here is

the constructor function for the Card object:

function Card(name,address,work,home) {
this.name = name;
this.address = address;
this.workphone = work;
this.homephone = home;

}

The constructor is a simple function that accepts parameters to initialize a new

object and assigns them to the corresponding properties. This function accepts sever-

al parameters from the statement that calls the function, and then assigns them as

properties of an object. Because the function is called Card, the object is the Card

object.

Notice the this keyword. You’ll use it anytime you create an object definition. Use

this to refer to the current object—the one that is being created by the function.

Using Objects to Simplify Scripting 93

Defining an Object Method
Next, you will create a method to work with the Card object. Because all Card

objects will have the same properties, it might be handy to have a function that

prints out the properties in a neat format. Let’s call this function PrintCard().

Your PrintCard() function will be used as a method for Card objects, so you don’t

need to ask for parameters. Instead, you can use the this keyword again to refer to the

current object’s properties. Here is a function definition for the PrintCard() function:

function PrintCard() {
line1 = “Name: “ + this.name + “
\n”;
line2 = “Address: “ + this.address + “
\n”;
line3 = “Work Phone: “ + this.workphone + “
\n”;
line4 = “Home Phone: “ + this.homephone + “<hr>\n”;
document.write(line1, line2, line3, line4);

}

This function simply reads the properties from the current object (this), prints each

one with a caption, and skips to a new line.

You now have a function that prints a card, but it isn’t officially a method of the

Card object. The last thing you need to do is make PrintCard() part of the function

definition for Card objects. Here is the modified function definition:

function Card(name,address,work,home) {
this.name = name;
this.address = address;
this.workphone = work;
this.homephone = home;
this.PrintCard = PrintCard;

}

The added statement looks just like another property definition, but it refers to the

PrintCard() function. This will work so long as the PrintCard() function is defined

with its own function definition. Methods are essentially properties that define a

function rather than a simple value.

The previous example uses lowercase names such as workphone for properties,
and an uppercase name (PrintCard) for the method. You can use any case for
property and method names, but this is one way to make it clear that PrintCard
is a method rather than an ordinary property.

Creating an Object Instance
Now let’s use the object definition and method you just created. To use an object def-

inition, you create a new object. This is done with the new keyword. This is the same

keyword you’ve already used to create Date and Array objects.

Did you
Know?

94 HOUR 6: Using Functions and Objects

The following statement creates a new Card object called tom:

tom = new Card(“Tom Jones”, “123 Elm Street”, “555-1234”, “555-9876”);

As you can see, creating an object is easy. All you do is call the Card() function (the
object definition) and give it the required attributes, in the same order as the definition.

After this statement executes, a new object is created to hold Tom’s information. This
is called an instance of the Card object. Just as there can be several string variables
in a program, there can be several instances of an object you define.

Rather than specify all the information for a card with the new keyword, you can
assign them after the fact. For example, the following script creates an empty Card
object called holmes, and then assigns its properties:

holmes = new Card();
holmes.name = “Sherlock Holmes”;
holmes.address = “221B Baker Street”;
holmes.workphone = “555-2345”;
holmes.homephone = “555-3456”;

After you’ve created an instance of the Card object using either of these methods,

you can use the PrintCard() method to display its information. For example, this

statement displays the properties of the tom card:

tom.PrintCard();

Extending Built-in Objects
JavaScript includes a feature that enables you to extend the definitions of built-in
objects. For example, if you think the String object doesn’t quite fit your needs, you
can extend it, adding a new property or method. This might be very useful if you
were creating a large script that used many strings.

You can add both properties and methods to an existing object by using the proto-
type keyword. (A prototype is another name for an object’s definition, or constructor
function.) The prototype keyword enables you to change the definition of an object
outside its constructor function.

As an example, let’s add a method to the String object definition. You will create a
method called heading, which converts a string into an HTML heading. The follow-
ing statement defines a string called title:

title = “Fred’s Home Page”;

This statement would output the contents of the title string as an HTML level 1

heading:

document.write(title.heading(1));

▼

Extending Built-in Objects 95

Listing 6.4 adds a heading method to the String object definition that will display

the string as a heading, and then displays three headings using the method.

LISTING 6.4 Adding a Method to the String Object
<html>
<head><title>Test of heading method</title>
</head>
<body>
<script LANGUAGE=”JavaScript” type=”text/javascript”>
function addhead (level) {

html = “H” + level;
text = this.toString();
start = “<” + html + “>”;
stop = “</” + html + “>”;
return start + text + stop;

}
String.prototype.heading = addhead;
document.write (“This is a heading 1”.heading(1));
document.write (“This is a heading 2”.heading(2));
document.write (“This is a heading 3”.heading(3));
</script>
</body>
</html>

First, you define the addhead() function, which will serve as the new string method. It

accepts a number to specify the heading level. The start and stop variables are used

to store the HTML “begin header” and “end header” tags, such as <h1> and </h1>.

After the function is defined, use the prototype keyword to add it as a method of

the String object. You can then use this method on any String object or, in fact,

any JavaScript string. This is demonstrated by the last three statements, which dis-

play quoted text strings as level 1, 2, and 3 headers.

Try It Yourself

Storing Data in Objects
Now you’ve created a new object to store business cards and a method to print them

out. As a final demonstration of objects, properties, functions, and methods, you will

now use this object in a web page to display data for several cards.

Your script will need to include the function definition for PrintCard(), along with

the function definition for the Card object. You will then create three cards and print

them out in the body of the document. We will use separate HTML and JavaScript

files for this example. Listing 6.5 shows the complete script.

96 HOUR 6: Using Functions and Objects

LISTING 6.5 An Example Script That Uses the Card Object
// define the functions
function PrintCard() {
line1 = “Name: ” + this.name + “
\n”;
line2 = “Address: ” + this.address + “
\n”;
line3 = “Work Phone: ” + this.workphone + “
\n”;
line4 = “Home Phone: ” + this.homephone + “<hr>\n”;
document.write(line1, line2, line3, line4);
}
function Card(name,address,work,home) {

this.name = name;
this.address = address;
this.workphone = work;
this.homephone = home;
this.PrintCard = PrintCard;

}
// Create the objects
sue = new Card(“Sue Suthers”, “123 Elm Street”, “555-1234”, “555-9876”);
phred = new Card(“Phred Madsen”, “233 Oak Lane”, “555-2222”, “555-4444”);
henry = new Card(“Henry Tillman”, “233 Walnut Circle”, “555-1299”, “555-1344”);
// And print them
sue.PrintCard();
phred.PrintCard();
henry.PrintCard();

Notice that the PrintCard() function has been modified slightly to make things

look good with the captions in boldface. To use this script, save it as cardtest.js.

Next, you’ll need to include the script in a simple HTML document. Listing 6.6

shows the HTML document for this example.

LISTING 6.6 The HTML File for the Card Object Example
<html>
<head>
<title>JavaScript Business Cards</title>
</head>
<body>
<h1>JavaScript Business Card Test</h1>
<p>Script begins here.</p><hr>
<script language=”JavaScript” type=”text/javascript”

src=”cardtest.js”>
</script>
<p>End of script.</p>
</body>
</html>

To test the script, save the HTML document in the same directory as the

cardtest.js file you created earlier, and then load the HTML document into a

browser. The browser’s display of this example is shown in Figure 6.2.

Summary 97

This example isn’t a very sophisticated database because you have to include the
data for each person in the script. However, an object like this could be used to
store a database record retrieved from a database server with thousands of
records.

By the
Way

FIGURE 6.2
Internet Explorer
displays the out-
put of the busi-
ness card exam-
ple.

Summary
In this hour, you’ve looked at two important features of JavaScript. First, you

learned how to use functions to group JavaScript statements, and how to call func-

tions and use the values they return.

You also learned about JavaScript’s object-oriented features—defining objects with

constructor functions, creating object instances, and working with properties, proper-

ty values, and methods.

In the next hour, you’ll look at two more features you’ll use in almost every script—

conditions to let your scripts evaluate data, and loops to repeat sections of code.

▲

98 HOUR 6: Using Functions and Objects

Q&A
Q. Many objects in JavaScript, such as DOM objects, include parent and child

objects. Can I include child objects in my custom object definitions?

A. Yes. Just create a constructor function for the child object, and then add a

property to the parent object that corresponds to it. For example, if you creat-

ed a Nicknames object to store several nicknames for a person in the card file

example, you could add it as a child object in the Card object’s constructor:

this.nick = new Nicknames();.

Q. Can I create an array of custom objects?

A. Yes. First, create the object definition as usual and define an array with the

required number of elements. Then assign a new object to each array element

(for example, cardarray[1] = new Card();). You can use a loop, described

in the next hour, to assign objects to an entire array at once.

Q. Can I modify all properties of objects?

A. With custom objects, yes—but this varies with built-in objects and DOM

objects. For example, you can use the length property to find the length of a

string, but it is a read-only property and cannot be modified.

Quiz Questions
Test your knowledge of JavaScript by answering the following questions:

1. What JavaScript keyword is used to create an instance of an object?

a. object

b. new

c. instance

2. What is the meaning of the this keyword in JavaScript?

a. The current object.

b. The current script.

c. It has no meaning.

Exercises 99

3. What does the prototype keyword allow you to do in a script?

a. Change the syntax of JavaScript commands.

b. Modify the definitions of built-in objects.

c. Modify the user’s browser so only your scripts will work.

Quiz Answers
1. b. The new keyword creates an object instance.

2. a. The this keyword refers to the current object.

3. b. The prototype keyword allows you to modify the definitions of built-in

objects.

Exercises
To further explore the JavaScript features you learned about in this hour, you can

perform the following exercises:

. Modify the Greet() function to accept two parameters, who1 and who2, and to

include both names in a single greeting dialog. Modify Listing 6.2 to use a sin-

gle function call to the new function.

. Modify the definition of the Card object to include a property called email for

the person’s email address. Modify the PrintCard() function in Listing 6.5 to

include this property.

This page intentionally left blank

HOUR 7

Controlling Flow with
Conditions and Loops

What You’ll Learn in This Hour:
. Testing variables with the if statement
. Using various operators to compare values
. Using logical operators to combine conditions
. Using alternative conditions with else
. Creating expressions with conditional operators
. Testing for multiple conditions
. Performing repeated statements with the for loop
. Using while for a different type of loop
. Using do...while loops
. Creating infinite loops (and why you shouldn’t)
. Escaping from loops and continuing loops
. Looping through an array’s properties

Statements in a JavaScript program generally execute in the order in which they appear,

one after the other. Because this isn’t always practical, most programming languages pro-

vide flow control statements that let you control the order in which code is executed.

Functions, which you learned about in the previous hour, are one type of flow control—

although a function might be defined first thing in your code, its statements can be exe-

cuted anywhere in the script.

In this hour, you’ll look at two other types of flow control in JavaScript: conditions, which

allow a choice of different options depending on a value, and loops, which allow repeti-

tive statements.

102 HOUR 7: Controlling Flow with Conditions and Loops

The if Statement
One of the most important features of a computer language is the capability to test

and compare values. This allows your scripts to behave differently based on the val-

ues of variables, or based on input from the user.

The if statement is the main conditional statement in JavaScript. This statement

means much the same in JavaScript as it does in English—for example, here is a

typical conditional statement in English:

If the phone rings, answer it.

This statement consists of two parts: a condition (If the phone rings) and an action

(answer it). The if statement in JavaScript works much the same way. Here is an

example of a basic if statement:

if (a == 1) window.alert(“Found a 1!”);

This statement includes a condition (if a equals 1) and an action (display a mes-

sage). This statement checks the variable a and, if it has a value of 1, displays an

alert message. Otherwise, it does nothing.

If you use an if statement like the preceding example, you can use a single state-

ment as the action. You can also use multiple statements for the action by enclosing

them in braces ({}), as shown here:

if (a == 1) {
window.alert(“Found a 1!”);
a = 0;

}

This block of statements checks the variable a once again. If it finds a value of 1, it

displays a message and sets a back to 0.

Conditional Operators
The action part of an if statement can include any of the JavaScript statements

you’ve already learned (and any others, for that matter), but the condition part of

the statement uses its own syntax. This is called a conditional expression.

A conditional expression usually includes two values to be compared (in the preced-

ing example, the values were a and 1). These values can be variables, constants, or

even expressions in themselves.

Either side of the conditional expression can be a variable, a constant, or an
expression. You can compare a variable and a value, or compare two variables.
(You can compare two constants, but there’s usually no reason to.)

By the
Way

The if Statement 103

Between the two values to be compared is a conditional operator. This operator tells

JavaScript how to compare the two values. For instance, the == operator is used to

test whether the two values are equal. A variety of conditional operators is available:

. == — Is equal to

. != — Is not equal to

. < — Is less than

. > — Is greater than

. >= — Is greater than or equal to

. <= — Is less than or equal to

Be sure not to confuse the equality operator (==) with the assignment operator
(=), even though they both might be read as “equals.” Remember to use = when
assigning a value to a variable, and == when comparing values. Confusing these
two is one of the most common mistakes in JavaScript programming.

Combining Conditions with Logical Operators
Often, you’ll want to check a variable for more than one possible value, or check

more than one variable at once. JavaScript includes logical operators, also known as

Boolean operators, for this purpose. For example, the following two statements

check different conditions and use the same action:

if (phone == “”) window.alert(“error!”);
if (email == “”) window.alert(“error!”);

Using a logical operator, you can combine them into a single statement:

if (phone == “” || email == “”) window.alert(“Something’s Missing!”);

This statement uses the logical Or operator (||) to combine the conditions.

Translated to English, this would be, “If the phone number is blank or the email

address is blank, display an error message.”

An additional logical operator is the And operator, &&. Consider this statement:

if (phone == “” && email == “”) window.alert(“Both are Missing!”);

This statement uses && (And) instead of || (Or), so the error message will only be

displayed if both the email address and phone number variables are blank. (In this

particular case, Or is a better choice.)

By the
Way

104 HOUR 7: Controlling Flow with Conditions and Loops

If the JavaScript interpreter discovers the answer to a conditional expression
before reaching the end, it does not evaluate the rest of the condition. For exam-
ple, if the first of two conditions separated by the && operator is false, the second
is not evaluated. You can take advantage of this to improve the speed of your
scripts.

The third logical operator is the exclamation mark (!), which means Not. It can be

used to invert an expression—in other words, a true expression would become false,

and a false one would become true. For example, here’s a statement that uses the

Not operator:

if (!($phone == “”)) alert(“phone is OK”);

In this statement, the ! (Not) operator inverts the condition, so the action of the if

statement is executed only if the phone number variable is not blank. The extra

parentheses are necessary because all JavaScript conditions must be in parentheses.

You could also use the != (Not equal) operator to simplify this statement:

if ($phone != “”) alert(“phone is OK”);

As with the previous statement, this alerts you if the phone number field is not

blank.

The logical operators are powerful, but it’s easy to accidentally create an impossi-
ble condition with them. For example, the condition (a < 10 && a > 20) might
look correct at first glance. However, if you read it out loud, you get “If a is less
than 10 and a is greater than 20”—an impossibility in our universe. In this case,
Or (||) should have been used.

The else Keyword
An additional feature of the if statement is the else keyword. Much like its English

equivalent, else tells the JavaScript interpreter what to do if the condition isn’t true.

The following is a simple example of the else keyword in action:

if (a == 1) {
alert(“Found a 1!”);
a = 0;

}
else {

alert(“Incorrect value: “ + a);
}

This is a modified version of the previous example. This displays a message and

resets the variable a if the condition is met. If the condition is not met (if a is not 1),

a different message is displayed.

Did you
Know?

Did you
Know?

Testing Multiple Conditions with if and else 105

Like the if statement, else can be followed either by a single action statement
or by a number of statements enclosed in braces.

Using Shorthand Conditional Expressions
In addition to the if statement, JavaScript provides a shorthand type of conditional

expression that you can use to make quick decisions. This uses a peculiar syntax that

is also found in other languages, such as C. A conditional expression looks like this:

variable = (condition) ? (true action) : (false action);

This assigns one of two values to the variable: one if the condition is true, and

another if it is false. Here is an example of a conditional expression:

value = (a == 1) ? 1 : 0;

This statement might look confusing, but it is equivalent to the following if statement:

if (a == 1)
value = 1;

else
value = 0;

In other words, the value after the question mark (?) will be used if the condition is

true, and the value after the colon (:) will be used if the condition is false. The colon

represents the else portion of this statement and, like the else portion of the if

statement, is optional.

These shorthand expressions can be used anywhere JavaScript expects a value. They

provide an easy way to make simple decisions about values. As an example, here’s

an easy way to display a grammatically correct message about a variable:

document.write(“Found “ + counter + ((counter == 1) ? “ word.” : “ words.”));

This will print the message Found 1 word if the counter variable has a value of 1,

and Found 2 words if its value is 2 or greater. This is one of the most common uses

for a conditional expression.

Testing Multiple Conditions with if and
else
You can now create an example script using if and else. In Hour 2, “Creating

Simple Scripts,” you created a script that displays the current date and time.

This example will use conditions to display a greeting that depends on the time:

By the
Way

106 HOUR 7: Controlling Flow with Conditions and Loops

“Good morning,” “Good Afternoon,” “Good Evening,” or “Good Day”. To accom-

plish this, you can use a combination of several if statements:

if (hours < 10) document.write(“Good morning.”);
else if (hours >= 14 && hours <= 17) document.write(“Good afternoon.”);
else if (hours >= 17) document.write(“Good evening.”);
else document.write(“Good day.”);

The first statement checks the hours variable for a value less than 10—in other

words, it checks whether the current time is before 10:00 a.m. If so, it displays the

greeting “Good morning.”

The second statement checks whether the time is between 2:00 p.m. and 5:00 p.m.

and, if so, displays “Good afternoon.” This statement uses else if to indicate that

this condition will only be tested if the previous one failed—if it’s morning, there’s

no need to check whether it’s afternoon. Similarly, the third statement checks for

times after 5:00 p.m. and displays “Good evening.”

The final statement uses a simple else, meaning it will be executed if none of the

previous conditions matched. This covers the times between 10:00 a.m. and 2:00

p.m. (neglected by the other statements) and displays “Good day.”

The HTML File
To try this example in a browser, you’ll need an HTML file. We will keep the

JavaScript code separate, so Listing 7.1 is the complete HTML file. Save it as

timegreet.html but don’t load it into the browser until you’ve prepared the

JavaScript file in the next section.

LISTING 7.1 The HTML File for the Time and Greeting Example
<html>
<head><title>if statement example</title></head>
<body>
<h1>Current Date and Time</h1>
<p>
<script language=”JavaScript” type=”text/javascript”
src = “timegreet.js”>
</script>
</p>
</body>
</html>

The JavaScript File
Listing 7.2 shows the complete JavaScript file for the time greeting example. This uses

the built-in Date object functions to find the current date and store it in hours, mins,

Using Multiple Conditions with switch 107

and secs variables. Next, document.write statements display the current time, and

the if and else statements introduced earlier display an appropriate greeting.

LISTING 7.2 A Script to Display the Current Time and a Greeting
// Get the current date
now = new Date();
// Split into hours, minutes, seconds
hours = now.getHours();
mins = now.getMinutes();
secs = now.getSeconds();
// Display the time
document.write(“<h2>”);
document.write(hours + “:” + mins + “:” + secs);
document.write(“</h2>”);
// Display a greeting
document.write(“<p>”);
if (hours < 10) document.write(“Good morning.”);
else if (hours >= 14 && hours <= 17) document.write(“Good afternoon.”);
else if (hours > 17) document.write(“Good evening.”);
else document.write(“Good day.”);
document.write(“</p>”);

To try this example, save this file as timegreet.js (or download it from this book’s

website) and then load the timegreet.html file into your browser. Figure 7.1 shows

the results of this script.

FIGURE 7.1
The output of
the time greet-
ing example, as
shown by
Internet
Explorer.

Using Multiple Conditions with switch
In the previous example, you used several if statements in a row to test for different

conditions. Here is another example of this technique:

if (button==”next”) window.location=”next.html”;
else if (button==”previous”) window.location=”prev.html”;
else if (button==”home”) window.location=”home.html”;
else if (button==”back”) window.location=”menu.html”;

108 HOUR 7: Controlling Flow with Conditions and Loops

Although this is a compact way of doing things, this method can get messy if each

if statement has its own block of code with several statements. As an alternative,

JavaScript includes the switch statement, which enables you to combine several

tests of the same variable or expression into a single block of statements. The follow-

ing shows the same example converted to use switch:

switch(button) {
case “next”:

window.location=”next.html”;
break;

case “previous”:
window.location=”prev.html”;
break;

case “home”:
window.location=”home.html”;
break;

case “back”:
window.location=”menu.html”;
break;

default:
window.alert(“Wrong button.”);

}

The switch statement has several components:

. The initial switch statement. This statement includes the value to test (in this

case, button) in parentheses.

. Braces ({ and }) enclose the contents of the switch statement, similar to a

function or an if statement.

. One or more case statements. Each of these statements specifies a value to

compare with the value specified in the switch statement. If the values

match, the statements after the case statement are executed. Otherwise, the

next case is tried.

. The break statement is used to end each case. This skips to the end of the

switch. If break is not included, statements in multiple cases might be exe-

cuted whether they match or not.

. Optionally, the default case can be included and followed by one or more

statements that are executed if none of the other cases were matched.

You can use multiple statements after each case statement within the switch
structure. You don’t need to enclose them in braces. If the case matches, the
JavaScript interpreter executes statements until it encounters a break or the next
case.

By the
Way

Using for Loops 109

Using for Loops
Loops are useful any time you need a section of code to execute more than once.

The for keyword is the first tool to consider for creating loops. A for loop typically

uses a variable (called a counter or an index) to keep track of how many times the

loop has executed, and it stops when the counter reaches a certain number. A basic

for statement looks like this:

for (var = 1; var < 10; var++) {

There are three parameters to the for loop, separated by semicolons:

. The first parameter (var = 1 in the example) specifies a variable and assigns

an initial value to it. This is called the initial expression because it sets up the

initial state for the loop.

. The second parameter (var < 10 in the example) is a condition that must

remain true to keep the loop running. This is called the condition of the loop.

. The third parameter (var++ in the example) is a statement that executes with

each iteration of the loop. This is called the increment expression because it is

typically used to increment the counter. The increment expression executes at

the end of each loop iteration.

After the three parameters are specified, a left brace ({) is used to signal the begin-

ning of a block. A right brace (}) is used at the end of the block. All the statements

between the braces will be executed with each iteration of the loop.

The parameters for a for loop may sound a bit confusing, but once you’re used to

it, you’ll use for loops frequently. Here is a simple example of this type of loop:

for (i=0; i<10; i++) {
document.write(“This is line “ + i + “
”);

}

These statements define a loop that uses the variable i, initializes it with the value

of zero, and loops as long as the value of i is less than 10. The increment expres-

sion, i++, adds one to the value of i with each iteration of the loop. Because this

happens at the end of the loop, the output will list the numbers zero through nine.

When a loop includes only a single statement between the braces, as in this exam-

ple, you can omit the braces if you want. The following statement defines the same

loop without braces:

for (i=0; i<10; i++)
document.write(“This is line “ + i + “
”);

110 HOUR 7: Controlling Flow with Conditions and Loops

It’s a good style convention to use braces with all loops whether they contain one
statement or many. This makes it easy to add statements to the loop later without
causing syntax errors.

The loop in this example contains a document.write statement that will be repeat-

edly executed. To see just what this loop does, you can add it to a <script> section

of an HTML document as shown in Listing 7.3.

LISTING 7.3 A Loop Using the for Keyword
<html>
<head>
<title>Using a for Loop</title>
</head>
<body>
<h1>”for” Loop Example</h1>
<p>The following is the output of the
for loop:</p>
<script language=”JavaScript” type=”text/javascript”>
for (i=1;i<10;i++) {

document.write(“This is line “ + i + “
”);
}
</script>
</body>
</html>

This example displays a message with the loop’s counter during each iteration. The

output of Listing 7.3 is shown in Figure 7.2.

Notice that the loop was only executed nine times. This is because the conditional is

i<10. When the counter (i) is incremented to 10, the expression is no longer true. If

you need the loop to count to 10, you can change the conditional; either i<=10 or

i<11 will work fine.

You might notice that the variable name i is often used as the counter in loops.
This is a programming tradition that began with an ancient language called Forth.
There’s no need for you to follow this tradition, but it is a good idea to use one
consistent variable for counters. (To learn more about Forth, see the Forth Interest
Group’s website at www.forth.org.)

The structure of the for loop in JavaScript is based on Java, which in turn is based

on C. Although it is traditionally used to count from one number to another, you

can use just about any statement for the initialization, condition, and increment.

However, there’s usually a better way to do other types of loops with the while key-

word, described in the next section.

Did you
Know?

By the
Way

www.forth.org

Using while Loops 111

Using while Loops
Another keyword for loops in JavaScript is while. Unlike for loops, while loops don’t

necessarily use a variable to count. Instead, they execute as long as a condition is

true. In fact, if the condition starts out as false, the statements won’t execute at all.

The while statement includes the condition in parentheses, and it is followed by a

block of statements within braces, just like a for loop. Here is a simple while loop:

while (total < 10) {
n++;
total += values[n];

}

This loop uses a counter, n, to iterate through the values array. Rather than stop-

ping at a certain count, however, it stops when the total of the values reaches 10.

You might have noticed that you could have done the same thing with a for loop:

for (n=0;total < 10; n++) {
total += values[n];

}

As a matter of fact, the for loop is nothing more than a special kind of while loop

that handles an initialization and an increment for you. You can generally use

while for any loop. However, it’s best to choose whichever type of loop makes the

most sense for the job, or that takes the least amount of typing.

FIGURE 7.2
The results of
the for loop
example.

112 HOUR 7: Controlling Flow with Conditions and Loops

Using do…while Loops
JavaScript 1.2 introduced a third type of loop: the do…while loop. This type of loop

is similar to an ordinary while loop, with one difference: The condition is tested at

the end of the loop rather than the beginning. Here is a typical do…while loop:

do {
n++;
total += values[n];

}
while (total < 10);

As you’ve probably noticed, this is basically an upside-down version of the previous

while example. There is one difference: With the do loop, the condition is tested at

the end of the loop. This means that the statements in the loop will always be exe-

cuted at least once, even if the condition is never true.

As with the for and while loops, the do loop can include a single statement with-
out braces, or a number of statements enclosed in braces.

Working with Loops
Although you can use simple for and while loops for straightforward tasks, there

are some considerations you should make when using more complicated loops. In

the next sections, we’ll look at infinite loops and the break and continue state-

ments, which give you more control over your loops.

Creating an Infinite Loop
The for and while loops give you quite a bit of control over the loop. In some cases,

this can cause problems if you’re not careful. For example, look at the following

loop code:

while (i < 10) {
n++;
values[n] = 0;

}

There’s a mistake in this example. The condition of the while loop refers to the i

variable, but that variable doesn’t actually change during the loop. This creates an

infinite loop. The loop will continue executing until the user stops it, or until it gener-

ates an error of some kind.

Infinite loops can’t always be stopped by the user, except by quitting the browser—

and some loops can even prevent the browser from quitting, or cause a crash.

By the
Way

Working with Loops 113

Obviously, infinite loops are something to avoid. They can also be difficult to spot

because JavaScript won’t give you an error that actually tells you there is an infinite

loop. Thus, each time you create a loop in a script, you should be careful to make

sure there’s a way out.

Depending on the browser version in use, an infinite loop might even make the
browser stop responding to the user. Be sure you provide an escape route from
infinite loops, and save your script before you test it just in case.

Occasionally, you might want to create an infinite loop deliberately. This might

include situations when you want your program to execute until the user stops it, or

if you are providing an escape route with the break statement, which is introduced

in the next section. Here’s an easy way to create an infinite loop:

while (true) {

Because the value true is the conditional, this loop will always find its condition to

be true.

Escaping from a Loop
There is one way out of an infinite loop. You can use the break statement during a

loop to exit it immediately and continue with the first statement after the loop. Here

is a simple example of the use of break:

while (true) {
n++;
if (values[n] == 1) break;

}

Although the while statement is set up as an infinite loop, the if statement checks

the corresponding value of an array. If it finds a value of 1, it exits the loop.

When the JavaScript interpreter encounters a break statement, it skips the rest of the

loop and continues the script with the first statement after the right brace at the

loop’s end. You can use the break statement in any type of loop, whether infinite or

not. This provides an easy way to exit if an error occurs, or if another condition is

met.

Continuing a Loop
One more statement is available to help you control the execution of statements in

a loop. The continue statement skips the rest of the loop but, unlike break, it con-

tinues with the next iteration of the loop. Here is a simple example:

By the
Way

▼

114 HOUR 7: Controlling Flow with Conditions and Loops

for (i=1; i<21; i++) {
if (score[i]==0) continue;
document.write(“Student number “,i, “ Score: “, score[i], “\n”);

}

This script uses a for loop to print out scores for 20 students, stored in the score

array. The if statement is used to check for scores with a value of 0. The script

assumes that a score of 0 means that the student didn’t take the test, so it continues

the loop without printing that score.

Looping Through Object Properties
A third type of loop is available in JavaScript. The for…in loop is not as flexible as

an ordinary for or while loop. Instead, it is specifically designed to perform an

operation on each property of an object.

For example, the navigator object contains properties that describe the user’s

browser, as you’ll learn in Hour 15, “Unobtrusive Scripting.” You can use for…in to

display this object’s properties:

for (i in navigator) {
document.write(“property: “ + i);
document.write(“ value: “ + navigator[i] + “
”);

}

Like an ordinary for loop, this type of loop uses an index variable (i in the exam-

ple). For each iteration of the loop, the variable is set to the next property of the

object. This makes it easy when you need to check or modify each of an object’s

properties.

Try It Yourself

Working with Arrays and Loops
To apply your knowledge of loops, you will now create a script that deals with

arrays using loops. As you progress through this script, try to imagine how difficult

it would be without JavaScript’s looping features.

This simple script will prompt the user for a series of names. After all of the names

have been entered, it will display the list of names in a numbered list. To begin the

script, initialize some variables:

names = new Array();
i = 0;

Looping Through Object Properties 115

The names array will store the names the user enters. You don’t know how many

names will be entered, so you don’t need to specify a dimension for the array. The i

variable will be used as a counter in the loops.

Next, use the prompt statement to prompt the user for a series of names. Use a loop

to repeat the prompt for each name. You want the user to enter at least one name,

so a do loop is ideal:

do {
next = prompt(“Enter the Next Name”, “”);
if (next > “ “) names[i] = next;
i = i + 1;
}
while (next > “ “);

If you’re interested in making your scripts as short as possible, remember that
you could use the increment (++) operator to combine the i = i + 1 statement
with the previous statement: names[i++]=1.

This loop prompts for a string called next. If a name was entered and isn’t blank,

it’s stored as the next entry in the names array. The i counter is then incremented.

The loop repeats until the user doesn’t enter a name or clicks Cancel in the prompt

dialog.

Next, your script can display the number of names that was entered:

document.write(“<h2>” + (names.length) + “ names entered.</h2>”);

This statement displays the length property of the names array, surrounded by level

2 heading tags for emphasis.

Next, the script should display all the names in the order they were entered. Because

the names are in an array, the for…in loop is a good choice:

document.write(“”);
for (i in names) {

document.write(“” + names[i] + “
”);
}
document.write(“”);

Here you have a for…in loop that loops through the names array, assigning the

counter i to each index in turn. The script then prints the name with a tag as

an item in an ordered list. Before and after the loop, the script prints beginning and

ending tags.

You now have everything you need for a working script. Listing 7.4 shows the HTML

file for this example, and Listing 7.5 shows the JavaScript file.

Did you
Know?

116 HOUR 7: Controlling Flow with Conditions and Loops

LISTING 7.4 A Script to Prompt for Names and Display Them (HTML)
<html>
<head>
<title>Loops Example</title>
</head>
<body>
<h1>Loop Example</h1>
<p>Enter a series of names. I will then
display them in a nifty numbered list.</p>
<script language=”JavaScript” type=”text/javascript”
src=”loops.js”>
</script>
</body>
</html>

LISTING 7.5 A Script to Prompt for Names and Display Them
(JavaScript)
// create the array
names = new Array();
i = 0;
// loop and prompt for names
do {

next = window.prompt(“Enter the Next Name”, “”);
if (next > “ “) names[i] = next;
i = i + 1;
} while (next > “ “);

document.write(“<h2>” + (names.length) + “ names entered.</h2>”);
// display all of the names
document.write(“”);
for (i in names) {

document.write(“” + names[i] + “
”);
}
document.write(“”);

To try this example, save the JavaScript file as loops.js and then load the HTML

document into a browser. You’ll be prompted for one name at a time. Enter several

names, and then click Cancel to indicate that you’re finished. Figure 7.3 shows what

the final results should look like in a browser.

Summary 117

Summary
In this hour, you’ve learned two ways to control the flow of your scripts. First, you

learned how to use the if statement to evaluate conditional expressions and react

to them. You also learned a shorthand form of conditional expression using the ?

operator, and the switch statement for working with multiple conditions.

You also learned about JavaScript’s looping capabilities using for, while, and other

loops, and how to control loops further using the break and continue statements.

Lastly, you looked at the for…in loop for working with each property of an object.

In the next hour, you’ll look at JavaScript’s built-in functions, another essential tool

for creating your own scripts. You’ll also learn about third-party libraries that enable

you to create complex effects with simple scripts.

FIGURE 7.3
The output of
the names
example, as
shown by
Firefox.

▲

118 HOUR 7: Controlling Flow with Conditions and Loops

Q&A
Q. What happens if I compare two items of different data types (for example, a

number and a string) in a conditional expression?

A. The JavaScript interpreter does its best to make the values a common format

and compare them. In this case, it would convert them both to strings before

comparing. In JavaScript 1.3 and later, you can use the special equality opera-

tor === to compare two values and their types—using this operator, the

expression will be true only if the expressions have the same value and the

same data type.

Q. Why would I use switch if using if and else is just as simple?

A. Either one works, so it’s your choice. Personally, I find switch statements con-

fusing and prefer to use if. Your choice might also depend on what other pro-

gramming languages you’re familiar with because some support switch and

others don’t.

Q. Why don’t I get a friendly error message if I accidentally use = instead of ==?

A. In some cases, this will result in an error. However, the incorrect version often

appears to be a correct statement. For example, in the statement if (a=1),

the variable a will be assigned the value 1. The if statement is considered

true, and the value of a is lost.

Q. It seems like I could use a for loop to replace any of the other loop meth-
ods (while, do, and so on). Why so many choices?

A. You’re right. In most cases, a for loop will work, and you can do all your

loops that way if you want. For that matter, you can use while to replace a

for loop. You can use whichever looping method makes the most sense for

your application.

Quiz Questions
Test your knowledge of JavaScript conditions and loops by answering the following

questions.

1. Which of the following operators means “is not equal to” in JavaScript?

a. !

b. !=

c. <>

119Quiz Answers

2. What does the switch statement do?

a. Tests a variable for a number of different values

b. Turns a variable on or off

c. Makes ordinary if statements longer and more confusing

3. Which type of JavaScript loop checks the condition at the end of the loop?

a. for

b. while

c. do…while

4. Within a loop, what does the break statement do?

a. Crashes the browser

b. Starts the loop over

c. Escapes the loop entirely

5. The statement while (3==3) is an example of

a. A typographical error

b. An infinite loop

c. An illegal JavaScript statement

Quiz Answers
1. b. The != operator means is not equal to.

2. a. The switch statement can test the same variable or expression for a num-

ber of different values.

3. c. The do…while loop uses a condition at the end of the loop.

4. c. The break statement escapes the loop.

5. b. Because the condition (3==3) will always be true, this statement creates an

infinite loop.

120 HOUR 7: Controlling Flow with Conditions and Loops

Exercises
To further explore the JavaScript features you learned about in this hour, you can

perform the following exercises:

. Modify Listing 7.4 to sort the names in alphabetical order before displaying

them. You can use the sort method of the Array object, described in Hour 5,

“Using Variables, Strings, and Arrays.”

. Modify Listing 7.4 to prompt for exactly 10 names. What happens if you click

the Cancel button instead of entering a name?

HOUR 8

Using Built-in Functions and
Libraries

What You’ll Learn in This Hour:
. Using the Math object’s methods
. Using the Date object to work with dates
. Creating an application using JavaScript math functions
. Using with to work with objects
. How third-party libraries make scripting easier
. Using third-party libraries in your scripts

You’ve nearly reached the end of Part II! In this hour, you’ll learn the basics of objects in

JavaScript and the details of using the Math and Date objects. You’ll also look at some

third-party libraries, which enable you to achieve amazing JavaScript effects with a few

lines of code.

Using the Math Object
The Math object is a built-in JavaScript object that includes math constants and functions.

You don’t need to create a Math object; it exists automatically in any JavaScript program.

The Math object’s properties represent mathematical constants, and its methods are math-

ematical functions.

Rounding and Truncating
Three of the most useful methods of the Math object enable you to round decimal values

up and down:

122 HOUR 8: Using Built-in Functions and Libraries

. Math.ceil() rounds a number up to the next integer.

. Math.floor() rounds a number down to the next integer.

. Math.round() rounds a number to the nearest integer.

All of these take the number to be rounded as their single parameter. You might

notice one thing missing: the capability to round to a decimal place, such as for dol-

lar amounts. Fortunately, you can easily simulate this. Here is a simple function

that rounds numbers to two decimal places:

function round(num) {
return Math.round(num * 100) / 100;

}

This function multiplies the value by 100 to move the decimal, and then rounds the

number to the nearest integer. Finally, the value is divided by 100 to restore the deci-

mal to its original position.

Generating Random Numbers
One of the most commonly used methods of the Math object is the Math.random()

method, which generates a random number. This method doesn’t require any

parameters. The number it returns is a random decimal number between zero and

one.

You’ll usually want a random number between one and a value. You can do this

with a general-purpose random number function. The following is a function that

generates random numbers between one and the parameter you send it:

function rand(num) {
return Math.floor(Math.random() * num) + 1;

}

This function multiplies a random number by the value specified in the num param-

eter, and then converts it to an integer between one and the number by using the

Math.floor() method.

Other Math Functions
The Math object includes many functions beyond those you’ve looked at here. For

example, Math.sin() and Math.cos() calculate sines and cosines. The Math object

also includes properties for various mathematical constants, such as Math.PI. See

Appendix D, “JavaScript Quick Reference,” for a complete list of math functions and

constants.

Working with Math Functions 123

Working with Math Functions
The Math.random() method generates a random number between 0 and 1.

However, it’s very difficult for a computer to generate a truly random number. (It’s

also hard for a human being to do so—that’s why dice were invented.)

Today’s computers do reasonably well at generating random numbers, but just how

good is JavaScript’s Math.random function? One way to test it is to generate many

random numbers and calculate the average of all of them.

In theory, the average should be somewhere near .5, halfway between 0 and 1. The

more random values you generate, the closer the average should get to this middle

ground.

As an example of the use of the Math object’s methods, you can create a script that

tests JavaScript’s random number function. To do this, you’ll generate 5,000 random

numbers and calculate their average.

Rather than typing it in, you can download and try this hour’s example at this
book’s website.

In case you skipped Hour 7, “Controlling Flow with Conditions and Loops,” and are

getting out your calculator, don’t worry—you’ll use a loop to generate the random

numbers. You’ll be surprised how fast JavaScript can do this.

To begin your script, you will initialize a variable called total. This variable will

store a running total of all of the random values, so it’s important that it starts at 0:

total = 0;

Next, begin a loop that will execute 5,000 times. Use a for loop because you want it

to execute a fixed number of times:

for (i=1; i<=5000; i++) {

Within the loop, you will need to create a random number and add its value to

total. Here are the statements that do this and continue with the next iteration of

the loop:

num = Math.random();
total += num;

}

Depending on the speed of your computer, it might take a few seconds to generate

those 5,000 random numbers. Just to be sure something is happening, the script will

display a status message after each 1,000 numbers:

Did you
Know?

124 HOUR 8: Using Built-in Functions and Libraries

if (i % 1000 == 0)
document.write(“Generated “ + i + “ numbers...
”);

The % symbol in the previous code is the modulo operator, which gives you the
remainder after dividing one number by another. Here it is used to find even multi-
ples of 1,000.

The final part of your script will calculate the average by dividing total by 5,000.

Your script can also round the average to three decimal places, using the trick you

learned earlier in this hour:

average = total / 5000;
average = Math.round(average * 1000) / 1000;
document.write(“<H2>Average of 5000 numbers: “ + average + “</H2>”);

To test this script and see just how random those numbers are, combine the com-

plete script with an HTML document and <script> tags. Listing 8.1 shows the com-

plete random number testing script.

LISTING 8.1 A Script to Test JavaScript’s Random Number Function
<html>
<head>
<title>Math Example</title>
</head>
<body>
<h1>Math Example</h1>
<p>How random are JavaScript’s random numbers?
Let’s generate 5000 of them and find out.</p>
<script language=”JavaScript” type=”text/javascript”>
total = 0;
for (i=1; i<=5000; i++) {

num = Math.random();
total += num;
if (i % 1000 == 0)

document.write(“Generated “ + i + “ numbers...
”);
}
average = total / 5000;
average = Math.round(average * 1000) / 1000;
document.write(“<H2>Average of 5000 numbers: “ + average + “</H2>”);
</script>
</body>
</html>

To test the script, load the HTML document into a browser. After a short delay, you

should see a result. If it’s close to .5, the numbers are reasonably random. My result

was .502, as shown in Figure 8.1.

By the
Way

Using the with Keyword 125

The average you’ve used here is called an arithmetic mean. This type of average
isn’t a perfect way to test randomness. Actually, all it tests is the distribution of
the numbers above and below .5. For example, if the numbers turned out to be
2,500 .4s and 2,500 .6s, the average would be a perfect .5—but they wouldn’t
be very random numbers. (Thankfully, JavaScript’s random numbers don’t have
this problem.)

By the
Way

FIGURE 8.1
The random
number testing
script in action.

Using the with Keyword
The with keyword is one you haven’t seen before. You can use it to make JavaScript

programming easier—or at least easier to type.

The with keyword specifies an object, and it is followed by a block of statements

enclosed in braces. For each statement in the block, any properties you mention

without specifying an object are assumed to be for that object.

As an example, suppose you have a string called lastname. You can use with to

perform string operations on it without specifying the name of the string every time:

with (lastname) {
window.alert(“length of last name: “ + length);
capname = toUpperCase();

}

In this example, the length property and the toUpperCase method refer to the

lastname string, although it is only specified once with the with keyword.

Obviously, the with keyword only saves a bit of typing in situations like this.

However, you might find it more useful when you’re dealing with a DOM object

throughout a large procedure, or when you are using a built-in object, such as the

Math object, repeatedly.

126 HOUR 8: Using Built-in Functions and Libraries

Working with Dates
The Date object is a built-in JavaScript object that enables you to conveniently work

with dates and times. You can create a Date object anytime you need to store a

date, and use the Date object’s methods to work with the date.

You encountered one example of a Date object in Hour 2, “Creating Simple Scripts,”

with the time/date script. The Date object has no properties. To set or obtain values

from a Date object, you must use the methods described in the next section.

JavaScript dates are stored as the number of milliseconds since midnight, January
1, 1970. This date is called the epoch. Dates before 1970 weren’t allowed in
early versions, but are now represented by negative numbers.

Creating a Date Object
You can create a Date object using the new keyword. You can also optionally specify

the date to store in the object when you create it. You can use any of the following

formats:

birthday = new Date();
birthday = new Date(“June 20, 2003 08:00:00”);
birthday = new Date(6, 20, 2003);
birthday = new Date(6, 20, 2003, 8, 0, 0);

You can choose any of these formats, depending on which values you wish to set. If

you use no parameters, as in the first example, the current date is stored in the object.

You can then set the values using the set methods, described in the next section.

Setting Date Values
A variety of set methods enable you to set components of a Date object to values:

. setDate() sets the day of the month.

. setMonth() sets the month. JavaScript numbers the months from 0 to 11,

starting with January (0).

. setFullYear() sets the year.

. setTime() sets the time (and the date) by specifying the number of millisec-

onds since January 1, 1970.

. setHours(), setMinutes(), and setSeconds() set the time.

By the
Way

Working with Dates 127

As an example, the following statement sets the year of a Date object called holi-

day to 2003:

holiday.setFullYear(2003);

Reading Date Values
You can use the get methods to get values from a Date object. This is the only way

to obtain these values, because they are not available as properties. Here are the

available get methods for dates:

. getDate() gets the day of the month.

. getMonth() gets the month.

. getFullYear() gets the year.

. getTime() gets the time (and the date) as the number of milliseconds since

January 1, 1970.

. getHours(), getMinutes(), getSeconds(), and getMilliseconds() get the

components of the time.

Along with setFullYear and getFullYear, which require four-digit years,
JavaScript includes setYear and getYear methods, which use two-digit year val-
ues. You should always use the four-digit version to avoid Year 2000 issues.

Working with Time Zones
Finally, a few functions are available to help your Date objects work with local time

values and time zones:

. getTimeZoneOffset() gives you the local time zone’s offset from UTC

(Coordinated Universal Time, based on the old Greenwich Mean Time stan-

dard). In this case, local refers to the location of the browser. (Of course, this

only works if the user has set his or her system clock accurately.)

. toUTCString() converts the date object’s time value to text, using UTC. This

method was introduced in JavaScript 1.2 to replace the toGMTString method,

which still works but should be avoided.

. toLocalString() converts the date object’s time value to text, using local

time.

By the
Way

128 HOUR 8: Using Built-in Functions and Libraries

Along with these basic functions, JavaScript 1.2 and later include UTC versions of

several of the functions described previously. These are identical to the regular com-

mands, but work with UTC instead of local time:

. getUTCDate() gets the day of the month in UTC time.

. getUTCDay() gets the day of the week in UTC time.

. getUTCFullYear() gets the four-digit year in UTC time.

. getUTCMonth() returns the month of the year in UTC time.

. getUTCHours(), getUTCMinutes(), getUTCSeconds(), and

getUTCMilliseconds() return the components of the time in UTC.

. setUTCDate(), setUTCFullYear(), setUTCMonth(), setUTCHours(),

setUTCMinutes(), setUTCSeconds(), and setUTCMilliseconds() set the

time in UTC.

Converting Between Date Formats
Two special methods of the Date object allow you to convert between date formats.

Instead of using these methods with a Date object you created, you use them with

the built-in object Date itself. These include the following:

. Date.parse() converts a date string, such as June 20, 1996, to a Date

object (number of milliseconds since 1/1/1970).

. Date.UTC() does the opposite. It converts a Date object value (number of mil-

liseconds) to a UTC (GMT) time.

Using Third-Party Libraries
When you use JavaScript’s built-in Math and Date functions, JavaScript does most of

the work—you don’t have to figure out how to convert dates between formats or cal-

culate a cosine. Third-party libraries are not included with JavaScript, but they serve

a similar purpose—enabling you to do complicated things with only a small

amount of code.

Using one of these libraries is usually as simple as copying one or more files to your

site and including a <script> tag in your document to load the library. Several

popular JavaScript libraries are discussed in the following sections.

Using Third-Party Libraries 129

JavaScript libraries are a relatively new phenomenon, and new libraries are
appearing regularly. See this book’s website for an updated list of libraries.

Prototype
Prototype, created by Sam Stephenson, is a JavaScript library that simplifies tasks

such as working with DOM objects, dealing with data in forms, and remote scripting

(AJAX). By including a single prototype.js file in your document, you have access

to many improvements to basic JavaScript.

For example, you’ve used the document.getElementById method to obtain the

DOM object for an element within a web page. Prototype includes an improved ver-

sion of this in the $() function. Not only is it easier to type, but it is also more

sophisticated than the built-in function and supports multiple objects.

Adding Prototype to your pages requires only one file, prototype.js, and one

<script> tag:

<script type=”text/javascript” src=”prototype.js”> </script>

Prototype is free, open-source software. You can download it from its official web-
site at http://prototype.conio.net. Prototype is also built into the Ruby on Rails
framework for the server-side language Ruby—see http://www.rubyonrails.com/
for more information.

Script.aculo.us
By the end of this book, you’ll learn to do some impressive things with JavaScript—

for example, animating an object within a page. The code for a task like this is

complex, but you can also include effects in your pages using a prebuilt library. This

enables you to use impressive effects with only a few lines of code.

Script.aculo.us by Thomas Fuchs is one such library. It includes functions to simplify

drag-and-drop tasks, such as rearranging lists of items. It also includes a number of

Combination Effects, which enable you to use highlighting and animated transi-

tions within your pages. For example, a new section of the page can be briefly high-

lighted in yellow to get the user’s attention, or a portion of the page can fade out or

slide off the screen.

After you’ve included the appropriate files, using effects is as easy as using any of

JavaScript’s built-in methods. For example, the following statements use

Script.aculo.us to fade out an element of the page with the id value test:

Did you
Know?

By the
Way

http://www.rubyonrails.com/
http://prototype.conio.net

130 HOUR 8: Using Built-in Functions and Libraries

obj = document.getElementById(“test”);
new Effect.Fade(obj);

Script.aculo.us is built on the Prototype framework described in the previous section,

and includes all of the functions of Prototype, so you could also simplify this further

by using the $ function:

new Effect.Fade($(“test”));

You will create a script that demonstrates several Script.aculo.us effects in the Try
It Yourself section later this hour.

AJAX Frameworks
AJAX (Asynchronous JavaScript and XML), also known as remote scripting, enables

JavaScript to communicate with a program running on the web server. This enables

JavaScript to do things that were traditionally not possible, such as dynamically load-

ing information from a database or storing data on a server without refreshing a page.

Unfortunately, AJAX requires some complex scripting, particularly because the

methods you use to communicate with the server vary depending on the browser in

use. Fortunately, many libraries have been created to fill the need for a simple way

to use AJAX.

The Prototype library, described previously, includes AJAX features. There are also

many dedicated AJAX libraries. One of the most popular is SAJAX (Simple AJAX),

an open-source toolkit that makes it easy to use AJAX to communicate with PHP,

Perl, and other languages from JavaScript. Visit the SAJAX website for details at

http://www.modernmethod.com/sajax.

See Hour 17, “AJAX: Remote Scripting,” for examples of remote scripting, with and
without using third-party libraries.

Other Libraries
There are many more JavaScript libraries out there, and more are appearing all of

the time as JavaScript is taken more seriously as an application language. Here are

some more libraries you might want to explore:

. Dojo (http://www.dojotoolkit.org/) is an open-source toolkit that adds power to

JavaScript to simplify building applications and user interfaces. It adds fea-

tures ranging from extra string and math functions to animation and AJAX.

Did you
Know?

By the
Way

http://www.modernmethod.com/sajax
http://www.dojotoolkit.org/

▼

Other Libraries 131

. The Yahoo! UI Library (http://developer.yahoo.net/yui/) was developed by

Yahoo! and made available to everyone under an open-source license. It

includes features for animation, DOM features, event management, and easy-

to-use user interface elements such as calendars and sliders.

. MochiKit (http://mochikit.com/) is a lightweight library that adds features for

working with the DOM, CSS colors, string formatting, and AJAX. It also sup-

ports a nice logging mechanism for debugging your scripts.

Try It Yourself

Adding Effects with a Library
To see how simple it is to use an external library, you will now create an example

script that includes the Script.aculo.us library and use event handlers to demon-

strate several of the available effects.

This example was created using version 1.5.1 of the Script.aculo.us library. It
should work with later versions, but the library might have changed since this was
written. If you have trouble, you might need to use this specific version.

Downloading the Library
To use the library, you will need to download it and copy the files you need to the

same folder where you will store your script. You can download the library from the

Script.aculo.us website at http://script.aculo.us/downloads.

The download is available as a Zip file. Inside the Zip file you will find a folder

called scriptaculous-js-x.x.x. You will need the following files from the folders

under this folder:

. prototype.js (the Prototype library) from the lib folder

. effects.js (the effects functions) from the src folder

Copy both of these files to a folder on your computer, and be sure to create your

demonstration script in the same folder.

The Script.aculo.us download includes many other files, and you can include the
entire library if you intend to use all of its features. For this example, you only
need the two files described here.

Watch
Out!

By the
Way

http://developer.yahoo.net/yui/
http://mochikit.com/
http://script.aculo.us/downloads

132 HOUR 8: Using Built-in Functions and Libraries

Including the Files
To add the library to your HTML document, simply use <script> tags to include

the two JavaScript files you copied from the download:

<script type=”text/javascript” src=”prototype.js”> </script>
<script type=”text/javascript” src=”effects.js”> </script>

If you include these statements as the first things in the <head> section of your docu-

ment, the library functions will be available to other scripts or event handlers any-

where in the page.

Using Effects
After you have included the library, you simply need to include a bit of JavaScript to

trigger the effects. We will use a section of the page wrapped in a <div> tag with the

id value test to demonstrate the effects. Each effect is triggered by a simple event

handler on a button. For example, this code defines the Fade Out button:

<input type=”button” value=”Fade Out”
onClick=”new Effect.Fade($(‘test’))”>

This uses the $ function built into Prototype to obtain the object for the element with

the id value test, and then passes it to the Effect.Fade() function built into

Script.aculo.us.

This example will demonstrate six effects: Fade, Appear, SlideUp, SlideDown,
Highlight, and Shake. There are more than 16 effects in the library, plus meth-
ods for supporting Drag and Drop and other features. See http://script.aculo.us
for details.

Building the Script
After you have included the libraries, you can combine them with event handlers

and some example text to create a complete demonstration of Script.aculo.us effects.

The complete HTML document for this example is shown in Listing 8.2.

LISTING 8.2 The Complete Library Effects Example
<html>
<head>
<title>Testing script.aculo.us effects</title>
<script type=”text/javascript” src=”prototype.js”> </script>
<script type=”text/javascript” src=”effects.js”> </script>
</head>
<body”>
<h1>Testing script.aculo.us Effects</h1>
<form name=”form1”>

Did you
Know?

http://script.aculo.us

▲

Other Libraries 133

<input type=”button” value=”Fade Out”
onClick=”new Effect.Fade($(‘test’))”>

<input type=”button” value=”Fade In”
onClick=”new Effect.Appear($(‘test’))”>

<input type=”button” value=”Slide Up”
onClick=”new Effect.SlideUp($(‘test’))”>

<input type=”button” value=”Slide Down”
onClick=”new Effect.SlideDown($(‘test’))”>

<input type=”button” value=”Highlight”
onClick=”new Effect.Highlight($(‘test’))”>

<input type=”button” value=”Shake”
onClick=”new Effect.Shake($(‘test’))”>

</form>
<div id=”test”

style=”background-color:#CCC; margin:20px; padding:10px;”>
<h2>Testing Effects</h2>
<hr>
<p>This section of the document is within a <div> element
with the id value test. The event handlers on the
buttons above send this object to the
script.aculo.us library
to perform effects. Click the buttons to see the effects.
</p>
</div>
</body>
</html>

This document starts with two <script> tags to include the library’s files. The effects

are triggered by the event handlers defined for each of the six buttons. The <div> sec-

tion at the end defines the test element that will be used to demonstrate the effects.

To try this example, make sure the prototype.js and effects.js files from

Script.aculo.us are stored in the same folder as your script, and then load the HTML

file into a browser. The display should look like Figure 8.2, and you can use the six

buttons at the top of the page to trigger effects.

FIGURE 8.2
The library
effects example
as displayed by
Firefox.

LISTING 8.2 Continued

134 HOUR 8: Using Built-in Functions and Libraries

Summary
In this hour, you learned some specifics about the Math and Date objects built into

JavaScript, and learned more than you ever wanted to know about random num-

bers. You also learned how third-party libraries can simplify your scripting, and you

used a library to create special effects in a web page.

You’ve reached the end of Part II, which covered some basic building blocks of

JavaScript programs. In Part III, you’ll learn more about the Document Object

Model, which contains objects that refer to various parts of the browser window and

HTML document. This begins in Hour 9, “Responding to Events.”

Q&A
Q. The random numbers are generated so quickly I can’t be sure it’s happening

at all. Is there a way to slow this process down?

A. Yes. If you add one or more form fields to the example and use them to dis-

play the data as it is generated, you’ll see a much slower result. It will still be

done within a couple of seconds on a fast computer, though.

Q. Can I use more than one third-party library in the same script?

A. Yes, in theory: If the libraries are well written and designed not to interfere

with each other, there should be no problem combining them. In practice, this

will depend on the libraries you need and how they were written.

Q. Can I build my own library to simplify scripting?

A. Yes, as you deal with more complicated scripts, you’ll find yourself using the

same functions over and over. You can combine them into a library for your

own use. This is as simple as creating a .js file.

Quiz Questions
Test your knowledge of JavaScript libraries and built-in functions by answering the

following questions.

1. Which of the following objects cannot be used with the new keyword?

a. Date

b. Math

c. String

Exercises 135

2. How does JavaScript store dates in a Date object?

a. The number of milliseconds since January 1, 1970

b. The number of days since January 1, 1900

c. The number of seconds since Netscape’s public stock offering

3. What is the range of random numbers generated by the Math.random func-

tion?

a. Between 1 and 100

b. Between 1 and the number of milliseconds since January 1, 1970

c. Between 0 and 1

Quiz Answers
1. b. The Math object is static; you can’t create a Math object.

2. a. Dates are stored as the number of milliseconds since January 1, 1970.

3. c. JavaScript’s random numbers are between 0 and 1.

Exercises
To further explore the JavaScript features you learned about in this hour, you can

perform the following exercises:

. Modify the random number script in Listing 8.1 to run three times, calculating

a total of 15,000 random numbers, and display separate totals for each set of

5,000. (You’ll need to use another for loop that encloses most of the script.)

. Visit the Script.aculo.us page at http://script.aculo.us/ to find the complete list

of effects. Modify Listing 8.2 to add buttons for one or more additional effects.

http://script.aculo.us/

This page intentionally left blank

PART III:

Learning More About the DOM

HOUR 9 Responding to Events 139

HOUR 10 Using Windows and Frames 157

HOUR 11 Getting Data with Forms 173

HOUR 12 Working with Style Sheets 191

HOUR 13 Using the W3C DOM 207

HOUR 14 Using Advanced DOM Features 219

This page intentionally left blank

HOUR 9

Responding to Events

What You’ll Learn in This Hour:
. How event handlers work
. How event handlers relate to objects
. Creating an event handler
. Testing an event handler
. Detecting mouse actions
. Detecting keyboard actions
. Intercepting events with a special handler
. Adding friendly link descriptions to a web page

In your experience with JavaScript so far, most of the scripts you’ve written have executed

in a calm, orderly fashion, moving from the first statement to the last.

In this hour, you’ll learn to use the wide variety of event handlers supported by JavaScript.

Rather than executing in order, scripts using event handlers can interact directly with the

user. You’ll use event handlers in just about every script you write in the rest of this book.

Understanding Event Handlers
As you learned in Hour 3, “Getting Started with JavaScript Programming,” JavaScript pro-

grams don’t have to execute in order. You also learned they can detect events and react to

them. Events are things that happen to the browser—the user clicking a button, the mouse

pointer moving, or a web page or image loading from the server.

A wide variety of events enable your scripts to respond to the mouse, the keyboard, and

other circumstances. Events are the key method JavaScript uses to make web documents

interactive.

140 HOUR 9: Responding to Events

The script that you use to detect and respond to an event is called an event handler.

Event handlers are among the most powerful features of JavaScript. Luckily, they’re

also among the easiest features to learn and use—often, a useful event handler

requires only a single statement.

Objects and Events
As you learned in Hour 4, “Working with the Document Object Model (DOM),”

JavaScript uses a set of objects to store information about the various parts of a web

page—buttons, links, images, windows, and so on. An event can often happen in

more than one place (for example, the user could click any one of the links on the

page), so each event is associated with an object.

Each event has a name. For example, the onMouseOver event occurs when the mouse

pointer moves over an object on the page. When the pointer moves over a particular

link, the onMouseOver event is sent to that link’s event handler, if it has one.

Notice the strange capitalization on the onMouseOver keyword. This is the stan-
dard notation for event handlers. The on is always lowercase, and each word in
the event name is capitalized.

Creating an Event Handler
You don’t need the <script> tag to define an event handler. Instead, you can add

an event handler attribute to an individual HTML tag. For example, here is a link

that includes an onMouseOver event handler:

<a href=”http://www.jsworkshop.com/”
onMouseOver=”window.alert(‘You moved over the link.’);”>

Click here

Note that this is all one <a> tag, although it’s split into multiple lines. This specifies

a statement to be used as the onMouseOver event handler for the link. This state-

ment displays an alert message when the mouse moves over the link.

The previous example uses single quotation marks to surround the text. This is nec-
essary in an event handler because double quotation marks are used to surround
the event handler itself. (You can also use single quotation marks to surround the
event handler and double quotes within the script statements.)

By the
Way

By the
Way

Understanding Event Handlers 141

You can use JavaScript statements like the previous one in an event handler, but if

you need more than one statement, it’s a good idea to use a function instead. Just

define the function in the header of the document, and then call the function as the

event handler like this:

Move the mouse over this link.

This example calls a function called DoIt() when the user moves the mouse over

the link. Using a function is convenient because you can use longer, more readable

JavaScript routines as event handlers. You’ll use a longer function to handle events

in the “Try It Yourself: Adding Link Descriptions to a Web Page” section of this hour.

For simple event handlers, you can use two statements if you separate them with
a semicolon. However, in most cases it’s easier to use a function to perform the
statements.

Defining Event Handlers with JavaScript
Rather than specifying an event handler in an HTML document, you can use

JavaScript to assign a function as an event handler. This allows you to set event

handlers conditionally, turn them on and off, and change the function that handles

an event dynamically.

Setting up event handlers this way is also a good practice in general: It allows you
to use an external JavaScript file to define the function and set up the event,
keeping the JavaScript code completely separate from the HTML file.

To define an event handler in this way, you first define a function, and then assign

the function as an event handler. Event handlers are stored as properties of the doc-

ument object or another object that can receive an event. For example, these state-

ments define a function called mousealert(), and then assign it as the

onMouseDown event handler for the document:

function mousealert() {
alert (“You clicked the mouse!”);

}
document.onmousedown = mousealert;

You can use this technique to set up an event handler for any HTML element, but

an additional step is required: You must first find the object corresponding to the ele-

ment. To do this, use the document.getElementById() function. First, define an ele-

ment in the HTML document and specify an id attribute:

Did you
Know?

Did you
Know?

142 HOUR 9: Responding to Events

Next, in the JavaScript code, find the object and apply the event handler:

obj = document.getElementById(“link1”);
obj.onclick = MyFunction;

You can do this for any object as long as you’ve defined it with a unique id attrib-

ute in the HTML file. Using this technique, you can easily assign the same function

to handle events for multiple objects without adding clutter to your HTML code. See

the “Try It Yourself” section in this hour for an example of this technique.

Supporting Multiple Event Handlers
What if you want more than one thing to happen when you click on an element?

For example, suppose you want two functions called update and display to both

execute when a button is clicked. You can’t assign two functions to the onclick

property. One solution is to define a function that calls both functions:

function UpdateDisplay() {
update();
display();

}

This isn’t always the ideal way to do things. For example, if you’re using two third-

party scripts and both of them want to add an onLoad event to the page, there

should be a way to add both. The W3C DOM standard defines a function,

addEventListener, for this purpose. This function defines a listener for a particular

event and object, and you can add as many listener functions as you need.

Unfortunately, addEventListener is not supported by Internet Explorer (as of ver-

sions 6 and 7), so you have to use a different function, attachEvent, in that brows-

er. See Hour 15, “Unobtrusive Scripting,” for a function that combines these two for

a cross-browser event-adding script.

Using the event Object
When an event occurs, you might need to know more about the event—for exam-

ple, for a keyboard event, you need to know which key was pressed. The DOM

includes an event object that provides this information.

To use the event object, you can pass it on to your event handler function. For

example, this statement defines an onKeyPress event that passes the event object

to a function:

<body onKeyPress=”getkey(event);”>

Understanding Event Handlers 143

You can then define your function to accept the event as a parameter:

function getkey(e) {
...
}

In Mozilla-based browsers (Firefox and Netscape), an event object is automatically

passed to the event handler function, so this will work even if you use JavaScript

rather than HTML to define an event handler. In Internet Explorer, the most recent

event is stored in the window.event object. The previous HTML example passes this

object to the event handler function. If you define the event handler with JavaScript,

this is not possible, so you need to use some code to find the correct object:

Function getkey(e) {
if (!e) e=window.event;

...
}

This checks whether the e variable is already defined. If not, it gets the

window.event object and stores it in e. This ensures that you have a valid event

object in any browser.

Unfortunately, while both Internet Explorer and Mozilla-based browsers support

event objects, they support different properties. One property that is the same in

both browsers is event.type, the type of event. This is simply the name of the

event, such as mouseover for an onMouseOver event, and keypress for an

onKeyPress event. The following sections list some additional useful properties for

each browser.

Internet Explorer event Properties
The following are some of the commonly used properties of the event object for

Internet Explorer 4.0 and later:

. event.button—The mouse button that was pressed. This value is 1 for the left

button and usually 2 for the right button.

. event.clientX—The x-coordinate (column, in pixels) where the event

occurred.

. event.clientY—The y-coordinate (row, in pixels) where the event occurred.

. event.altkey—A flag that indicates whether the Alt key was pressed during

the event.

. event.ctrlkey—Indicates whether the Ctrl key was pressed.

. event.shiftkey—Indicates whether the Shift key was pressed.

144 HOUR 9: Responding to Events

. event.keyCode—The key code (in Unicode) for the key that was pressed.

. event.srcElement—The object where the element occurred.

See the Try it Yourself section of this hour for an example that uses the
srcElement property and Mozilla’s target property for a cross-browser method of
determining the object for an event.

Netscape and Firefox event Properties
The following are some of the commonly used properties of the event object for

Netscape 4.0 and later:

. event.modifiers—Indicates which modifier keys (Shift, Ctrl, Alt, and so on)

were held down during the event. This value is an integer that combines bina-

ry values representing the different keys.

. event.pageX—The x-coordinate of the event within the web page.

. event.pageY—The y-coordinate of the event within the web page.

. event.which—The keycode for keyboard events (in Unicode), or the button

that was pressed for mouse events (It’s best to use the cross-browser button

property instead.)

. event.button—The mouse button that was pressed. This works just like

Internet Explorer except that the left button’s value is 0 and the right button’s

value is 2.

. event.target—The object where the element occurred.

The event.pageX and event.pageY properties are based on the top-left corner of
the element where the event occurred, not always the exact position of the mouse
pointer.

Using Mouse Events
The DOM includes a number of event handlers for detecting mouse actions. Your

script can detect the movement of the mouse pointer and when a button is clicked,

released, or both.

By the
Way

By the
Way

Using Mouse Events 145

Over and Out
You’ve already seen the first and most common event handler, onMouseOver. This

handler is called when the mouse pointer moves over a link or other object.

The onMouseOut handler is the opposite—it is called when the mouse pointer moves

out of the object’s border. Unless something strange happens, this always happens

sometime after the onMouseOver event is called.

This handler is particularly useful if your script has made a change when the point-

er moved over the object—for example, displaying a message in the status line or

changing an image. You can use an onMouseOut handler to undo the action when

the pointer moves away.

You’ll use both onMouseOver and onMouseOut handlers in the “Try it Yourself:

Adding Link Descriptions to a Web Page” section at the end of this hour.

One of the most common uses for the onMouseOver and onMouseOut event han-
dlers is to create rollovers—images that change when the mouse moves over
them. You’ll learn how to create these in Hour 19, “Using Graphics and
Animation.”

Using the onMouseMove Event
The onMouseMove event occurs any time the mouse pointer moves. As you might

imagine, this happens quite often—the event can trigger hundreds of times as the

mouse pointer moves across a page.

Because of the large number of generated events, browsers don’t support the

onMouseMove event by default. To enable it for a page, you need to use event captur-

ing. This is similar to the dynamic events technique you learned earlier in this hour,

but requires an extra step for some older browsers.

The basic syntax to support this event, for both browsers, is to set a function as the

onMouseMove handler for the document or another object. For example, this state-

ment sets the onMouseMove handler for the document to a function called MoveHere,

which must be defined in the same page:

document.onMouseMove=MoveHere;

Additionally, older versions of Netscape require that you specifically enable the

event using the document.captureEvents method:

document.captureEvents(Event.MOUSEMOVE);

Did you
Know?

146 HOUR 9: Responding to Events

Ups and Downs (and Clicks)
You can also use events to detect when the mouse button is clicked. The basic event

handler for this is onClick. This event handler is called when the mouse button is

clicked while positioned over the appropriate object.

The object in this case can be a link. It can also be a form element. You’ll learn
more about forms in Hour 11, “Getting Data with Forms.”

For example, you can use the following event handler to display an alert when a

link is clicked:

<a href=”http://www.jsworkshop.com/”
onClick=”alert(‘You are about to leave this site.’);”>Click Here

In this case, the onClick event handler runs before the linked page is loaded into

the browser. This is useful for making links conditional or displaying a disclaimer

before launching the linked page.

If your onClick event handler returns the false value, the link will not be followed.

For example, the following is a link that displays a confirmation dialog. If you click

Cancel, the link is not followed; if you click OK, the new page is loaded:

<a href=”http://www.jsworkshop.com/”
onClick=”return(window.confirm(‘Are you sure?’));”>
Click Here

This example uses the return statement to enclose the event handler. This ensures

that the false value that is returned when the user clicks Cancel is returned from

the event handler, which prevents the link from being followed.

The onDblClick event handler is similar, but is only used if the user double-clicks

on an object. Because links usually require only a single click, you could use this to

make a link do two different things depending on the number of clicks. (Needless to

say, this could be confusing.) You can also detect double-clicks on images and other

objects.

To give you even more control of what happens when the mouse button is pressed,

two more events are included:

. onMouseDown is used when the user presses the mouse button.

. onMouseUp is used when the user releases the mouse button.

These two events are the two halves of a mouse click. If you want to detect an entire

click, use onClick. Use onMouseUp and onMouseDown to detect just one or the other.

By the
Way

Using Mouse Events 147

To detect which mouse button is pressed, you can use the button property of the

event object. This property is assigned the value 0 or 1 for the left button, and 2 for

the right button. This property is assigned for onClick, onDblClick, onMouseUp,

and onMouseDown events.

Browsers don’t normally detect onClick or onDblClick events for the right
mouse button. If you want to detect the right button, onMouseDown is the most
reliable way.

As an example of these event handlers, you can create a script that displays infor-

mation about mouse button events and determines which button is pressed. Listing

9.1 shows the mouse event script.

LISTING 9.1 The JavaScript file for the mouse click example.
function mousestatus(e) {

if (!e) e = window.event;
btn = e.button;
whichone = (btn < 2) ? “Left” : “Right”;
message=e.type + “ : “ + whichone + “\n”;
document.form1.info.value += message;

}
obj=document.getElementById(“testlink”);
obj.onmousedown = mousestatus;
obj.onmouseup = mousestatus;
obj.onclick = mousestatus;
obj.ondblclick = mousestatus;

This script includes a function, mousestatus(), that detects mouse events. This

function uses the button property of the event object to determine which button

was pressed. It also uses the type property to display the type of event, since the

function will be used to handle multiple event types.

After the function, the script finds the object for a link with the id attribute

testlink and assigns its onmousedown, onmouseup, onclick, and ondblclick

events to the mousestatus function.

Save this script as click.js. Next, you will need an HTML document to work with

the script, shown in Listing 9.2.

LISTING 9.2 The HTML file for the mouse click example.
<html>
<head>
<title>Mouse click test</title>
</head>
<body>
<h1>Mouse Click Test</h1>

Watch
Out!

By the
Way

148 HOUR 9: Responding to Events

<p>Click the mouse on the test link below. A message below
will indicate which button was clicked.</p>
<h2>Test Link</h2>
<form name=”form1”>
<textarea rows=”10” cols=”70” name=”info”></textarea>
</form>
<script language=”javascript” type=”text/javascript”

src=”click.js”>
</script>
</body>
</html>

This file defines a test link with the id property testlink, which is used in the script

to assign event handlers. It also defines a form and a textarea used by the script to

display the events. To test this document, save it in the same folder as the JavaScript

file you created previously and load the HTML document into a browser. The results

are shown in Figure 9.1.

LISTING 9.2 Continued

FIGURE 9.1
The mouse click
example in
action.

Notice that a single click of the left mouse button triggers three events:
onMouseDown, onMouseUp, and then onClick.

Using Keyboard Events 149

Using Keyboard Events
JavaScript can also detect keyboard actions. The main event handler for this pur-

pose is onKeyPress, which occurs when a key is pressed and released, or held down.

As with mouse buttons, you can detect the down and up parts of the keypress with

the onKeyDown and onKeyUp event handlers.

Of course, you might find it useful to know which key the user pressed. You can find

this out with the event object, which is sent to your event handler when the event

occurs. In Netscape and Firefox, the event.which property stores the ASCII charac-

ter code for the key that was pressed. In Internet Explorer, event.keyCode serves the

same purpose.

ASCII (American Standard Code for Information Interchange) is the standard
numeric code used by most computers to represent characters. It assigns the
numbers 0–128 to various characters—for example, the capital letters A through
Z are ASCII values 65 to 90.

Displaying Typed Characters
If you’d rather deal with actual characters than key codes, you can use the

fromCharCode string method to convert them. This method converts a numeric ASCII

code to its corresponding string character. For example, the following statement con-

verts the event.which property to a character and stores it in the key variable:

Key = String.fromCharCode(event.which);

Because different browsers have different ways of returning the key code, displaying

keys browser independently is a bit harder. However, you can create a script that dis-

plays keys for either browser. The following function will display each key as it is

typed:

function DisplayKey(e) {
// which key was pressed?
if (e.keyCode) keycode=e.keyCode;

else keycode=e.which;
character=String.fromCharCode(keycode);
// find the object for the destination paragraph
k = document.getElementById(“keys”);
// add the character to the paragraph
k.innerHTML += character;

}

By the
Way

150 HOUR 9: Responding to Events

The DisplayKey() function receives the event object from the event handler and

stores it in the variable e. It checks whether the e.keyCode property exists, and

stores it in the keycode variable if present. Otherwise, it assumes the browser is

Netscape or Firefox and assigns keycode to the e.which property.

The remaining lines of the function convert the key code to a character and add it

to the paragraph in the document with the id attribute keys. Listing 9.3 shows a

complete example using this function.

The final lines in the DisplayKey() function use the getElementById() function
and the innerHTML attribute to display the keys you type within a paragraph on
the page. This technique is explained in Hour 13, “Using the W3C DOM.”

LISTING 9.3 Displaying Typed Characters
<html>
<head>
<title>Displaying Keypresses</title>
<script language=”javascript” type=”text/javascript”>

function DisplayKey(e) {
// which key was pressed?
if (e.keyCode) keycode=e.keyCode;

else keycode=e.which;
character=String.fromCharCode(keycode);
// find the object for the destination paragraph
k = document.getElementById(“keys”);
// add the character to the paragraph
k.innerHTML += character;

}
</script>
</head>
<body onKeyPress=”DisplayKey(event);”>
<h1>Displaying Typed Characters</h1>
<p>This document includes a simple script that displays the keys
you type in the paragraph below. Type a few keys and try it. </p>
<p id=”keys”>
</p>
</body>
</html>

When you load this example into either Netscape or Internet Explorer, you can type

and see the characters you’ve typed appear in a paragraph of the document. Figure

9.2 shows this example in action in Firefox.

By the
Way

▼

Using the onLoad and onUnload Events 151

Using the onLoad and onUnload Events
Another event you’ll use frequently is onLoad. This event occurs when the current

page (including all of its images) finishes loading from the server.

The onLoad event is related to the window object, and to define it you use an event

handler in the <body> tag. For example, the following is a <body> tag that uses a

simple event handler to display an alert when the page finishes loading:

<body onLoad=”alert(‘Loading complete.’);”>

Because the onLoad event occurs after the HTML document has finished loading
and displaying, you cannot use the document.write or document.open state-
ments within an onLoad event handler. This would overwrite the current document.

In JavaScript 1.1 and later, images can also have an onLoad event handler. When

you define an onLoad event handler for an tag, it is triggered as soon as the

specified image has completely loaded.

To set an onLoad event using JavaScript, you assign a function to the onload proper-

ty of the window object:

window.onload = MyFunction;

You can also specify an onUnload event for the <body> tag. This event will be trig-

gered whenever the browser unloads the current document—this occurs when anoth-

er page is loaded or when the browser window is closed.

Try It Yourself

Adding Link Descriptions to a Web Page
One of the most common uses for an event handler is to display descriptions of links

when the user moves the mouse over them. For example, moving the mouse over

the Order Form link might display a message such as “Order a product or check an

order’s status”.

FIGURE 9.2
Firefox displays
the keypress
example.

Watch
Out!

152 HOUR 9: Responding to Events

Link descriptions like these are typically displayed with the onMouseOver event han-

dler. You will now create a script that displays messages in this manner and clears

the message using the onMouseOut event handler. You’ll use functions to simplify

the process.

This example uses the innerHTML property to display the descriptions within a
heading on the page. See Hour 13 for a complete description of this property.

This will also be an example of defining event handlers entirely with JavaScript. The

HTML document, shown in Listing 9.4, does not include any <script> tags or event

handlers—the only thing it requires is some id attributes on the objects we will be

using in the script.

LISTING 9.4 The HTML Document for the Descriptive Links Example
<html>
<head>
<title>Descriptive Links</title>
</head>
<body>
<h1>Descriptive Links</h1>
<p>Move the mouse pointer over one of
these links to view a description:</p>

Order Form
Email
Complaint Department

<h2 id=”description”></h2>
<script language=”JavaScript” type=”text/javascript” src=”linkdesc.js”>
</script>
</body>
</html>

This document defines three links in a bulleted list. Each <a> tag is defined with an

id attribute for the script to use to attach an event handler. The <h2> tag with the

id value description, currently blank, will be used to display a description of each

link.

Notice that the <script> tag is below the content of the HTML document. It
would not work at the top of the document because the objects the script uses
are not yet defined. You can also deal with this issue by using an onLoad event
handler instead of a simple script to set up the event handlers.

By the
Way

By the
Way

Using the onLoad and onUnload Events 153

The script will begin with a function to serve as the onMouseOver event handler for

the links:

function hover(e) {
if (!e) var e = window.event;
// which link was the mouse over?
whichlink = (e.target) ? e.target.id : e.srcElement.id;
// choose the appropriate description
if (whichlink==”order”) desc = “Order a product”;
else if (whichlink==”email”) desc = “Send us a message”;
else if (whichlink==”complain”) desc = “Insult us, our products, or our

families”;
// display the description in the H2
d = document.getElementById(“description”);
d.innerHTML = desc;

}

The hover function uses the target or srcElement properties to find the target

object for the link, and then finds its id attribute. Three if statements evaluate the

id and choose an appropriate description. Finally, the script uses the

getElementById() method to find the <h2> tag that will display the descriptions,

and displays the description using the innerHTML property.

The conditional statement on the third line of the hover function checks whether
the target property exists, and if not, it uses the srcElement property. This is
called feature sensing—detecting whether the browser supports a feature—and is
explained further in Hour 15, “Unobtrusive Scripting.”

One more function will be required. The cleardesc() function will serve as the

onMouseOut event handler and clear the description when the mouse is no longer

over one of the links.

function cleardesc() {
d = document.getElementById(“description”);
d.innerHTML = “”;

}

Now that the functions are defined, you need to set them as the event handlers for

the links. Each link requires the following three lines of code:

orderlink = document.getElementById(“order”);
orderlink.onmouseover=hover;
orderlink.onmouseout=cleardesc;

After using getElementById() to find the object with the id attribute “order”, this

sets up the hover() and cleardesc() functions as its onMouseOver and onMouseOut

event handlers. This will need to be repeated for the other two links. Putting all of

this together, the complete JavaScript file for this example is shown in Listing 9.5.

Did you
Know?

154 HOUR 9: Responding to Events

LISTING 9.5 The JavaScript File for the Link Descriptions Example
function cleardesc() {

d = document.getElementById(“description”);
d.innerHTML = “”;

}
function hover(e) {

if (!e) var e = window.event;
// which link was the mouse over?
whichlink = (e.target) ? e.target.id : e.srcElement.id;
// choose the appropriate description
if (whichlink==”order”) desc = “Order a product”;
else if (whichlink==”email”) desc = “Send us a message”;
else if (whichlink==”complain”) desc = “Insult us, our products, or our

families”;
// display the description in the H2
d = document.getElementById(“description”);
d.innerHTML = desc;

}
// Set up the event handlers
orderlink = document.getElementById(“order”);
orderlink.onmouseover=hover;
orderlink.onmouseout=cleardesc;
emaillink = document.getElementById(“email”);
emaillink.onmouseover=hover;
emaillink.onmouseout=cleardesc;
complainlink = document.getElementById(“complain”);
complainlink.onmouseover=hover;
complainlink.onmouseout=cleardesc;

To test the script, store it as linkdesc.js in the same folder as the HTML document,

and load the HTML file into a browser; this script should work on any JavaScript-

capable browser. Internet Explorer’s display of the example is shown in Figure 9.3.

As usual, you can download the listings for this hour from this book’s website.Did you
Know?

FIGURE 9.3
Internet Explorer
displays the
descriptive links
example.

▲

155Summary

Summary
In this hour, you’ve learned to use events to detect mouse actions, keyboard actions,

and other events, such as the loading of the page. You can use event handlers to

perform a simple JavaScript statement when an event occurs, or to call a more com-

plicated function.

JavaScript includes a variety of other events. Many of these are related to forms,

which you’ll learn more about in Hour 11. Another useful event is onError, which

you can use to prevent error messages from displaying. This event is described in

Hour 16, “Debugging JavaScript Applications.”

In the next hour, you’ll continue learning about the objects in the DOM.

Specifically, Hour 10, “Using Windows and Frames,” looks at the objects associated

with windows, frames, and layers, and how they work with JavaScript.

Q&A
Q. I noticed that the tag in HTML can’t have onMouseOver or onClick

event handlers in some browsers. How can my scripts respond when the
mouse moves over an image?

A. The easiest way to do this is to make the image a link by surrounding it with

an <a> tag. You can include the BORDER=0 attribute to prevent the blue link

border from being displayed around the image.

Q. My image rollovers using onMouseOver work perfectly in Internet Explorer, but
not in Netscape. Why?

A. Re-read the previous answer, and check whether you’ve used an onMouseOver

event for an tag. This is supported by Internet Explorer and Netscape 6,

but not by earlier versions of Netscape.

Q. What happens if I define both onKeyDown and onKeyPress event handlers?
Will they both be called when a key is pressed?

A. The onKeyDown event handler is called first. If it returns true, the onKeyPress

event is called. Otherwise, no keypress event is generated.

Q. When I use the onLoad event, my event handler sometimes executes before
the page is done loading, or before some of the graphics. Is there a better
way?

A. This is a bug in some older browsers. One solution is to add a slight delay to

your script using the setTimeout method. You’ll learn how to use this method

in Hour 10.

156 HOUR 6: Using Functions and Objects

Quiz Questions
Test your knowledge of JavaScript events by answering the following questions.

1. Which of the following is the correct event handler to detect a mouse click on
a link?

a. onMouseUp

b. onLink

c. onClick

2. When does the onLoad event handler for the <body> tag execute?

a. When an image is finished loading

b. When the entire page is finished loading

c. When the user attempts to load another page

3. Which of the following event object properties indicates which key was
pressed for an onKeyPress event in Internet Explorer?

a. event.which

b. event.keyCode

c. event.onKeyPress

Quiz Answers
1. c. The event handler for a mouse click is onClick.

2. b. The <body> tag’s onLoad handler executes when the page and all its images
are finished loading.

3. b. In Internet Explorer, the event.keyCode property stores the character code
for each keypress.

Exercises
To gain more experience using event handlers in JavaScript, try the following exercises:

. Add one or more additional links to the document in Listing 9.4. Add event han-
dlers to the script in Listing 9.5 to display a unique description for each link.

. Modify Listing 9.5 to display a default welcome message whenever a descrip-
tion isn’t being displayed. (Hint: You’ll need to include a statement to display
the welcome message when the page loads. You’ll also need to change the
cleardesc function to restore the welcome message.)

HOUR 10

Using Windows and Frames

What You’ll Learn in This Hour:
. The window object hierarchy
. Creating new windows with JavaScript
. Delaying your script’s actions with timeouts
. Displaying alerts, confirmations, and prompts
. Using JavaScript to work with frames
. Creating a JavaScript-based navigation frame

You should now have a basic understanding of the objects in the level 0 DOM, and the

events that can be used with each object.

In this hour, you’ll learn more about some of the most useful objects in the level 0 DOM—

browser windows and frames—and how JavaScript can work with them.

Controlling Windows with Objects
In Hour 4, “Working with the Document Object Model (DOM),” you learned that you can

use DOM objects to represent various parts of the browser window and the current HTML

document. You also learned that the history, document, and location objects are all

children of the window object.

In this hour, you’ll take a closer look at the window object itself. As you’ve probably

guessed by now, this means you’ll be dealing with browser windows. A variation of the

window object also enables you to work with frames, as you’ll see later in this hour.

The window object always refers to the current window (the one containing the script). The

self keyword is also a synonym for the current window. As you’ll learn in the next sec-

tions, you can have more than one window on the screen at the same time, and can refer

to them with different names.

158 HOUR 10: Using Windows and Frames

Properties of the window Object
Although there is normally a single window object, there might be more than one if

you are using pop-up windows or frames. As you learned in Hour 4, the document,

history, and location objects are properties (or children) of the window object. In

addition to these, each window object has the following properties:

. window.closed—Indicates whether the window has been closed. This only

makes sense when working with multiple windows because the current win-

dow contains the script and cannot be closed without ending the script.

. window.defaultstatus and window.status—The default message for the

status line, and a temporary message to display on the status line. Some

recent browsers disable status line changes by default, so you might not be

able to use these.

. window.frames[]—An array of objects for frames, if the window contains them.

. window.name—The name specified for a frame, or for a window opened by a

script.

. window.opener—In a window opened by a script, this is a reference to the

window containing the script that opened it.

. window.parent—For a frame, a reference to the parent window containing

the frame.

. window.screen—A child object that stores information about the screen the

window is in—its resolution, color depth, and so on.

. window.self—A synonym for the current window object.

. window.top—A reference to the top-level window when frames are in use.

The properties of the window.screen object include height, width,
availHeight, and availWidth (the available height and width rather than total),
and colorDepth, which indicates the color support of the monitor: 8 for 8-bit
color, 32 for 32-bit color, and so on.

Creating a New Window
One of the most convenient uses for the window object is to create a new window.

You can do this to display a document—for example, a pop-up advertisement or the

instructions for a game—without clearing the current window. You can also create

windows for specific purposes, such as navigation windows.

By the
Way

Controlling Windows with Objects 159

You can create a new browser window with the window.open() method. A typical

statement to open a new window looks like this:

WinObj=window.open(“URL”, “WindowName”, “Feature List”);

The following are the components of the window.open() statement:

. The WinObj variable is used to store the new window object. You can access

methods and properties of the new object by using this name.

. The first parameter of the window.open() method is a URL, which will be

loaded into the new window. If it’s left blank, no web page will be loaded. In

this case, you could use JavaScript to fill the window with content.

. The second parameter specifies a window name (here, WindowName). This is

assigned to the window object’s name property and is used to refer to the window.

. The third parameter is a list of optional features, separated by commas. You

can customize the new window by choosing whether to include the toolbar,

status line, and other features. This enables you to create a variety of “float-

ing” windows, which might look nothing like a typical browser window.

The features available in the third parameter of the window.open() method include

width and height, to set the size of the window in pixels, and several features that

can be set to either yes (1) or no (0): toolbar, location, directories, status,

menubar, scrollbars, and resizable. You can list only the features you want to

change from the default. This example creates a small window with no toolbar or

status line:

SmallWin = window.open(“”,”small”,”width=100,height=120,toolbar=0,status=0”);

Opening and Closing Windows
Of course, you can close windows as well. The window.close() method closes a

window. Browsers don’t normally allow you to close the main browser window with-

out the user’s permission; this method’s main purpose is for closing windows you

have created. For example, this statement closes a window called updatewindow:

updatewindow.close();

As another example, Listing 10.1 shows an HTML document that enables you to

open a small new window by pressing a button. You can then press another button

to close the new window. The third button attempts to close the current window.

Depending on your browser and its settings, this might or might not work. If it does

close the window, most browsers will ask for confirmation first.

160 HOUR 10: Using Windows and Frames

LISTING 10.1 An HTML Document That Uses JavaScript to Enable You
to Create and Close Windows
<html>
<head><title>Create a New Window</title>
</head>
<body>
<h1>Create a New Window</h1>
<hr>
<p>Use the buttons below to test opening and closing windows in JavaScript.</p>
<hr>
<form NAME=”winform”>
<input TYPE=”button” VALUE=”Open New Window”
onClick=”NewWin=window.open(‘’,’NewWin’,
‘toolbar=no,status=no,width=200,height=100’); “>
<p><input TYPE=”button” VALUE=”Close New Window”
onClick=”NewWin.close();” ></p>
<p><input TYPE=”button” VALUE=”Close Main Window”
onClick=”window.close();”></p>
</form>

<p>Have fun!</p>
<hr>
</body>
</html>

This example uses simple event handlers to do its work, one for each of the buttons.

Figure 10.1 shows Firefox’s display of this page, with the small new window on top.

FIGURE 10.1
A new browser
window opened
with JavaScript.

Moving and Resizing Windows
The DOM also enables you to move or resize windows. Although earlier browsers

placed some restrictions on this, most modern browsers allow you to move and

resize any window freely. You can do this using the following methods for any win-

dow object:

Moving and Resizing Windows 161

. window.moveTo() moves the window to a new position. The parameters speci-

fy the x (column) and y (row) position.

. window.moveBy() moves the window relative to its current position. The x

and y parameters can be positive or negative, and are added to the current

values to reach the new position.

. window.resizeTo() resizes the window to the width and height specified as

parameters.

. window.resizeBy() resizes the window relative to its current size. The param-

eters are used to modify the current width and height.

As an example, Listing 10.2 shows an HTML document with a simple script that

enables you to resize or move the main window.

LISTING 10.2 Moving and Resizing the Current Window
<html>
<head>
<title>Moving and resizing windows</title>
<script language=”javascript” type=”text/javascript”>

function DoIt() {
if (document.form1.w.value && document.form1.h.value)

self.resizeTo(document.form1.w.value, document.form1.h.value);
if (document.form1.x.value && document.form1.y.value)

self.moveTo(document.form1.x.value, document.form1.y.value);
}

</script>
</head>
<body>
<h1>Moving and Resizing Windows</h1>
<form name=”form1”>
Width: <input type=”text” name=”w”>

Height: <input type=”text” name=”h”>

X-position: <input type=”text” name=”x”>

Y-position: <input type=”text” name=”y”>

<input type=”button” value=”Change Window” onClick=”DoIt();”>
</form>
</body>
</html>

In this example, the DoIt() function is called as an event handler when you click

the Change Window button. This function checks whether you have specified width

and height values. If you have, it uses the self.resizeTo() method to resize the

current window. Similarly, if you have specified x and y values, it uses

self.moveTo() to move the window.

Depending on their settings, some browsers might not allow your script to resize or

move the main window. In particular, Firefox can be configured to disallow it. You

162 HOUR 10: Using Windows and Frames

can enable it by selecting Tools, Options from the menu. Select the Content tab,

click the Advanced button next to the Enable JavaScript option, and enable the

Move or Resize Existing Windows option.

This is one of those JavaScript features you should think twice about before
using. These methods are best used for resizing or moving pop-up windows your
script has generated—not as a way to force the user to use your preferred window
size, which most users will find very annoying. You should also be aware that
browser settings may be configured to prevent resizing or moving windows, so
make sure your script still works even without resizing.

Using Timeouts
Sometimes the hardest thing to get a script to do is to do nothing at all—for a specif-

ic amount of time. Fortunately, JavaScript includes a built-in function to do this. The

window.setTimeout method enables you to specify a time delay and a command

that will execute after the delay passes.

Timeouts don’t actually make the browser stop what it’s doing. Although the state-
ment you specify in the setTimeout method won’t be executed until the delay
passes, the browser will continue to do other things while it waits (for example,
acting on event handlers).

You begin a timeout with a call to the setTimeout() method, which has two param-

eters. The first is a JavaScript statement, or group of statements, enclosed in quotes.

The second parameter is the time to wait in milliseconds (thousandths of seconds).

For example, the following statement displays an alert dialog box after 10 seconds:

ident=window.setTimeout(“alert(‘Time’s up!’)”,10000);

Like event handlers, timeouts use a JavaScript statement within quotation marks.
Make sure that you use a single quote (apostrophe) on each side of each string
within the statement, as shown in the preceding example.

A variable (ident in this example) stores an identifier for the timeout. This enables

you to set multiple timeouts, each with its own identifier. Before a timeout has

elapsed, you can stop it with the clearTimeout() method, specifying the identifier

of the timeout to stop:

window.clearTimeout(ident);

Watch
Out!

By the
Way

Watch
Out!

Using Timeouts 163

Updating a Page with Timeouts
Normally, a timeout only happens once because the statement you specify in the

setTimeout() method statement is only executed once. But often, you’ll want your

statement to execute over and over. For example, your script might be updating a

clock or a countdown and need to execute once per second.

You can make a timeout repeat by issuing the setTimeout() method call again in

the function called by the timeout. Listing 10.3 shows an HTML document that

demonstrates a repeating timeout.

LISTING 10.3 Using Timeouts to Update a Page Every Two Seconds
<html>
<head><title>Timeout Example</title>
<script language=”javascript” type=”text/javascript”>
var counter = 0;
// call Update function in 2 seconds after first load
ID=window.setTimeout(“Update();”,2000);
function Update() {

counter++;
document.form1.input1.value=”The counter is now at “ + counter;

// set another timeout for the next count
ID=window.setTimeout(“Update();”,2000);

}
</script>
</head>
<body>
<h1>Timeout Example</h1>
<hr><p>
The text value below is being updated every two seconds.
Press the RESET button to restart the count, or the STOP button to stop it.
</p><hr>
<form NAME=”form1”>
<input TYPE=”text” NAME=”input1” SIZE=”40”>

<input TYPE=”button” VALUE=”RESET” onClick=”counter = 0;”>

<input TYPE=”button” VALUE=”STOP” onClick=”window.clearTimeout(ID);”>
</form>
<hr>
</body>
</html>

This program displays a message in a text field every two seconds, including a

counter that increments each time. You can use the Reset button to start the count

over and the Stop button to stop the counting.

This script calls the setTimeout() method when the page loads, and again at each

update. The Update() function performs the update, adding one to the counter and

setting the next timeout. The Reset button sets the counter to zero, and the Stop but-

ton demonstrates the clearTimeout() method. Figure 10.2 shows Internet Explorer’s

display of the timeout example after the counter has been running for a while.

164 HOUR 10: Using Windows and Frames

This example and the next one use buttons, which are a simple example of what
you can do with HTML forms and JavaScript. You’ll learn much more about forms
in Hour 11, “Getting Data with Forms.”

Displaying Dialog Boxes
The window object includes three methods that are useful for displaying messages

and interacting with the user. You’ve already used these in some of your scripts.

Here’s a summary:

. window.alert(message) displays an alert dialog box, shown in Figure 10.3.

This dialog box simply gives the user a message.

. window.confirm(message) displays a confirmation dialog box. This displays

a message and includes OK and Cancel buttons. This method returns true if

OK is pressed and false if Cancel is pressed. A confirmation is displayed in

Figure 10.4.

. window.prompt(message,default) displays a message and prompts the user

for input. It returns the text entered by the user. If the user does not enter any-

thing, the default value is used.

FIGURE 10.2
The output of
the timeout
example.

By the
Way

Displaying Dialog Boxes 165

To use the confirm() and prompt() methods, use a variable to receive the user’s

response. For example, this statement displays a prompt and stores the text the user

enters in the text variable:

text = window.prompt(“Enter some text”,”Default value”);

You can usually omit the window object when referring to these methods because
it is the default context of a script (for example, alert(“text”)).

Creating a Script to Display Dialog Boxes
As a further illustration of these types of dialog boxes, Listing 10.4 shows an HTML

document that uses buttons and event handlers to enable you to test dialog boxes.

LISTING 10.4 An HTML Document That Uses JavaScript to Display
Alerts, Confirmations, and Prompts
<html>
<head><title>Alerts, Confirmations, and Prompts</title>
</head>
<body>
<h1>Alerts, Confirmations, and Prompts</h1>
<hr>
Use the buttons below to test dialogs in JavaScript.
<hr>
<form NAME=”winform”>
<p><input TYPE=”button” VALUE=”Display an Alert”
onClick=”window.alert(‘This is a test alert.’); “></p>
<p><input TYPE=”button” VALUE=”Display a Confirmation”
onClick=”window.confirm(‘Would you like to confirm?’);”></p>
<p><input TYPE=”button” VALUE=”Display a Prompt”
onClick=”window.prompt(‘Enter some Text:’,’This is the default value’);”>
</p>
</form>

Have fun!
<hr>
</body>
</html>

FIGURE 10.3
A JavaScript
alert dialog box
displays a mes-
sage.

FIGURE 10.4
A JavaScript
confirm dialog
box asks for
confirmation.

Did you
Know?

166 HOUR 10: Using Windows and Frames

This document displays three buttons, and each one uses an event handler to dis-

play one of the dialog boxes.

Figure 10.5 shows the script in Listing 10.4 in action. The prompt dialog box is cur-

rently displayed and shows the default value.

FIGURE 10.5
The dialog box
example’s out-
put, including a
prompt dialog
box.

Working with Frames
Browsers also support frames, which enable you to divide the browser window into

multiple panes. Each frame can contain a separate URL or the output of a script.

Using JavaScript Objects for Frames
When a window contains multiple frames, each frame is represented in JavaScript

by a frame object. This object is equivalent to a window object, but it is used for

dealing specifically with that frame. The frame object’s name is the same as the

NAME attribute you give it in the <frame> tag.

Remember the window and self keywords, which refer to the current window?

When you are using frames, these keywords refer to the current frame instead.

Another keyword, parent, enables you to refer to the main window.

Each frame object in a window is a child of the parent window object. Suppose you

define a set of frames using the following HTML:

<frameset ROWS=”*,*” COLS=”*,*”>
<frame NAME=”topleft” SRC=”topleft.htm”>
<frame NAME=”topright” SRC=”topright.htm”>
<frame NAME=”bottomleft” SRC=”botleft.htm”>
<frame NAME=”bottomright” SRC=”botright.htm”>
</frameset>

▼

Working with Frames 167

This simply divides the window into quarters. If you have a JavaScript program in

the topleft.htm file, it would refer to the other windows as parent.topright, par-

ent.bottomleft, and so on. The keywords window and self would refer to the

topleft frame.

If you use nested framesets, things are a bit more complicated. window still repre-
sents the current frame, parent represents the frameset containing the current
frame, and top represents the main frameset that contains all the others.

The frames Array
Rather than referring to frames in a document by name, you can use the frames

array. This array stores information about each of the frames in the document. The

frames are indexed starting with zero and beginning with the first <frame> tag in

the frameset document.

For example, you could refer to the frames defined in the previous example using

array references:

. parent.frames[0] is equivalent to the topleft frame.

. parent.frames[1] is equivalent to the topright frame.

. parent.frames[2] is equivalent to the bottomleft frame.

. parent.frames[3] is equivalent to the bottomright frame.

You can refer to a frame using either method interchangeably, and depending on

your application, you should use the most convenient method. For example, a docu-

ment with 10 frames would probably be easier to use by number, but a simple two-

frame document is easier to use if the frames have meaningful names.

Try it Yourself

Using Frames with JavaScript
As a simple example of addressing frames using JavaScript, you will now create an

HTML document that divides the window into four frames, and a document with a

script for the top-left corner frame. Buttons in the top-left frame will trigger

JavaScript event handlers that display text in the other frames.

To begin, you will need a frameset document. Listing 10.5 shows a simple HTML

document to divide the window into four frames.

By the
Way

168 HOUR 10: Using Windows and Frames

LISTING 10.5 An HTML Document That Divides the Window into Four
Frames
<frameset ROWS=”*,*” COLS=”*,*”>
<frame NAME=”top_left” SRC=”topleft.html”>
<frame NAME=”top_right” SRC=””>
<frame NAME=”bottom_left” SRC=””>
<frame NAME=”bottom_right” SRC=””>
</frameset>

The first frame defined here, top_left, to will contain an HTML document and a

simple script. Listing 10.6 shows the HTML and JavaScript code for the top-left frame.

LISTING 10.6 The HTML and JavaScript for the Frame Example
<html>
<head>
<title>Frame Test</title>
<script language=”javascript” type=”text/javascript”>
function FillFrame(framename) {

// Find the object for the frame
theframe=parent[framename];
// Open and clear the frame’s document
theframe.document.open();
// Create some output
theframe.document.write(“<h1>JavaScript Output</h1>”);
theframe.document.write(“<p>This text is in the “);
theframe.document.write(framename + “ frame.</p>”);

}
</script>
</head>
<body>
<h1>Frame Test</h1>
<form name=”form1”>
<input type=”button” value=”Top right”
onClick=”FillFrame(‘top_right’);”>
<input type=”button” value=”Bottom left”
onClick=”FillFrame(‘bottom_left’);”>
<input type=”button” id=”js” value=”Bottom right”
onClick=”FillFrame(‘bottom_right’);”>
</form>
</body>
</html>

This document defines three buttons with event handlers that call the FillFrame()

function with a parameter for the frame name. The function finds the correct child

of the parent window object for the specified frame, uses document.open to create a

new document in the frame, and uses document.write to display text in the frame.

To try this example, save Listing 10.6 as topleft.html in the same folder as the

frameset document from Listing 10.5, and load Listing 10.5 into a browser. Figure

10.6 shows the result of this example after all three buttons have been clicked.

Summary 169

Summary
In this hour, you’ve learned how to use the window object to work with browser win-

dows, and used its properties and methods to set timeouts and display dialog boxes.

You’ve also learned how JavaScript can work with framed documents.

In the next hour, you’ll move on to another unexplored area of the JavaScript object

hierarchy—the form object. You’ll learn how to use forms to create some of the most

useful applications of JavaScript.

Q&A
Q. When a script is running in a window created by another script, how can it

refer back to the original window?

A. JavaScript 1.1 and later include the window.opener property, which lets you

refer to the window that opened the current window.

Q. I’ve heard about layers, which are similar to frames, but more versatile, and
are supported in the latest browsers. Can I use them with JavaScript?

A Yes. You’ll learn how to use layers with JavaScript in Hour 13, “Using the W3C

DOM.”

FIGURE 10.6
The frame
example as dis-
played by
Internet
Explorer.

▲

170 HOUR 10: Using Windows and Frames

Q. How can I update two frames at once when the user clicks on a single link?

A. You can do this by using an event handler, as in Listing 10.6, and including

two statements to load URLs into different frames.

Quiz Questions
Test your knowledge of the DOM’s window features by answering the following

questions.

1. Which of the following methods displays a dialog box with OK and Cancel

buttons, and waits for a response?

a. window.alert

b. window.confirm

c. window.prompt

2. What does the window.setTimeout method do?

a. Executes a JavaScript statement after a delay

b. Locks up the browser for the specified amount of time

c. Sets the amount of time before the browser exits automatically

3. You’re working with a document that contains three frames with the names

first, second, and third. If a script in the second frame needs to refer to the

first frame, what is the correct syntax?

a. window.first

b. parent.first

c. frames.first

Quiz Answers
1. b. The window.confirm method displays a dialog box with OK and Cancel

buttons.

2. a. The window.setTimeout method executes a JavaScript statement after a

delay.

3. b. The script in the second frame would use parent.first to refer to the first

frame.

Exercises 171

Exercises
If you want to study the window object and its properties and methods further, per-

form these exercises:

. Return to the date/time script you created in Hour 2, “Creating Simple

Scripts.” This script only displays the date and time once when the page is

loaded. Using timeouts, you can modify the script to reload automatically

every second or two and display a “live” clock. (Use the location.reload()

method, described in Hour 4.)

. Modify the examples in Listings 10.5 and 10.6 to use three horizontal frames

instead of four frames in a grid. Change the buttons to make it clear which

frame they will affect.

This page intentionally left blank

HOUR 11

Getting Data with Forms

What You’ll Learn in This Hour:
. Understanding HTML forms
. Creating a form
. Using the form object to work with forms
. How form elements are represented by JavaScript
. Getting data from a form
. Sending form results by email
. Validating a form with JavaScript

In this hour, you’ll explore one of the most powerful uses for JavaScript: working with

HTML forms. You can use JavaScript to make a form more interactive, validate data the

user enters, and enter data based on other data.

The Basics of HTML Forms
Forms are among the most useful features of the HTML language. As you’ll learn during

this hour, adding JavaScript to forms can make them more interactive and provide a

number of useful features. The first step in creating an interactive form is to create the

HTML form itself.

Defining a Form
An HTML form begins with the <form> tag. This tag indicates that a form is beginning,

and it enables form elements to be used. The <form> tag includes several attributes:

. name is simply a name for the form. You can use forms without giving them names,

but you’ll need to assign a name to a form in order to easily use it with JavaScript.

174 HOUR 11: Getting Data with Forms

. method is either GET or POST; these are the two ways the data can be sent to

the server.

. action is the CGI script that the form data will be sent to when submitted.

You can also use the mailto: action to send the form’s results to an email

address, as described later in this hour.

. enctype is the MIME type the form’s data will be encoded with. This is usually

not necessary; see the “Sending Form Results by Email” section of this hour for

an example that requires it.

For example, here is a <form> tag for a form named Order. This form uses the GET

method and sends its data to a CGI script called order.cgi in the same directory as

the web page itself:

<form name=”Order” method=”GET” action=”order.cgi”>

For a form that will be processed entirely by JavaScript (such as a calculator or an

interactive game), the method and action attributes are not needed. You can use a

simple <form> tag that names the form:

<form name=”calcform”>

The <form> tag is followed by one or more form elements. These are the data fields

in the form, such as text fields, buttons, and check boxes. In the next section, you’ll

learn how JavaScript assigns objects to each of the form elements.

Using the form Object with JavaScript
Each form in your HTML page is represented in JavaScript by a form object, which

has the same name as the NAME attribute in the <form> tag you used to define it.

Alternatively, you can use the forms array to refer to forms. This array includes an

item for each form element, indexed starting with 0. For example, if the first form in

a document has the name form1, you can refer to it in one of two ways:

document.form1
document.forms[0]

The form Object’s Properties
Along with the elements, each form object also has a list of properties, most of

which are defined by the corresponding <form> tag. You can also set these from

within JavaScript. They include the following:

Using the form Object with JavaScript 175

. action is the form’s action attribute, or the program to which the form data

will be submitted.

. encoding is the MIME type of the form, specified with the enctype attribute. In

most cases, this is not needed. See the “Sending Form Results by Email” section

of this hour for an example of its use.

. length is the number of elements in the form. You cannot change this property.

. method is the method used to submit the form, either GET or POST. This deter-

mines the data format used to send the form result to a CGI script, and does

not affect JavaScript.

. target specifies the window in which the result of the form (from the CGI

script) will be displayed. Normally, this is done in the main window, replacing

the form itself, but you can use this attribute to work with pop-up windows or

frames.

Submitting and Resetting Forms
The form object has two methods, submit() and reset(). You can use these meth-

ods to submit the data or reset the form yourself, without requiring the user to press

a button. One reason for this is to submit the form when the user clicks an image or

performs another action that would not usually submit the form.

If you use the submit() method to send data to a server or by email, most
browsers will prompt the user to verify that he or she wants to submit the informa-
tion. There’s no way to do this behind the user’s back.

Detecting Form Events
The form object has two event handlers, onSubmit and onReset. You can specify a

group of JavaScript statements or a function call for these events within the <form>

tag that defines the form.

If you specify a statement or a function for the onSubmit event, the statement is

called before the data is submitted to the CGI script. You can prevent the submission

from happening by returning a value of false from the onSubmit event handler. If

the statement returns true, the data will be submitted. In the same fashion, you

can prevent a Reset button from working with an onReset event handler.

Watch
Out!

176 HOUR 11: Getting Data with Forms

Scripting Form Elements
The most important property of the form object is the elements array, which con-

tains an object for each of the form elements. You can refer to an element by its own

name or by its index in the array. For example, the following two expressions both

refer to the first element in the order form, the name1 text field:

document.order.elements[0]
document.order.name1

Both forms and elements can be referred to by their own names or as indices in
the forms and elements arrays. For clarity, the examples in this hour use individ-
ual form and element names rather than array references. You’ll also find it easier
to use names in your own scripts.

If you do refer to forms and elements as arrays, you can use the length property to

determine the number of objects in the array: document.forms.length is the num-

ber of forms in a document, and document.form1.elements.length is the number

of elements in the form1 form.

You can also access form elements using the W3C DOM. In this case, you use an id

attribute on the form element in the HTML document, and use the

document.getElementById() method to find the object for the form. For example,

this statement finds the object for the text field called firstname and stores it in the

fn variable:

fn = document.getElementById(“firstname”);

This allows you to quickly access a form element without first finding the form

object. You can assign an id to the <form> tag and find the corresponding object if

you need to work with the form’s properties and methods.

See Hour 13, “Using the W3C DOM,” for details on the
document.getElementById() method.

Text Fields
Probably the most commonly used form elements are text fields. You can use them to

prompt for a name, an address, or any information. With JavaScript, you can display

text in the field automatically. The following is an example of a simple text field:

<input type=”TEXT” name=”text1” value=”hello” SIZE=”30”>

By the
Way

Did you
Know?

Scripting Form Elements 177

This defines a text field called text1. The field is given a default value of “hello”

and allows up to 30 characters to be entered. JavaScript treats this field as a text

object with the name text1.

Text fields are the simplest to work with in JavaScript. Each text object has the fol-

lowing properties:

. name is the name given to the field. This is also used as the object name.

. defaultValue is the default value and corresponds to the VALUE attribute.

This is a read-only property.

. value is the current value. This starts out the same as the default value, but

can be changed, either by the user or by JavaScript functions.

When you work with text fields, most of the time you will use the value attribute to

read the value the user has entered or to change the value. For example, the follow-

ing statement changes the value of a text field called username in the order form to

“John Q. User”:

document.order.username.value = “John Q. User”

Text Areas
Text areas are defined with their own tag, <textarea>, and are represented by the

textarea object. There is one major difference between a text area and a text field:

Text areas enable the user to enter more than just one line of information. Here is

an example of a text area definition:

<textarea name=”text1” rows=”2” cols=”70”>
This is the content of the TEXTAREA tag.
</textarea>

This HTML defines a text area called text1, with two rows and 70 columns avail-

able for text. In JavaScript, this would be represented by a text area object called

text1 under the form object.

The text between the opening and closing <textarea> tags is used as the initial

value for the text area. You can include line breaks within the default value with the

special character \n.

Working with Text in Forms
The text and textarea objects also have a few methods you can use:

. focus() sets the focus to the field. This positions the cursor in the field and

makes it the current field.

178 HOUR 11: Getting Data with Forms

. blur() is the opposite; it removes the focus from the field.

. select() selects the text in the field, just as a user can do with the mouse. All

of the text is selected; there is no way to select part of the text.

You can also use event handlers to detect when the value of a text field changes. The

text and textarea objects support the following event handlers:

. The onFocus event happens when the text field gains focus.

. The onBlur event happens when the text field loses focus.

. The onChange event happens when the user changes the text in the field and

then moves out of it.

. The onSelect event happens when the user selects some or all of the text in

the field. Unfortunately, there’s no way to tell exactly which part of the text

was selected. (If the text is selected with the select() method described previ-

ously, this event is not triggered.)

If used, these event handlers should be included in the <input> tag declaration. For

example, the following is a text field including an onChange event that displays an

alert:

<input type=”TEXT” name=”text1” onChange=”window.alert(‘Changed.’);”>

Buttons
One of the most useful types of form element is a button. Buttons use the <input>

tag and can use one of three different types:

. type=SUBMIT is a Submit button. This button causes the data in the form fields

to be sent to the CGI script.

. type=RESET is a Reset button. This button sets all the form fields back to their

default value, or blank.

. type=BUTTON is a generic button. This button performs no action on its own,

but you can assign it one using a JavaScript event handler.

All three types of buttons include a name attribute to identify the button and a value

attribute that indicates the text to display on the button’s face. A few buttons were used

in the examples in Hour 10, “Using Windows and Frames.” As another example, the

following defines a Submit button with the name sub1 and the value “Click Here”:

<input type=”SUBMIT” name=”sub1” value=”Click Here”>

Scripting Form Elements 179

If the user presses a Submit or a Reset button, you can detect it with the onSubmit or

onReset event handlers, described earlier in this hour. For generic buttons, you can

use an onClick event handler.

Check Boxes
A check box is a form element that looks like a small box. Clicking on the check

box switches between the checked and unchecked states, which is useful for indicat-

ing Yes or No choices in your forms. You can use the <input> tag to define a check

box. Here is a simple example:

<input type=”CHECKBOX” name=”check1” value=”Yes” checked>

Again, this gives a name to the form element. The value attribute assigns a mean-

ing to the check box; this is a value that is returned to the server if the box is

checked. The default value is “on.” The checked attribute can be included to make

the box checked by default.

A check box is simple: It has only two states. Nevertheless, the checkbox object in

JavaScript has four different properties:

. name is the name of the check box, and also the object name.

. value is the “true” value for the check box—usually on. This value is used by

server-side programs to indicate whether the check box was checked. In

JavaScript, you should use the checked property instead.

. defaultChecked is the default status of the check box, assigned by the

checked attribute in HTML.

. checked is the current value. This is a Boolean value: true for checked and

false for unchecked.

To manipulate the check box or use its value, you use the checked property. For

example, this statement turns on a check box called same in the order form:

document.order.same.checked = true;

The check box has a single method, click(). This method simulates a click on the

box. It also has a single event, onClick, which occurs whenever the check box is

clicked. This happens whether the box was turned on or off, so you’ll need to exam-

ine the checked property to see what happened.

180 HOUR 11: Getting Data with Forms

Radio Buttons
Another element for decisions is the radio button, using the <input> tag’s RADIO

type. Radio buttons are also known as option buttons. These are similar to check

boxes, but they exist in groups and only one button can be checked in each group.

They are used for a multiple-choice or “one of many” input. Here’s an example of a

group of radio buttons:

<input type=”RADIO” name=”radio1” value=”Option1” checked> Option 1
<input type=”RADIO” name=”radio1” value=”Option2”> Option 2
<input type=”RADIO” name=”radio1” value=”Option3”> Option 3

These statements define a group of three radio buttons. The name attribute is the

same for all three (which is what makes them a group). The value attribute is the

value passed to a script or a CGI program to indicate which button is selected—be

sure you assign a different value to each button.

Radio buttons are named for their similarity to the buttons on old pushbutton
radios. Those buttons used a mechanical arrangement so that when you pushed
one button in, the others popped out.

As for scripting, radio buttons are similar to check boxes, except that an entire

group of them shares a single name and a single object. You can refer to the follow-

ing properties of the radio object:

. name is the name common to the radio buttons.

. length is the number of radio buttons in the group.

To access the individual buttons, you treat the radio object as an array. The buttons

are indexed, starting with 0. Each individual button has the following properties:

. value is the value assigned to the button. (This is used by the server.)

. defaultChecked indicates the value of the checked attribute and the default

state of the button.

. checked is the current state.

For example, you can check the first radio button in the radio1 group on the form1

form with this statement:

document.form1.radio1[0].checked = true;

However, if you do this, be sure you set the other values to false as needed. This is not

done automatically. You can use the click() method to do both of these in one step.

By the
Way

Scripting Form Elements 181

Like a check box, radio buttons have a click() method and an onClick event han-

dler. Each radio button can have a separate statement for this event.

You can have more than one group of radio buttons on a page, and they will act
independently. Assign a separate name attribute value to each group.

Drop-Down Lists
A final form element is also useful for multiple-choice selections. The <select>

HTML tag is used to define a selection list, or a drop-down list of text items. The fol-

lowing is an example of a selection list:

<select name=”select1” SIZE=40>
<option value=”choice1” SELECTED>This is the first choice.
<option value=”choice2”>This is the second choice.
<option value=”choice3”>This is the third choice.
</select>

Each of the <option> tags defines one of the possible choices. The value attribute is

the name that is returned to the program, and the text outside the <option> tag is

displayed as the text of the option.

An optional attribute to the <select> tag, multiple, can be specified to allow mul-

tiple items to be selected. Browsers usually display a single-selection <select> as a

drop-down list and a multiple-selection list as a scrollable list.

The object for selection lists is the select object. The object itself has the following

properties:

. name is the name of the selection list.

. length is the number of options in the list.

. options is the array of options. Each selectable option has an entry in this array.

. selectedIndex returns the index value of the currently selected item. You can

use this to check the value easily. In a multiple-selection list, this indicates the

first selected item.

The options array has a single property of its own, length, which indicates the

number of selections. In addition, each item in the options array has the following

properties:

. index is the index into the array.

. defaultSelected indicates the state of the selected attribute.

Did you
Know?

182 HOUR 11: Getting Data with Forms

. selected is the current state of the option. Setting this property to true selects

the option. The user can select multiple options if the multiple attribute is

included in the <select> tag.

. name is the value of the name attribute. This is used by the server.

. text is the text that is displayed in the option.

The select object has two methods—blur() and focus()—which perform the

same purposes as the corresponding methods for text objects. The event handlers

are onBlur, onFocus, and onChange, also similar to other objects.

You can change selection lists dynamically—for example, choosing a product in
one list could control which options are available in another list. You can also add
and delete options from the list.

Reading the value of a selected item is a two-step process. You first use the

selectedIndex property, and then use the value property to find the value of the

selected choice. Here’s an example:

ind = document.navform.choice.selectedIndex;
val = document.navform.choice.options[ind].value;

This uses the ind variable to store the selected index, and then assigns the val vari-

able to the value of the selected choice. Things are a bit more complicated with a

multiple selection: You have to test each option’s selected attribute separately.

Displaying Data from a Form
As a simple example of using forms, Listing 11.1 shows a form with name, address,

and phone number fields, as well as a JavaScript function that displays the data

from the form in a pop-up window.

LISTING 11.1 A Form That Displays Data in a Pop-up Window
<html>
<head>
<title>Form Example</title>
<script language=”JavaScript” type=”text/javascript”>
function display() {

DispWin = window.open(‘’,’NewWin’,

By the
Way

Displaying Data from a Form 183

‘toolbar=no,status=no,width=300,height=200’)
message = “NAME: ” + document.form1.yourname.value;
message += “ADDRESS: ” + document.form1.address.value;
message += “PHONE: ” + document.form1.phone.value + “”;
DispWin.document.write(message);

}
</script>
</head>
<body>
<h1>Form Example</h1>
Enter the following information. When you press the Display button,
the data you entered will be displayed in a pop-up window.
<form name=”form1”>
<p>Name: <input type=”TEXT” size=”20” name=”yourname”>
</p>
<p>Address: <input type=”TEXT” size=”30” name=”address”>
</p>
<p>Phone: <input type=”TEXT” size=”15” name=”phone”>
</p>
<p><input type=”BUTTON” value=”Display” onClick=”display();”></p>
</form>
</body>
</html>

Here is a breakdown of how this HTML document and script work:

. The <script> section in the document’s header defines a function called dis-

play() that opens a new window (as described in Hour 10) and displays the

information from the form.

. The <form> tag begins the form. Because this form is handled entirely by

JavaScript, no form action or method is needed.

. The <input> tags define the form’s three fields: yourname, address, and

phone. The last <input> tag defines the Display button, which is set to run the

display() function.

As usual, you can download the listings for this hour from this book’s website.

Figure 11.1 shows this form in action. The Display button has been pressed, and the

pop-up window shows the results.

LISTING 11.1 Continued

Did you
Know?

184 HOUR 11: Getting Data with Forms

Sending Form Results by Email
One easy way to use a form is to send the results by email. You can do this without
using any JavaScript, although you could use JavaScript to validate the information
entered (as you’ll learn later in this hour).

To send a form’s results by email, you use the mailto: action in the form’s action
attribute. Listing 11.2 is a modified version of the name and address form from
Listing 11.1 that sends the results by email.

LISTING 11.2 Sending a Form’s Results by Email
<html>
<head>
<title>Email Form Example</title>
</head>
<body>
<h1>Email Form Example</h1>
Enter the following information. When you press the Submit button,
the data you entered will be sent by email.
<form name=”form1” action=”mailto:user@host.com”
enctype=”text/plain” method=”POST”>

<p>Name: <input type=”TEXT” size=”20” name=”yourname”>
</p>
<p>Address: <input type=”TEXT” size=”30” name=”address”>
</p>
<p>Phone: <input type=”TEXT” size=”15” name=”phone”>
</p>
<p><input type=”submit” value=”Submit”></p>
</form>
</body>
</html>

FIGURE 11.1
Displaying data
from a form in a
pop-up window.

▼

Sending Form Results by Email 185

To use this form, change user@host.com in the action attribute of the <form> tag

to your email address. Notice the enctype=text/plain attribute in the <form> tag.

This ensures that the information in the email message will be in a readable plain-

text format rather than encoded.

Although this provides a quick and dirty way of retrieving data from a form, the dis-

advantage of this technique is that it is highly browser dependent. Whether it will

work for each user of your page depends on the configuration of his or her browser

and email client.

Because this technique does not consistently work on all browsers, I don’t recom-
mend you use it. For a more reliable way of sending form results, you can use a
CGI form-to-email gateway. Several free CGI scripts and services are available.
You’ll find links to them on this book’s website.

Try It Yourself

Validating a Form
One of JavaScript’s most useful purposes is validating forms. This means using a

script to verify that the information entered is valid—for example, that no fields are

blank and that the data is in the right format.

You can use JavaScript to validate a form whether it’s submitted by email or to a

CGI script, or is simply used by a script. Listing 11.3 is a version of the name and

address form that includes validation.

LISTING 11.3 A Form with a Validation Script
<html>
<head>
<title>Form Example</title>
<script language=”JavaScript” type=”text/javascript”>
function validate() {

if (document.form1.yourname.value.length < 1) {
alert(“Please enter your full name.”);
return false;

}
if (document.form1.address.value.length < 3) {

alert(“Please enter your address.”);
return false;

}
if (document.form1.phone.value.length < 3) {

alert(“Please enter your phone number.”);
return false;

}
return true;

}

Watch
Out!

186 HOUR 11: Getting Data with Forms

</script>
</head>
<body>
<h1>Form Example</h1>
<p>Enter the following information. When you press the Submit button,
the data you entered will be validated, then sent by email.</p>
<form name=”form1” action=”mailto:user@host.com” enctype=”text/plain”
method=”POST” onSubmit=”return validate();”>
<p>Name: <input type=”TEXT” size=”20” name=”yourname”>
</p>
<p>Address: <input type=”TEXT” size=”30” name=”address”>
</p>
<p>Phone: <input type=”TEXT” size=”15” name=”phone”>
</p>
<p><input type=”SUBMIT” value=”Submit”></p>
</form>
</body>
</html>

This form uses a function called validate() to check the data in each of the form

fields. Each if statement in this function checks a field’s length. If the field is long

enough to be valid, the form can be submitted; otherwise, the submission is stopped

and an alert message is displayed.

The validation in this script is basic—you could go further and ensure that the
phone field contains only numbers, and the right amount of digits, by using
JavaScript’s string features described in Hour 5, “Using Variables, Strings, and
Arrays.”

This form is set up to send its results by email, as in Listing 11.2. If you wish to use

this feature, be sure to read the information about email forms earlier in this hour

and change user@host.com to your desired email address.

The <form> tag uses an onSubmit event handler to call the validate() function.

The return keyword ensures that the value returned by validate() will determine

whether the form is submitted.

You can also use the onChange event handler in each form field to call a valida-
tion routine. This allows the field to be validated before the Submit button is
pressed.

Figure 11.2 shows this script in action, as displayed by Firefox. The form has been

filled out except for the name, and a dialog box indicates that the name needs to be

entered.

LISTING 11.3 Continued

By the
Way

Did you
Know?

187Q&A

Summary
During this hour, you’ve learned all about HTML forms and how they can be used

with JavaScript. You learned about the form object and the objects for the various

form elements, and used them in several example scripts.

You also learned how to submit a form by email, and how to use JavaScript to vali-

date a form before it is submitted.

In the next hour, you’ll look at CSS (Cascading Style Sheets)—a standards-compliant

way to achieve just about any visual effect on a page, and the foundation for using

JavaScript to change a page’s appearance.

Q&A
Q. If I use JavaScript to add validation and other features to my form, can

users with non-JavaScript browsers still use the form?

A. Yes, if you’re careful. Be sure to use a Submit button rather than the submit

action. Also, the CGI script might receive nonvalidated data, so be sure to

include the same validation in the CGI script. Non-JavaScript users will be

able to use the form, but won’t receive instant feedback about their errors.

FIGURE 11.2
The form valida-
tion example in
action.

▲

188 HOUR 11: Getting Data with Forms

Q. Can I add new form elements on the fly or change them—for example,
change a text box into a password field?

A. Not in the traditional way described in this hour. However, you can change

any aspect of a page, including adding, removing, or changing form ele-

ments, using the W3C DOM. See Hour 13 for details.

Q. Is there any way to create a large number of text fields without dealing with
different names for all of them?

A. Yes. If you use the same name for several elements in the form, their objects

will form an array. For example, if you defined 20 text fields with the name

member, you could refer to them as member[0] through member[19]. This also

works with other types of form elements.

Q. Is there a way to place the cursor on a particular field when the form is
loaded, or after my validation routine displays an error message?

A. Yes. You can use the field’s focus() method to send the cursor there. To do this

when the page loads, you can use the onLoad method in the <body> tag.

However, there is no way to place the cursor in a particular position within

the field.

Quiz Questions
Test your knowledge of JavaScript and forms by answering the following questions.

1. Which of these attributes of a <form> tag determines where the data will be

sent?

a. action

b. method

c. name

2. Where do you place the onSubmit event handler to validate a form?

a. In the <body> tag

b. In the <form> tag

c. In the <input> tag for the Submit button

189Exercises

3. What can JavaScript do with forms that a CGI script can’t?

a. Cause all sorts of problems

b. Give the user instant feedback about errors

c. Submit the data to a server

Quiz Answers
1. a. The action attribute determines where the data is sent.

2. b. You place the onSubmit event handler in the <form> tag.

3. b. JavaScript can validate a form and let the user know about errors immedi-

ately, without waiting for a response from a server.

Exercises
To further explore the JavaScript features you learned about in this hour, you can

perform the following exercises:

. Change the validate function in Listing 11.3 so that after a message is dis-

played indicating that a field is wrong, the cursor is moved to that field. (Use

the focus() method for the appropriate form element.)

. Add a text field to the form in Listing 11.3 for an email address. Add a feature

to the validate function that verifies that the email address is at least five

characters and that it contains the @ symbol.

This page intentionally left blank

HOUR 12

Working with Style Sheets

What You’ll Learn in This Hour:
. Why style sheets are needed
. How to define Cascading Style Sheets (CSS)
. How to use a style sheet in a document
. Using an external style sheet file
. Using JavaScript to change styles dynamically

This hour begins with an introduction to style sheets, which you can use to take more con-

trol over how the browser displays your document. You can also use JavaScript with style

sheets to change the appearance of a page dynamically.

Style and Substance
If you’ve ever tried to make a really good-looking web page, you’ve probably encountered

some problems. First of all, HTML doesn’t give you very much control over a page’s

appearance. For example, you can’t change the amount of space between words—in fact,

you can’t even use two spaces between words because they’ll be converted to a single

space.

Second, even when you do your best to make a perfect-looking document using HTML,

you will find that it doesn’t necessarily display the same way on all browsers—or even on

different computers running the same browser.

The reason for these problems is simple: HTML was never meant to handle such things as

layout, justification, and spacing. HTML deals with a document’s structure—in other

words, how the document is divided into paragraphs, headings, lists, and other elements.

This isn’t a bad thing. In fact, it’s one of the most powerful features of HTML. You only

define the structure of the document, so it can be displayed in all sorts of different ways

192 HOUR 12: Working with Style Sheets

without changing its meaning. For example, a well-written HTML document can be

displayed in Netscape, Firefox, or Internet Explorer, which generally treat elements

the same way—there is a space between paragraphs, headings are in big, bold text,

and so on.

Because HTML only defines the structure, the same document can be displayed in a

text-based browser, such as Lynx. In this case, the different elements will be dis-

played differently, but you can still tell which text is a heading, which is a list, and

so on.

Text-based browsers aren’t the only alternative way of displaying HTML. Browsers
designed for the blind can read a web page using a speech synthesizer, with differ-
ent voices or sounds that indicate the different elements.

As you should now understand, HTML is very good at its job—defining a document’s

structure. Not surprisingly, using this language to try to control the document’s pres-

entation will only drive you crazy.

Fortunately, the World Wide Web Consortium (W3C) realized that web authors need

to control the layout and presentation of documents. This resulted in the Cascading

Style Sheets (CSS) standard.

CSS adds a number of features to standard HTML to control style and appearance.

More importantly, it does this without affecting HTML’s capability to describe docu-

ment structures. Although style sheets still won’t make your document look 100%

identical on all browsers and all platforms, it is certainly a step in the right direction.

Let’s look at a real-world example. If you’re browsing the Web with a CSS-supported

browser and come across a page that uses CSS, you’ll see the document exactly as it

was intended. You can also turn off your browser’s support for style sheets if you’d

rather view all the pages in the same consistent way.

Using CSS and simplifying HTML markup is also helpful in making pages compati-
ble with the various tiny browsers used on mobile phones.

Defining and Using CSS Styles
You can define a CSS style sheet within an HTML document using the <style> tag.

The opening <style> tag specifies the type of style sheet—CSS is currently the only

valid type—and begins a list of styles to apply to the document. The </style> tag

ends the style sheet. Here’s a simple example:

By the
Way

Did you
Know?

Defining and Using CSS Styles 193

<style type=”text/css”>
H1 {color: blue;}

</style>

Because the style sheet definition itself doesn’t create any output on the page, you

should place the <style> tags in the <head> section of the HTML document.

You can only use style sheet rules within the <style> tags. HTML tags are not
valid within a style sheet.

Creating Rules
Each element within the <style> tags is called a rule. To create a rule, you specify

the HTML elements that it will affect, as well as a list of properties and values that

control the appearance of those elements. We’ll look at the properties in the next

section.

As a simple example, the following style sheet contains a single rule. All Level 1

headings are blue:

<style type=”text/css”>
H1 {color: blue;}

</style>

Each rule includes three components:

. A selector (H1 in the example) describing which HTML tags will be affected

. One or more property names (color in the example)

. A value for each property name (blue in the example)

Each rule uses braces to surround the list of properties and values, and a semicolon

after each value. The semicolon is optional if you are only specifying one property

and value.

You can specify multiple HTML tags for the selector, as well as multiple properties

and values. For example, the following style sheet specifies that all headings are

blue, italic, and centered:

<style type=”text/css”>
H1,H2,H3,H4,H5,H6 {color: blue;

font-style: italic;
text-align: center; }

</style>

Watch
Out!

194 HOUR 12: Working with Style Sheets

If you make a rule that sets the style of the <body> tag, it will affect the entire
document. This becomes the default rule for the document, but you can override it
with the styles of elements within the body of the page.

Setting Styles for Specific Elements
Rather than setting the style for all elements of a certain type, you can specify a

style for an individual element only. For example, the following HTML tag repre-

sents a Level 1 heading colored red:

<h1 style=”color: red; text-align: center;”>This is a red heading.</h1>

This is called an inline style because it’s specified in the HTML tag itself. You don’t need

to use <style> tags with this type of style. If you have used both, inline style rules

override rules in a style sheet—for example, if the preceding tag appeared in a docu-

ment that sets H1 headings to be blue in a style sheet, the heading would still be red.

Using id Attributes
You can also create a rule within a style sheet that will only apply to a certain ele-

ment. The id attribute of an HTML tag enables you to assign a unique identifier to

that element. For example, this tag defines a paragraph with the id attribute intro:

<p id=”intro”>This is a paragraph</p>

After you’ve assigned this attribute to the tag, you can include rules for it as part of a

style sheet. CSS uses the pound sign (#) to indicate that a rule applies to a specific id.

For example, the following style sheet sets the intro paragraph to be red in color:

<style type=”text/css”>
#intro {color: red;}

</style>

An id value should define a single element in a page. Most browsers will enable
you to define more than one element with the same id value, but this is not valid
and will not work consistently. It’s best to use classes, as described in the next
section, when you need to apply the same styles to multiple elements.

Using Classes
Although the id attribute is useful, you can only use each unique id value with a

single HTML tag. If you need to apply the same style to several tags, you can use the

class attribute instead. For example, this HTML tag defines a paragraph in a class

called smallprint:

By the
Way

Watch
Out!

Using CSS Properties 195

<p class=”smallprint”>This is the small print</p>

To refer to a class within a style sheet, you use a period followed by the class name.

Here is a style sheet that defines styles for the smallprint class:

<style type=”text/css”>
.smallprint {color: black;

font-size: 10px; }
</style>

You can use a class on any number of elements within a page. You can also
define multiple classes for an element, separated by spaces: class=”smallprint
bold”. When you do this, the CSS rules for all of the classes will be applied to
the element.

Using CSS Properties
CSS supports a wide variety of properties, such as color and text-align, in the pre-

vious example. The following sections list some of the most useful CSS properties for

aligning text, changing colors, working with fonts, and setting margins and borders.

This is only an introduction to CSS, and there are many properties beyond those
listed here. For more details about CSS, consult one of the web resources or
books listed in Appendix A, “Other JavaScript Resources.”

Aligning Text
One of the most useful features of style sheets is the capability to change the spac-

ing and alignment of text. Most of these features aren’t available using standard

HTML. You can use the following properties to change the alignment and spacing of

text:

. letter-spacing—Specifies the spacing between letters.

. text-decoration—Enables you to create lines over, under, or through the

text, or to choose blinking text. The value can be none (default), underline,

overline, line-through, or blink. Blinking text is, thankfully, unsupported

by most browsers.

. vertical-align—Enables you to move the element up or down to align with

other elements on the same line. The value can be baseline, sub, super, top,

text-top, middle, text-bottom, and bottom.

By the
Way

Did you
Know?

196 HOUR 12: Working with Style Sheets

. text-align—Specifies the justification of text. This can be left, right, cen-

ter, or justify.

. text-transform—Changes the capitalization of text. capitalize makes the

first letter of each word uppercase; uppercase makes all letters uppercase; and

lowercase makes all letters lowercase.

. text-indent—Enables you to specify the amount of indentation for para-

graphs and other elements.

. line-height—Enables you to specify the distance between the top of one line

of text and the top of the next.

Changing Colors and Background Images
You can also use style sheets to gain more control over the colors and background

images used on your web page. CSS includes the following properties for this pur-

pose:

. color—Specifies the color of the text within an element. This is useful for

emphasizing text or for using a specific color scheme for the document. You

can specify a named color (for example, red) or red, green, and blue values to

define a specific color (for example, #0522A5).

. background-color—Specifies the background color of an element. By setting

this value, you can make paragraphs, table cells, and other elements with

unique background colors. As with color, you can specify a color name or

numeric color.

. background-image—Specifies the URL for an image to be used as the back-

ground for the element. This is specified with the keyword url and a URL in

parentheses, as in url(/back.gif).

. background-repeat—Specifies whether the background image is repeated

(tiled). The image can be repeated horizontally, vertically, or both.

. background-attachment—Controls whether the background image scrolls

when you scroll through the document. fixed means that the background

image stays still while the document scrolls; scroll means the image scrolls

with the document (like background images on normal web documents).

. background-position—Enables you to offset the position of the background

image.

. background—Provides a quick way to set all of the background elements in

this list. You can specify all of the attributes in a single background rule.

Using CSS Properties 197

The basic list of colors supported by most browsers for the color and background-
color properties includes aqua, black, blue, fuchsia, gray, green, lime, maroon,
navy, olive, orange, purple, red, silver, teal, white, and yellow.

Working with Fonts
Style sheets also enable you to control the fonts used on the web document and how
they are displayed. You can use the following properties to control fonts:

. font-family—Specifies the name of a font, such as arial or helvetica, to
use with the element. Because not all users have the same fonts installed, you
can list several fonts. The CSS specification also supports several generic font
families that are guaranteed to be available: serif, sans-serif, cursive,
fantasy, and monospace.

. font-style—Specifies the style of a font, such as normal, italic, or oblique.

. font-variant—This value is normal for normal text, and small-caps to dis-
play lowercase letters as small capitals.

. font-weight—Enables you to specify the weight of text: normal or bold. You
can also specify a numeric font weight for a specific amount of boldness.

. font-size—The point size of the font.

. font—This is a quick way to set all the font properties in this list. You can list
all the values in a single font rule.

Margins and Borders
Last but not least, you can use style sheets to control the general layout of the
page. The following properties affect margins, borders, and the width and height of
elements on the web page:

. margin-top, margin-bottom, margin-left, margin-right—Specify the
margins of the element. You can specify the margins as an exact number or
as a percentage of the page’s width.

. margin—Allows you to specify a single value for all four of the margins.

. width—Specifies the width of an element, such as an image.

. height—Specifies the height of an element.

. float—Enables the text to flow around an element. This is particularly useful
with images or tables.

. clear—Specifies that the text should stop flowing around a floating image.

Did you
Know?

198 HOUR 12: Working with Style Sheets

Along with these features, CSS style sheets enable you to create sections of the
document that can be positioned independently. This feature is described in Hour
13, “Using the W3C DOM.”

Units for Style Sheets
Style sheet properties support a wide variety of units, or types of values you can spec-

ify. Most properties that accept a numeric value support the following types of units:

. px—Pixels (for example, 15px). Pixels are the smallest addressable units on a

computer screen or other device. In some devices with non-typical resolutions

(for example, handheld computers) the browser might rescale this value to fit

the device.

. pt—Points (for example, 10pt). Points are a standard unit for font size. The

size of text of a specified point size varies depending on the monitor resolu-

tion. Points are equal to 1/72 of an inch.

. ex— Approximate height of the letter x in the current font (for example,

1.2ex).

. em—Approximate width of the letter m in the current font (for example,

1.5em). This is usually equal to the font-size property for the current ele-

ment.

. %—Percentage of the containing object’s value (for example, 150%).

Which unit you choose to use is generally a matter of convenience. Point sizes are

commonly used for fonts, pixel units for the size and position of layers or other

objects, and so on.

Creating a Simple Style Sheet
As an example of CSS, you can now create a web page that uses a wide variety of

styles:

. For the entire body, the text is blue.

. Paragraphs are centered and have a wide margin on either side.

. Level 1, 2, and 3 headings are red.

. Bullet lists are boldface and green by default.

Did you
Know?

Creating a Simple Style Sheet 199

The following is the CSS style sheet to define these properties, using the <style>

tags:

<style type=”text/css”>
BODY {color: blue}
P {text-align: center;

margin-left:20%;
margin-right:20%}

H1, H2, H3 {color: red}
UL {color: green;

font-weight: bold}
</style>

Here’s a rundown of how this style sheet works:

. The <style> tags enclose the style sheet.

. The BODY section sets the page body’s default text color to blue.

. The P section defines the style for paragraphs.

. The H1, H2, H3 section defines the style for heading tags.

. The UL section defines a style for bullet lists.

To show how this style sheet works, Listing 12.1 shows a document that includes this

style sheet and a few examples of overriding styles for particular elements. Figure

12.1 shows Internet Explorer’s display of this example.

LISTING 12.1 An Example of a Document Using CSS Style Sheets
<html>
<head><title>Style Sheet Example</title>
<style type=”text/css”>
BODY {color: blue}
P {text-align: center;

margin-left:20%;
margin-right:20%}

H1, H2, H3 {color: red}
UL {color: green;

font-weight: bold}
</style>
</head>
<body>
<h1>Welcome to this page</h1>
<p>The above heading is red, since we specified that H1-H3 headings
are red. This paragraph is blue, which is the default color for
the entire body. It’s also centered and has 20% margins, which we
specified as the default for paragraphs.
</p>
<p style=”color:black”>This paragraph has black text, because it overrides
the default color in the paragraph tag. We didn’t override the centering,
so this paragraph is also centered.</p>

200 HOUR 12: Working with Style Sheets

This is a bullet list.
It’s green and bold, because we specified those defaults for bullet lists.
<li style=”color:red”>This item is red, overriding the default.
This item is back to normal.

<p>This is another paragraph with the default paragraph style.</p>
</body>
</html>

Remember that you can download the code for this listing from this book’s web-
site.

LISTING 12.1 Continued

Did you
Know?

FIGURE 12.1
The style sheet
example as dis-
played by
Internet
Explorer.

Using External Style Sheets
The preceding example only changes a few aspects of the HTML document’s appear-

ance, but it adds about 10 lines to its length. If you were trying to make a very styl-

ish page and had defined new styles for all of the attributes, you would end up with

a very long and complicated document.

For this reason, you can use a CSS style sheet from a separate file in your document.

This makes your document short and to the point. More importantly, it enables you

to define a single style sheet and use it to control the appearance of all of the pages

on your site.

Controlling Styles with JavaScript 201

Linking to External Style Sheets
You can refer to an external CSS file by using the <link> tag in the <head> section

of one or more HTML documents:

<link rel=”stylesheet” type=”text/css” href=”style.css”>

This tag refers to an external CSS style sheet stored in the style.css file.

Using external style sheets is a good practice because it separates content
(HTML), presentation (CSS), and behavior (JavaScript). See Hour 15, “Unobtrusive
Scripting,” for more information on best practices.

Creating External .css Files
After you’ve linked to an external .css file, you need to create the file itself. The

external style sheet is a simple text file that you can create with the same editor you

use for HTML documents.

The .css file should contain a list of CSS rules, in the same format you would use

between <style> tags. However, the file should not include <style> tags or any

other HTML tags. Here is what the styles from the previous example would look like

as an external style sheet:

BODY {color: blue}
P {text-align: center;

margin-left:20%;
margin-right:20%}

H1, H2, H3 {color: red}
UL {color: green;

font-weight: bold}

Controlling Styles with JavaScript
The new W3C DOM (Document Object Model) makes it easy for JavaScript applica-

tions to control the styles on a page. Whether or not you use style sheets, you can

use JavaScript to modify the style of any element on a page.

As you learned in Hour 4, “Working with the Document Object Model (DOM),” the

DOM enables you to access the entire HTML document and all of its elements as script-

able objects. You can change any object’s style by modifying its style object properties.

The names and values of objects under the style object are the same as you’ve

learned in this hour. For example, you can change an element’s color by modifying

its style.color attribute:

element.style.color=”blue”;

By the
Way

▼

202 HOUR 12: Working with Style Sheets

Here, element represents the object for an element. There are many ways of finding

an element’s corresponding object, which you will learn about in detail in Hour 13.

In the meantime, an easy way to find an element’s object is to assign an identifier

to it with the id attribute. The following statement creates an <h1> element with the

identifier “head1”:

<h1 id = “head1”>This is a heading</h1>

Now that you’ve assigned an identifier, you can use the getElementById() method

to find the DOM object for the element:

element = document.getElementById(“head1”);

You can also use a shortcut to set styles and avoid the use of a variable by directly

working with the getElementbyId() method:

document.getElementById(“head1”).style.color=”blue”;

This statement combines the preceding examples by directly assigning the blue color

style to the head1 element of the page. You’ll use this technique to create a dynamic

page in the following Try It Yourself section.

Try It Yourself

Creating Dynamic Styles
Using the DOM style objects, you can create a page that enables you to directly con-

trol the colors used in the page’s text. To begin with, you will need a form with

which to select colors. You can use <select> tags to allow a color choice:

<select name=”heading” onChange=”changehead();”>
<option value=”black”>Black</option>
<option value=”red”>Red</option>
<option value=”blue”>Blue</option>
<option value=”green”>Green</option>
<option value=”yellow”>Yellow</option>

</select>

If you are unsure of the syntax used in forms, you might want to review Hour 11,
“Getting Data with Forms.”

Notice that this <select> definition uses onChange attributes in the <select> tags

to call two functions, changehead() and changebody(), when their respective selec-

tion changes.

By the
Way

Controlling Styles with JavaScript 203

Combining two of these selections with some basic HTML results in the complete

HTML document shown in Listing 12.2.

LISTING 12.2 The HTML File for the Dynamic Styles Example
<html>
<head>
<title>Controlling Styles with JavaScript</title>
<script language=”Javascript” type=”text/javascript”

src=”styles.js”>
</script>
</head>
<body>
<h1 id=”head1”>
Controlling Styles with JavaScript</h1>
<hr>
<p id=”p1”>
Select the color for paragraphs and headings using the form below.
The colors you specified will be dynamically changed in this document.
The change occurs as soon as you change the value of either of the
drop-down lists in the form.
</p>
<form name=”form1”>
Heading color:
<select name=”heading” onChange=”changehead();”>

<option value=”black”>Black</option>
<option value=”red”>Red</option>
<option value=”blue”>Blue</option>
<option value=”green”>Green</option>
<option value=”yellow”>Yellow</option>

</select>

Body text color:
<select name=”body” onChange=”changebody();”>

<option value=”black”>Black</option>
<option value=”red”>Red</option>
<option value=”blue”>Blue</option>
<option value=”green”>Green</option>
<option value=”yellow”>Yellow</option>

</select>
</form>
</body>
</html>

Notice that the <h1> tag has an id attribute of “head1”, and the <p> tag has an id

of “p1”. These are the values the script will use in the getElementById() function.

The <script> tag in the <head> section links the document to the styles.js script,

which you will create next.

Save your HTML file as styles.html. You can test it in a browser now, but the

dynamic features will not work until you create the JavaScript file containing the

script functions. Listing 12.3 shows the JavaScript code for this example.

204 HOUR 12: Working with Style Sheets

LISTING 12.3 The JavaScript File for the Dynamic Styles Example
function changehead() {
i = document.form1.heading.selectedIndex;
headcolor = document.form1.heading.options[i].value;
document.getElementById(“head1”).style.color = headcolor;

}
function changebody() {
i = document.form1.body.selectedIndex;
doccolor = document.form1.body.options[i].value;
document.getElementById(“p1”).style.color = doccolor;

}

This script first defines the changehead() function. This reads the index for the cur-

rently selected heading color, and then reads the color value for the index. This

function uses the getElementById() method described in the previous section to

change the color. The changebody() function uses the same syntax to change the

body color.

Store your JavaScript file as styles.js, and be sure it is in the same folder as the

HTML document you saved from Listing 12.2.

To test the dynamic styles script, load Listing 12.2 (styles.html) into the browser.

Select the colors, and notice the immediate change in the heading or body of the

page. Figure 12.2 shows a typical display of this document after the colors have

been changed.

FIGURE 12.2
The dynamic
styles example
in action.

Summary
In this hour, you’ve used style sheets to control the appearance of web documents.

You’ve learned the CSS syntax for creating style sheets, and used JavaScript to con-

trol the styles of a document.

In the next hour, you will move on to Dynamic HTML (DHTML) using layers and

other features of the W3C DOM.

▲

Q&A 205

Q&A
Q. What’s the difference between changing the appearance of text with tradi-

tional tags, such as and <i>, and using a style sheet?

A. Functionally, there is no difference. In principle, though, the HTML should

define the structure of the document, and CSS should define the presentation.

Q. What happens if two style sheets affect the same text?

A. The CSS specification is designed to allow style sheets to overlap, or cascade.

Thus, you can specify a style for the body of the document and override it for

specific elements, such as headings and paragraphs. You can even go one step

further and override the style for one particular instance of an element. CSS

has a set of rules governing which styles have precedence over others,

although you might find that different browsers interpret CSS differently when

you have many overlapping styles.

Q. With CSS in one separate file and JavaScript in another, doesn’t web devel-
opment get confusing?

A. Yes, this can make a simple page unnecessarily complex. However, as you

build more complex pages, you’ll find it very helpful to have three separate

files. This lets you deal with the content and structure (HTML), presentation

(CSS), and behavior (JavaScript) separately.

Q. What if users don’t like the styles I use in my pages?

A. This is another distinct advantage style sheets have over browser-specific tags.

With the latest browsers, users can choose a default style sheet of their own

and override any properties they want.

Quiz Questions
Test your knowledge of style sheets and JavaScript by answering the following

questions.

1. Which of the following tags is the correct way to begin a CSS style sheet?

a. <style>

b. <style type=”text/css”>

c. <style rel=”css”>

206 HOUR 12: Working with Style Sheets

2. Why isn’t the normal HTML language very good at defining layout and pres-

entation?

a. Because it was designed by programmers.

b. Because magazines feared the competition.

c. Because its main purpose is to define document structure.

3. Which feature of new browsers allows you to use JavaScript statements to

change styles?

a. HTML 4.0

b. The DOM

c. CSS 2.0

Quiz Answers
1. b. You begin a CSS style sheet with the tag <style type=”text/css”>.

2. c. HTML is primarily intended to describe the structure of documents.

3. b. The DOM (Document Object Model) enables you to change styles using

JavaScript.

Exercises
If you want to gain more experience using CSS style sheets, try the following

exercise:

. Modify Listing 12.2 to include an <h2> tag with a subheading. Add a form ele-

ment to select this tag’s color, and a corresponding changeh2 function in the

script.

. Now that Listing 12.2 has three different changeable elements, there is quite a

bit of repetition in the script. Create a single ChangeColor function that takes a

parameter for the element to change, and modify the onChange event handlers

to send the appropriate element id value as a parameter to this function.

HOUR 13

Using the W3C DOM

What You’ll Learn in This Hour:
. How the W3C DOM standard makes dynamic pages easier
. How the DOM’s objects are structured
. Understanding nodes, parents, children, and siblings
. Creating positionable layers
. Using CSS’s positioning properties
. Controlling positioning with JavaScript

Throughout this book, you’ve learned about the DOM (Document Object Model),

JavaScript’s way of referencing objects within web documents. In the last hour, you

learned to modify style sheet properties on the fly using JavaScript.

During this hour, you’ll learn more about how the DOM represents the objects that make

up a web document, and how to use DOM objects to move objects within a page.

The DOM and Dynamic HTML
Due to the basic DOM of older browsers, JavaScript could only have a limited effect on a

page. There were certain elements, such as forms and images, that you could control with

JavaScript, but if you wanted to do something more complex—such as adding or remov-

ing several paragraphs, making a form appear out of nowhere, or displaying data

dynamically within text—you were out of luck.

To escape this limitation, browser manufacturers created Dynamic HTML, or DHTML—an

extended DOM that allowed JavaScript to manipulate more of a page. Unfortunately, this

was still limiting—you had to work with certain defined parts of the page called layers

rather than having complete control over the page.

208 HOUR 13: Using the W3C DOM

Worse yet, Microsoft and Netscape created completely different and incompatible

versions of DHTML, which led to some complicated and unreliable scripting.

Fortunately, you won’t have to learn about those incompatible versions of DHTML

because the W3C DOM has made them unnecessary. Although browsers still

aren’t perfectly interchangeable, today’s browsers support enough of the standard

DOM to enable you to fully control the content of pages without much concern over

browser issues. In this hour and the next hour, you’ll create several examples of

DOM scripts that will work fine in all modern browsers.

There are still browser issues, of course. Hour 15, “Unobtrusive Scripting,” will
show you how to deal with browser differences and how to minimize your chances
of running into problems with new browsers.

Understanding DOM Structure
In Hour 4, “Working with the Document Object Model (DOM),” you learned about

how some of the most important DOM objects are organized: The window object

contains the document object, and so on. Although these objects were the only ones

available in older browsers, the new DOM adds objects under the document object

for every element of a page.

To better understand this concept, let’s look at the simple HTML document in Listing

13.1. This document has the usual <head> and <body> sections, a heading, and a

single paragraph of text.

LISTING 13.1 A Simple HTML Document
<html>
<head>
<title>A simple HTML Document</title>
</head>
<body>
<h1>This is a Heading</h1>
<p>This is a paragraph</p>
</body>
</html>

Like all HTML documents, this one is composed of various containers and their con-

tents. The <html> tags form a container that includes the entire document, the

<body> tags contain the body of the page, and so on.

In the DOM, each container within the page and its contents are represented by an

object. The objects are organized into a tree-like structure, with the document object

By the
Way

Understanding DOM Structure 209

itself at the root of the tree, and individual elements such as the heading and para-

graph of text at the leaves of the tree. Figure 13.1 shows a diagram of these relation-

ships.

In the following sections, you will examine the structure of the DOM more closely.

document

html

head

“A simple
HTML Document”

“This is
a Heading”

“This is
a paragraph”

title h1 p

body

FIGURE 13.1
How the DOM
represents an
HTML docu-
ment.

Don’t worry if this tree structure confuses you; you can do almost anything by sim-
ply assigning IDs to elements and referring to them. This is the method used in
earlier hours of this book, as well as in the Try It Yourself section of this hour. In
Hour 14, “Using Advanced DOM Features,” you will look at more complicated exam-
ples that require you to understand the way objects are organized in the DOM.

Nodes
Each container or element in the document is called a node in the DOM. In the

example in Figure 13.1, each of the objects in boxes is a node, and the lines repre-

sent the relationships between the nodes.

You will often need to refer to individual nodes in scripts. You can do this by assign-

ing an ID, or by navigating the tree using the relationships between the nodes.

Parents and Children
As you learned earlier in this book, each JavaScript object can have a parent—an

object that contains it—and can also have children—objects that it contains. The

DOM uses the same terminology.

In Figure 13.1, the document object is the parent object for the remaining objects,

and does not have a parent itself. The html object is the parent of the head and

body objects, and the h1 and p objects are children of the body object.

By the
Way

210 HOUR 13: Using the W3C DOM

Text nodes work a bit differently. The actual text in the paragraph is a node in itself,

and is a child of the p object. Similarly, the text within the <h1> tags is a child of the

h1 object.

In Hour 14, you will learn methods of referring to objects by their parent and child
relationships, as well as ways of adding and removing nodes from the document.

Siblings
The DOM also uses another term for organization of objects: siblings. As you might

expect, this refers to objects that have the same parent—in other words, objects at

the same level in the DOM object tree.

In Figure 13.1, the h1 and p objects are siblings: Both are children of the body

object. Similarly, the head and body objects are siblings under the html object.

Creating Positionable Elements
(Layers)
Using the W3C DOM, you can control any element in a web page, such as a para-

graph or an image. You can change an element’s style, as you learned in the previ-

ous hour. You can also use the DOM to change the position, visibility, and other

attributes of the element.

Before the W3C DOM and CSS2 standards, you could only reposition layers, special

groups of elements defined with a proprietary tag. Although you can now position

any element, it’s still useful to work with groups of elements in many cases.

You can effectively create a layer, or a group of HTML objects that can be controlled

as a group, using the <div> or tags.

The <div> and tags are part of the HTML 3.0 standard. defines
an arbitrary section of the HTML document, and does not specify any formatting
for the text it contains. <div> is similar, but includes a line break before and after
its contents.

To create a layer with <div>, enclose the content of the layer between the two divi-

sion tags and specify the layer’s properties in the style attribute of the <div> tag.

Here’s a simple example:

<div id=”layer1” style=”position:absolute; left:100; top:100”>
<p>This is the content of the layer.</p>
</div>

By the
Way

By the
Way

Creating Positionable Elements (Layers) 211

This code defines a layer with the name layer1. This is a moveable layer positioned

100 pixels down and 100 pixels to the right of the upper-left corner of the browser

window. You’ll learn more details about the positioning properties in the next sec-

tion.

As with all CSS properties, you can specify the position property and other layer
properties in a <style> block, in an external style sheet, or in the style attribute
of an HTML tag. You can also control these properties using JavaScript, as
described later in this hour.

Setting Object Position and Size
You can use various properties in the style attribute of the <div> tag when you

define a layer to set its position, visibility, and other features. The following proper-

ties control the object’s position and size:

. position is the main positioning attribute and can affect the following prop-

erties. The position property can have one of three values:

. static defines items that are laid out in normal HTML fashion, and

cannot be moved. This is the default.

. absolute specifies that an item will be positioned using coordinates you

specify.

. relative defines an item that is offset a certain amount from the stat-

ic position, where the element would normally have been laid out with-

in the HTML page.

. left and top specify offsets for the position of the item. For absolute position-

ing, this is relative to the main browser window or a containing item. For rela-

tive positioning, it’s relative to the usual static position.

. right and bottom are an alternative way to specify the position of the item.

You can use these when you need to align the object’s right or bottom edge.

. width and height are similar to the standard HTML width and height attrib-

utes and specify a width and height for the item.

. z-index specifies how items overlap. Normally indexes start with 1 and go up

with each layer added “on top” of the page. By changing this value, you can

specify which item is on top.

Did you
Know?

212 HOUR 13: Using the W3C DOM

Properties such as left and top work in pixels by default. You can also use any
of the units described in the previous hour: px, pt, ex, em, or percentages.

Setting Overflow Properties
Sometimes the content inside a layer is larger than the size the layer can display.

Two properties affect how the layer is displayed in this case:

. overflow indicates whether the content of an element is cut off at the edges of

the element, or whether a scroll bar allows viewing the rest of the item. Values

include visible to display content outside the element; hidden to hide the

clipped content; scroll to display scroll bars; auto to let the browser decide

whether to display scroll bars; or inherit to use a parent object’s setting.

. clip specifies the clipping rectangle for an item. Only the portion of the item

inside this rectangle is displayed. Normally this is the same as the element’s

dimensions, but you can define an offset inside the element here.

Using Visibility Properties
Along with positioning objects, you can use CSS positioning to control whether the

objects are visible at all, and how the document is formatted around them. These

properties control how objects are displayed:

. display specifies whether an item is displayed in the browser. A value of

“none” hides the object. Other values include block to display the object pre-

ceded and followed by line breaks, inline to display it without line breaks,

and list-item to display it as part of a list.

. visibility specifies whether an item is visible. Values include visible

(default), hidden, and inherit. A value of inherit means the item inherits

the visibility of any item it appears within (such as a table or a paragraph).

The difference between display and visibility is that objects set to display:

none will not be displayed at all, and the page will be laid out as if the element was-

n’t there. Objects set to visibility: hidden will still be included in the layout of

the page, but as empty space.

Setting Background and Border Properties
You can use the following properties to set the color and background image for a

layer or other object and control whether borders are displayed:

By the
Way

Creating Positionable Elements (Layers) 213

. background-color specifies the color for the background of any text in the

layer.

. background-image specifies a background image for any text in the layer.

. border-width sets the width of the border for all four sides. This can be a

numeric value or the keywords thin, medium, or thick.

. border-style sets the style of border. Values include none (default), dotted,

dashed, solid, double, groove, ridge, inset, or outset.

. border-color sets the color of the border. As with other color properties, this

can be a named color such as blue or an RGB color such as #FF03A5.

Controlling Positioning with JavaScript
As you learned in the previous hour, you can control the style attributes for an

object with the attributes of the object’s style property. You can control the position-

ing attributes listed in the previous section the same way.

Suppose you have created a layer with the following <div> tags:

<div id=”layer1” style=”position:absolute; left:100; top:100”>
<p>This is the content of the layer.</p>
</div>

To move this layer up or down within the page using JavaScript, you can change its

style.top attribute. For example, the following statements move the layer 100 pix-

els down from its original position:

var obj = document.getElementById(“layer1”);
obj.style.top=200;

The document.getElementById() method returns the object corresponding to the

layer’s <div> tag, and the second statement sets the object’s top positioning proper-

ty to 200. As you learned in the previous hour, you can also combine these two

statements:

document.getElementById(“layer1”).style.top = 200;

This simply sets the style.top property for the layer without assigning a variable to

the layer’s object. You will use this technique in this hour’s Try It Yourself section.

Some CSS properties, such as text-indent and border-color, have hyphens in
their names. When you use these properties in JavaScript, you combine the
hyphenated sections and use a capital letter: textIndent and borderColor.

By the
Way

▼

214 HOUR 13: Using the W3C DOM

Try It Yourself

Creating a Movable Layer
As an example of positioning an element with JavaScript, you can now create an

HTML document that defines a layer, and combine it with a script to allow the layer

to be moved, hidden, or shown using buttons. Listing 13.2 shows the HTML docu-

ment that defines the buttons and the layer.

LISTING 13.2 The HTML Document for the Movable Layer Example
<html>
<head>
<title>Positioning Elements with JavaScript</title>
<script language=”javascript” type=”text/javascript”

src=”position.js”>
</script>
<style>
#square {

position:absolute;
top: 150;
left: 100;
width: 200;
height: 200;
border: 2px solid black;
padding: 10px;
background-color: #E0E0E0;

}
</style>
</head>
<body>
<h1>Positioning Elements</h1>
<hr>
<form name=”form1”>
<input type=”button” name=”left” value=”<- Left”

onClick=”pos(-1,0);”>
<input type=”button” name=”right” value=”Right ->”

onClick=”pos(1,0);”>
<input type=”button” name=”up” value=”Up”

onClick=”pos(0,-1);”>
<input type=”button” name=”down” value=”Down”

onClick=”pos(0,1);”>
<input type=”button” name=”hide” value=”Hide”

onClick=”hideSquare();”>
<input type=”button” name=”show” value=”Show”

onClick=”showSquare();”>
</form>
<hr>
<div id=”square”>
<p>This square is an absolutely positioned
layer that you can move using the buttons above.</p>
</div>
</body>
</html>

Creating Positionable Elements (Layers) 215

In addition to some basic HTML, this document consists of the following:

. The <script> tag in the header reads a script called position.js, which you

will create later in this section.

. The <style> section is a brief style sheet that defines the properties for the

movable layer. It sets the position property to absolute to indicate that it

can be positioned at an exact location, sets the initial position in the top and

left properties, and sets border and background-color properties to make

the layer clearly visible.

. The <input> tags within the <form> section define six buttons: four to move

the layer left, right, up, or down, and two to control whether it is visible or

hidden.

. The <div> section defines the layer itself. The id attribute is set to the value

“square”. This id is used in the style sheet to refer to the layer, and will also

be used in your script.

Type this document (or download it from this book’s website) and save it. If you load

it into a browser, you should see the buttons and the “square” layer, but the but-

tons won’t do anything yet. The script in Listing 13.3 adds the action to the HTML.

LISTING 13.3 The Script for the Movable Layer Example
var x=100,y=150;
function pos(dx,dy) {

if (!document.getElementById) return;
x += 10*dx;
y += 10*dy;
obj = document.getElementById(“square”);
obj.style.top=y;
obj.style.left=x;

}
function hideSquare() {

if (!document.getElementById) return;
obj = document.getElementById(“square”);
obj.style.display=”none”;

}
function showSquare() {

if (!document.getElementById) return;
obj = document.getElementById(“square”);
obj.style.display=”block”;

}

The var statement at the beginning of the script defines two variables, x and y, that

will store the current position of the layer. The pos function is called by the event

handlers for all four of the movement buttons.

216 HOUR 13: Using the W3C DOM

The parameters of the pos() function, dx and dy, tell the script how the layer

should move: If dx is negative, a number will be subtracted from x, moving the

layer to the left. If dx is positive, a number will be added to x, moving the layer to

the right. Similarly, dy indicates whether to move up or down.

The pos() function begins by making sure the getElementById() function is sup-

ported, so it won’t attempt to run in older browsers. It then multiplies dx and dy by

10 (to make the movement more obvious) and applies them to x and y. Finally, it

sets the top and left properties to the new position, moving the layer.

Two more functions, hideSquare() and showsquare(), hide or show the layer by

setting its display property to “none” (hidden) or “block” (shown).

To use this script, save it as position.js and then load the HTML document,

Listing 13.2, into your browser. Figure 13.2 shows this script in action.

FIGURE 13.2
The movable
layer example in
Internet
Explorer.

By assigning values to the layer’s positioning properties repeatedly rather than at
each click of a button, you can produce an animation effect. See Hour 19, “Using
Graphics and Animation,” for an example of this technique.

By the
Way

▲

Quiz Questions 217

Summary
In this hour, you’ve learned a bit more about the structure of DOM objects that

make up a page, how to use HTML and CSS to define a positionable layer, and how

you can use positioning properties dynamically with JavaScript.

Layers are only a simple aspect of what you can do to a page with the W3C DOM.

In the next hour, you’ll learn how to manipulate the DOM tree to add elements,

remove elements, and dynamically change the text within a page.

Q&A
Q. What happens when my web page includes multiple HTML documents, such

as when frames are used?

A. In this case, each window or frame has its own document object that stores the

elements of the HTML document it contains.

Q. If the DOM allows any object to be dynamically changed, why does the posi-
tioning example need to use <div> tags to define a layer?

A. The example could just as easily move a heading, or a paragraph. The layer

is just a convenient way to group objects and to create a square object with a

border.

Q. Exactly which browsers support positioning elements with the DOM?

A. Support for the W3C DOM first appeared in Internet Explorer 5.0 and

Netscape 5.0, although it was buggy. Current browsers, such as Internet

Explorer 6 and 7, Firefox 1.x, and Opera 7 and 8, have solid and consistent

DOM support.

Quiz Questions
Test your knowledge of the W3C DOM by answering the following questions.

1. Which of the following tags is used to create a layer?

a. <layer>

b. <div>

c. <style>

218 HOUR 13: Using the W3C DOM

2. Which property controls an element’s left-to-right position?

a. left

b. width

c. lrpos

3. Which of the following CSS rules would create a heading that is not currently

visible in the page?

a. h1 {visibility: invisible;}

b. h1 {display: none;}

c. h1 {style: invisible;}

Quiz Answers
1. b. The <div> tag can be used to create positionable layers.

2. a. The left property controls an element’s left-to-right position.

3. b. The none value for the display property makes it invisible. The visibili-

ty property could also be used, but its possible values are visible or hidden.

Exercises
If you want to gain more experience using the W3C DOM, try the following exercises:

. Modify the positioning example in Listings 13.2 and 13.3 to move the square

one pixel at a time rather than ten at a time.

. Modify the positioning example to eliminate the <div> layer and move a

paragraph element instead. You will need to move the id attribute to the

paragraph.

HOUR 14

Using Advanced DOM
Features

What You’ll Learn in This Hour:
. Using the properties of DOM nodes
. Understanding DOM node methods
. Hiding and showing objects within a page
. Modifying text within a page
. Adding text to a page
. Creating a dynamic navigation tree

During this hour, you will take a closer look at the objects in the DOM, and the properties

and methods you can use to control them. You will also explore several examples of

dynamic HTML pages using these DOM features.

Working with DOM Nodes
As you learned in Hour 13, “Using the W3C DOM,” the DOM organizes objects within a

web page into a tree-like structure. Each node (object) in this tree can be accessed in

JavaScript. In the next sections you will learn how you can use the properties and meth-

ods of nodes to manage them.

The following sections only describe the most important properties and
methods of nodes, and those that are supported by current browsers.
For a complete list of available properties, see the W3C’s DOM specifi-
cation at http://www.w3.org/TR/DOM-Level-2/.

By the
Way

http://www.w3.org/TR/DOM-Level-2/

220 HOUR 14: Using Advanced DOM Features

Basic Node Properties
You have already used the style property of nodes to change their style sheet val-

ues. Each node also has a number of basic properties that you can examine or set.

These include the following:

. nodeName is the name of the node (not the ID). For nodes based on HTML

tags, such as <p> or <body>, the name is the tag name: P or BODY. For the doc-

ument node, the name is a special code: #document. Similarly, text nodes

have the name #text.

. nodeType is an integer describing the node’s type: 1 for normal HTML tags, 3

for text nodes, and 9 for the document node.

. nodeValue is the actual text contained within a text node. This property is not

valid for other types of nodes.

. innerHTML is the HTML content of any node. You can assign a value including

HTML tags to this property and change the DOM child objects for a node

dynamically.

The innerHTML property is not a part of the W3C DOM specification. However, it is
supported by the major browsers, and is often the easiest way to change content
in a page. You can also accomplish this in a more standard way by deleting and
creating nodes, as described later in this hour.

Node Relationship Properties
In addition to the basic properties described previously, each node has a number of

properties that describe its relation to other nodes. These include the following:

. firstChild is the first child object for a node. For nodes that contain text,

such as h1 or p, the text node containing the actual text is the first child.

. lastChild is the node’s last child object.

. childNodes is an array that includes all of a node’s child nodes. You can use

a loop with this array to work with all the nodes under a given node.

. previousSibling is the sibling (node at the same level) previous to the cur-

rent node.

. nextSibling is the sibling after the current node.

By the
Way

Working with DOM Nodes 221

Remember that, like all JavaScript objects and properties, the node properties and
functions described here are case sensitive. Be sure you type them exactly as
shown.

Document Methods
The document node itself has several methods you might find useful. You have

already used one of these, getElementById(), to refer to DOM objects by their ID

properties. The document node’s methods include the following:

. getElementById(id) returns the element with the specified id attribute.

. getElementsByTagName(tag) returns an array of all of the elements with a

specified tag name. You can use the wildcard * to return an array containing

all the nodes in the document.

. createTextNode(text) creates a new text node containing the specified text,

which you can then add to the document.

. createElement(tag) creates a new HTML element for the specified tag. As

with createTextNode, you need to add the element to the document after cre-

ating it. You can assign content within the element by changing its child

objects or the innerHTML property.

Node Methods
Each node within a page has a number of methods available. Which of these are

valid depends on the node’s position in the page, and whether it has parent or child

nodes. These include the following:

. appendChild(new) appends the specified new node after all of the object’s

existing nodes.

. insertBefore(new, old) inserts the specified new child node before the spec-

ified old child node, which must already exist.

. replaceChild(new, old) replaces the specified old child node with a new

node.

. removeChild(node) removes a child node from the object’s set of children.

. hasChildNodes() returns a Boolean value of true if the object has one or

more child nodes, or false if it has none.

. cloneNode() creates a copy of an existing node. If a parameter of true is sup-

plied, the copy will also include any child nodes of the original node.

Watch
Out!

222 HOUR 14: Using Advanced DOM Features

Hiding and Showing Objects
We will now move on to a number of real-world examples using the DOM objects to

manipulate web pages. As a simple example, you can create a script that hides or

shows objects within a page.

As you learned in Hour 13, objects have a visibility style property that specifies

whether they are currently visible within the page:

Object.style.visibility=”hidden”; // hides an object
Object.style.visibility=”visible”; // shows an object

Using this property, you can create a script that hides or shows objects in either

browser. Listing 14.1 shows the HTML document for a script that allows two head-

ings to be shown or hidden.

LISTING 14.1 Hiding and Showing Objects
<html>
<head>
<title>Hiding and Showing Objects</title>
<script language=”Javascript” type=”text/javascript”>
function ShowHide() {

if (!document.getElementById) return;
var head1 = document.getElementById(“head1”);
var head2 = document.getElementById(“head2”);
var showhead1 = document.form1.head1.checked;
var showhead2 = document.form1.head2.checked;
head1.style.visibility=(showhead1) ? “visible” : “hidden”;
head2.style.visibility=(showhead2) ? “visible” : “hidden”;

}
</script>
</head>
<body>
<h1 ID=”head1”>This is the first heading</h1>
<h1 ID=”head2”>This is the second heading</h1>
<p>Using the W3C DOM, you can choose
whether to show or hide the headings on
this page using the checkboxes below.</p>
<form name=”form1”>
<input type=”checkbox” name=”head1”

checked onClick=”ShowHide();”>
Show first heading

<input type=”checkbox” name=”head2”

checked onClick=”ShowHide();”>
Show second heading

</form>
</body>
</html>

The <h1> tags in this document define headings with the identifiers head1 and

head2. The <form> section defines a form with two check boxes, one for each of the

Modifying Text Within a Page 223

headings. When a check box is modified, the onClick method is used to call the

ShowHide() function.

This function is defined within the <script> statements in the header. The function

assigns the head1 and head2 variables to the objects for the headings, using the

getElementById() method. Next, it assigns the showhead1 and showhead2 vari-

ables to the contents of the check boxes. Finally, the function uses the style.visi-

bility attributes to set the visibility of the headings.

The lines that set the visibility property might look a bit strange. The ? and :
characters create conditional expressions, a shorthand way of handling if state-
ments. To review conditional expressions, see Hour 7, “Controlling Flow with
Conditions and Loops.”

Figure 14.1 shows this example in action in Internet Explorer. In the figure, the sec-

ond heading’s check box has been unchecked, so only the first heading is visible.

Did you
Know?

FIGURE 14.1
The text hid-
ing/showing
example in
Internet
Explorer.

Modifying Text Within a Page
Next, you can create a simple script to modify the contents of a heading within a

web page. As you learned earlier this hour, the nodeValue property of a text node

contains its actual text, and the text node for a heading is a child of that heading.

Thus, the syntax to change the text of a heading with the identifier head1 would be

Var head1 = document.getElementById(“head1”);
Head1.firstChild.nodeValue = “New Text Here”;

This assigns the variable head1 to the heading’s object. The firstChild property

returns the text node that is the only child of the heading, and its nodeValue prop-

erty contains the heading text.

Using this technique, it’s easy to create a page that allows the heading to be changed

dynamically. Listing 14.2 shows the complete HTML document for this script.

224 HOUR 14: Using Advanced DOM Features

LISTING 14.2 The Complete Text-Modifying Example
<html>
<head>
<title>Dynamic Text in JavaScript</title>
<script language=”Javascript” type=”text/javascript”>
function ChangeTitle() {

if (!document.getElementById) return;
var newtitle = document.form1.newtitle.value;
var head1 = document.getElementById(“head1”);
head1.firstChild.nodeValue=newtitle;

}
</script>
</head>
<body>
<h1 ID=”head1”>Dynamic Text in JavaScript</h1>
<p>Using the W3C DOM, you can dynamically
change the heading at the top of this
page. Enter a new title and click the
Change button.</p>
<form name=”form1”>
<input type=”text” name=”newtitle” size=”25”>
<input type=”button” value=”Change!”
onClick=”ChangeTitle();”>

</form>
</body>
</html>

This example defines a form that allows the user to enter a new heading for the

page. Pressing the button calls the ChangeTitle() function, defined in the header.

This function gets the value the user entered in the form, and changes the heading’s

value to the new text.

Figure 14.2 shows this page in action in Internet Explorer after a new title has been

entered and the Change button has been clicked.

FIGURE 14.2
The heading-
changing exam-
ple in action.

Adding Text to a Page 225

Adding Text to a Page
Next, you can create a script that actually adds text to a page. To do this, you must

first create a new text node. This statement creates a new text node with the text

“this is a test”:

var node=document.createTextNode(“this is a test”);

Next, you can add this node to the document. To do this, you use the appendChild

method. The text can be added to any element that can contain text, but we will

use a paragraph. The following statement adds the text node defined previously to

the paragraph with the identifier p1:

document.getElementById(“p1”).appendChild(node);

Listing 14.3 shows the HTML document for a complete example that uses this tech-

nique, using a form to allow the user to specify text to add to the page.

LISTING 14.3 Adding Text to a Page
<html>
<head>
<title>Adding to a page</title>
<script language=”Javascript” type=”text/javascript”>
function AddText() {

if (!document.getElementById) return;
var sentence=document.form1.sentence.value;
var node=document.createTextNode(“ “ + sentence);
document.getElementById(“p1”).appendChild(node);
document.form1.sentence.value=””;

}
</script>
</head>
<body>
<h1>Create Your Own Content</h1>
<p id=”p1”>Using the W3C DOM, you can dynamically
add sentences to this paragraph. Type a sentence
and click the Add button.</p>
<form name=”form1”>
<input type=”text” name=”sentence” size=”65”>
<input type=”button” value=”Add” onClick=”AddText();”>
</form>
</body>
</html>

In this example, the <p> section defines the paragraph that will hold the added text.

The <form> section defines a form with a text field called sentence, and an Add

button, which calls the AddText() function. This function is defined in the header.

▼

226 HOUR 14: Using Advanced DOM Features

The AddText() function first assigns the sentence variable to the text typed in the

text field. Next, it creates a new text node containing the sentence, and appends the

new text node to the paragraph.

Load this document into a browser to test it, and try adding several sentences by

typing them and clicking the Add button. Figure 14.3 shows Firefox’s display of this

document after several sentences have been added to the paragraph.

FIGURE 14.3
Firefox shows
the text-adding
example.

Try It Yourself

Creating a Navigation Tree
One common use of JavaScript and the DOM is to create a dynamic tree-like navi-

gation system for a site, with sections that can be expanded and collapsed.

Although this is unnecessary for small sites, it’s a good way to organize what may

be hundreds of links for a larger site. To further experiment with the techniques you

learned about in this hour, you can create a simple navigation tree using the DOM.

To begin, you will need an HTML document that defines the content of the naviga-

tion tree, shown in Listing 14.4.

LISTING 14.4 The HTML for the Navigation Tree Example
<html>
<head><title>Creating a Navigation Tree</title>
<style>

A {text-decoration: none;}
#productsmenu,#supportmenu,#contactmenu {
display: none;
margin-left: 2em;

}
</style>
</head>
<body>
<h1>Navigation Tree Example</h1>
<p>The navigation tree below allows you to expand and
collapse items.</p>

[+] Products

Adding Text to a Page 227

<ul ID=”productsmenu”>
Product List
Order Form
Price List

[+] Support
<ul id=”supportmenu”>

Support Forum
Contact Support

[+] Contact Us
<ul id=”contactmenu”>

Service Department
Sales Department

<script language=”javascript” type=”text/javascript”

src=”tree.js”>
</script>
</body>
</html>

In this document, the links are laid out as a nested list using and tags.

Using a standard list like this rather than <div> tags has two benefits: First, the

browser formats the tree as a list with bullets automatically. Second, it supports

older browsers—even a browser that does not support CSS or JavaScript will load

and display the list correctly. It won’t have the dynamic features, but the links will

still work.

The tree has three main nodes: Products, Support, and Contact Us. Each one has a

link you can click to display or hide the links in that section. The id attribute has

been used on each <a> tag so the script can attach an event handler to it. Each node

also has a submenu defined with and tags. An id attribute is also used

on the tag so the script can hide or display the list.

The <script> tag at the end of the document includes the script you will create

next. The tag is placed after the body of the page so that the script can add event

handlers to elements in the page.

The <style> block at the beginning of the document adds some formatting to the

links, and uses the display: none attribute to initially hide the submenus. They

will be revealed by the script when the link is clicked.

The script for this example is shown in Listing 14.5.

LISTING 14.4 Continued

228 HOUR 14: Using Advanced DOM Features

LISTING 14.5 The JavaScript File for the Navigation Tree Example
function Toggle(e) {

// Don’t try this in old browsers
if (!document.getElementById) return;
// Get the event object
if (!e) var e = window.event;
// Which link was clicked?
whichlink = (e.target) ? e.target.id : e.srcElement.id;
// get the menu object
obj=document.getElementById(whichlink+”menu”);
// Is the menu visible?
visible=(obj.style.display==”block”)
// Get the key object (the link itself)
key=document.getElementById(whichlink);
// Get the name (Products, Contact, etc.)
keyname = key.firstChild.nodeValue.substring(3);
if (visible) {
// hide the menu
obj.style.display=”none”;
key.firstChild.nodeValue = “[+]” + keyname;

} else {
// show the menu
obj.style.display=”block”;
key.firstChild.nodeValue = “[-]” + keyname;

}
}
document.getElementById(“products”).onclick=Toggle;
document.getElementById(“support”).onclick=Toggle;
document.getElementById(“contact”).onclick=Toggle;

The Toggle() function shows or hides a menu. It first determines which of the links

triggered the event, and then uses the link’s id attribute to find the objects for the

menu and for the link itself. If the menu is currently visible, it is hidden, and if it is

currently hidden, it is revealed. The appropriate symbol [+] or [-] is added to the

link name and displayed by modifying the text node’s nodeValue attribute.

The last three lines of the script assign the Toggle() function as the onClick event

handler for the three top-level links of the tree.

To use this script, save it as tree.js in the same folder as the HTML document you

created previously, and load the HTML file into a browser. Figure 14.4 shows the

example in action after all three nodes of the tree have been expanded.

To add items to the navigation tree, add links to the HTML file. If you add a new
submenu, you need to assign an id attribute to the link, use the same word plus
menu as the id of the menu, and assign its onclick event to the Toggle() func-
tion at the end of the script.

Did you
Know?

Q&A 229

Summary
In this hour, you learned some of the advanced features of the new W3C DOM

(Document Object Model). You learned the functions and properties you can use to

manage DOM objects, and used example scripts to hide and show elements within a

page, modify text, and add text. Finally, you created a dynamic navigation tree

using DOM features.

Congratulations—you’ve reached the end of Part III! Now that you’ve learned all

about the DOM, you will move on to some advanced aspects of JavaScript. In the

next hour, you will learn how to create scripts that unobtrusively handle multiple

browsers, and some best practices for more involved scripting.

Q&A
Q. Can I avoid assigning an id attribute to every DOM object I want to handle

with a script?

A. Yes. Although the scripts in this hour typically use the id attribute for conven-

ience, you can actually locate any object in the page by using combinations

of node properties such as firstChild and nextSibling. However, keep in

mind that any change you make to the HTML can change an element’s place

in the DOM hierarchy, so the id attribute is a reliable way to handle this.

FIGURE 14.4
The navigation
tree example as
displayed by
Firefox.

▲

230 HOUR 14: Using Advanced DOM Features

Q. Can I include HTML tags, such as , in the new text I assign to a text
node?

A. Text nodes are limited to text if you use the nodeValue attribute. However, the

innerHTML property does not have this limitation and can be used to insert

any HTML.

Q. Is there a reference that specifies which DOM properties and methods work
in which browser versions?

A. Yes, several websites are available that keep up-to-date lists of browser fea-

tures. Some of these are listed in Appendix A, “Other JavaScript Resources.”

Quiz Questions
Test your knowledge of the DOM by answering the following questions.

1. If para1 is the DOM object for a paragraph, what is the correct syntax to

change the text within the paragraph to “New Text”?

a. para1.value=”New Text”;

b. para1.firstChild.nodeValue=”New Text”;

c. para1.nodeValue=”New Text”;

2. Which of the following DOM objects never has a parent node?

a. body

b. div

c. document

3. Which of the following is the correct syntax to get the DOM object for a head-

ing with the identifier head1?

a. document.getElementById(“head1”)

b. document.GetElementByID(“head1”)

c. document.getElementsById(“head1”)

231Exercises

Quiz Answers
1. b. The actual text is the nodeValue attribute of the text node, which is a child

of the paragraph node.

2. c. The document object is the root of the DOM object tree, and has no parent

object.

3. a. getElementById has a lowercase g at the beginning, and a lowercase d at

the end, contrary to what you might know about normal English grammar.

Exercises
If you want to gain more experience using the advanced DOM features you learned

in this hour, try the following exercise:

. Add a third check box to Listing 14.1 to allow the paragraph of text to be

shown or hidden. You will need to add an id attribute to the <p> tag, add a

check box to the form, and add the appropriate lines to the script.

. Add a fourth node to the navigation tree in Listing 14.4, and make the appro-

priate changes to the script in Listing 14.5 to make the new section of the tree

expand and collapse correctly.

This page intentionally left blank

PART IV:

Working with Advanced
JavaScript Features

HOUR 15 Unobtrusive Scripting 235

HOUR 16 Debugging JavaScript Applications 255

HOUR 17 AJAX: Remote Scripting 273

HOUR 18 Greasemonkey: Enhancing the Web with JavaScript 293

This page intentionally left blank

HOUR 15

Unobtrusive Scripting

What You’ll Learn in This Hour:
. Best practices for creating unobtrusive scripts
. Separating content, presentation, and behavior
. Following web standards to create cross-browser scripts
. Reading and displaying browser information
. Using feature sensing to avoid errors
. Supporting non-JavaScript browsers

You have now learned enough JavaScript to create some complex effects—and potentially

to create some complex problems. In Part IV, you will learn about some of JavaScript’s

more advanced features, and learn how to avoid problems as you progress to longer and

more complicated scripts.

In this hour, you’ll learn some guidelines for creating scripts and pages that are easy to

maintain, easy to use, and follow web standards. This is known as unobtrusive scripting:

Scripts add features without getting in the way of the user, the developer maintaining the

code, or the designer building the layout of the site. You’ll also learn how to make sure

your scripts will work in multiple browsers, and won’t stop working when a new browser

comes along.

Scripting Best Practices
As you start to develop more complex scripts, it’s important to know some scripting best

practices. These are guidelines for using JavaScript that more experienced programmers

have learned the hard way. Here are a few of the benefits of following these best practices:

. Your code will be readable and easy to maintain, whether you’re turning the page

over to someone else or just trying to remember what you did a year ago.

236 HOUR 15: Unobtrusive Scripting

. You’ll create code that follows standards, and won’t be crippled by a new ver-

sion of a particular browser.

. You’ll create pages that work even without JavaScript.

. It will be easy to adapt code you create for one site to another site or project.

. Your users will thank you for creating a site that is easy to use, and easy to fix

when things go wrong.

Whether you’re writing an entire AJAX web application or simply enhancing a page

with a three-line script, it’s useful to know some of the concepts that are regularly

considered by those who write complex scripts for a living. The following sections

introduce some of these best practices.

Content, Presentation, and Behavior
When you create a web page, or especially an entire site or application, you’re deal-

ing with three key areas: content, presentation, and behavior.

. Content consists of the words that a visitor can read on your pages. You create

the content as text, and mark it up with HTML to define different classes of

content—headings, paragraphs, links, and so on.

. Presentation is the appearance and layout of the words on each page—text for-

matting, fonts, colors, and graphics. Although it was common in the early

days of the Web to create the presentation using HTML only, you can now use

Cascading Style Sheets (CSS) to define the presentation.

. Behavior is what happens when you interact with a page—items that highlight

when you move over them, forms you can submit, and so on. This is where

JavaScript comes in, along with server-side languages such as PHP.

It’s a good idea to keep these three areas in mind, especially as you create larger sites.

Ideally, you want to keep content, presentation, and behavior separated as much as

possible. One good way to do this is to create an external CSS file for the presentation

and an external JavaScript file for the behavior, and link them to the HTML document.

Keeping things separated like this makes it easier to maintain a large site—if you

need to change the color of the headings, for example, you can make a quick edit to

the CSS file without having to look through all of the HTML markup to find the

right place to edit. It also makes it easy for you to reuse the same CSS and JavaScript

on multiple pages of a site. Last, but not least, this will encourage you to use each

language where its strengths lie, making your job easier.

Scripting Best Practices 237

Progressive Enhancement
One of the old buzzwords of web design was graceful degradation. The idea was that
you could build a site that used all of the bells and whistles of the latest browsers, as
long as it would “gracefully degrade” to work on older browsers. This mostly meant
testing on a few older browsers and hoping it worked, and there was always the pos-
sibility of problems in browsers that didn’t support the latest features.

Ironically, you might expect browsers that lack the latest features to be older, less
popular ones, but some of the biggest problems are with brand-new browsers—those
included with mobile phones and other new devices, all of which are primitive com-
pared to the latest browsers running on computers.

One new approach to web design that addresses this problem is known as progressive
enhancement. The idea is to keep the HTML documents as simple as possible, so
they’ll definitely work in even the most primitive browsers. After you’ve tested that
and made sure the basic functionality is there, you can add features that make the
site easier to use or better looking for those with new browsers.

If you add these features unobtrusively, they have little chance of preventing the site
from working in its primitive HTML form. Here are some guidelines for progressive
enhancement:

. Enhance the presentation by adding rules to a separate CSS file. Try to avoid
using HTML markup strictly for presentation, such as for boldface or
<blockquote> for an indented section.

. Enhance behavior by adding scripts to an external JavaScript file.

. Add events without using inline event handlers, as described in Hour 9,
“Responding to Events,” and later in this hour.

. Use feature sensing, described later this hour, to ensure that JavaScript code
only executes on browsers that support the features it requires.

The term progressive enhancement first appeared in a presentation and article on
this topic by Steve Champeon. The original article, along with many more web
design articles, is available on his company’s website at http://hesketh.com/.

Adding Event Handlers
In Hour 9, you learned that there is more than one way to set up an event handler.

The simplest way is to add them directly to an HTML tag. For example, this <body>

tag has an event handler that calls a function called Startup.

<body onLoad=”Startup();”>

By the
Way

http://hesketh.com/

238 HOUR 15: Unobtrusive Scripting

This method still works, but it does mean putting JavaScript code in the HTML page,

which means you haven’t fully separated content and behavior. To keep things

entirely separate, you can set up the event handler in the JavaScript file instead,

using syntax like this:

window.onload=Startup;

Right now, this is usually the best way to set up events: It keeps JavaScript out of the

HTML file, and it works in all browsers since Netscape 4 and Internet Explorer 4.

However, it does have one problem: You can’t attach more than one event to the

same element of a page. For example, you can’t have two different onLoad event

handlers that both execute when the page loads.

When you’re the only one writing scripts, this is no big deal—you can combine the

two into one function. But when you’re trying to use two or three third-party scripts

on a page, and all of them want to add an onLoad event handler to the body, you

have a problem.

The W3C Event Model
To solve this problem and standardize event handling, the W3C created an event

model as part of the DOM level 2 standard. This uses a method, addEventListener(),

to attach a handler to any event on any element. For example, the following uses the

W3C model to set up the same onLoad event handler as the previous examples:

window.addEventListener(‘load’, Startup, false);

The first parameter of addEventListener() is the event name without the on

prefix—load, click, mouseover, and so on. The second parameter specifies the

function to handle the event, and the third is an advanced flag that indicates how

multiple events should be handled. (false works for most purposes.)

Any number of functions can be attached to an event in this way. Because one

event handler doesn’t replace another, you use a separate function,

removeEventListener(), which uses the same parameters:

window.removeEventListener(‘load’, Startup, false);

The problem with the W3C model is that Internet Explorer (as of versions 6 and 7)

doesn’t support it. Instead, it supports a proprietary method, attachEvent(), which

does much the same thing. Here’s the Startup event handler defined Microsoft-style:

window.attachEvent(‘onload’, Startup);

The attachEvent() method has two parameters. The first is the event, with the on

prefix—onload, onclick, onmouseover, and so on. The second is the function that

Scripting Best Practices 239

will handle the event. Internet Explorer also supports a detachEvent() method with

the same parameters for removing an event handler.

Attaching Events the Cross-Browser Way
As you can see, attaching events in this new way is complex and will require differ-

ent code for different browsers. In most cases, you’re better off using the traditional

method to attach events, and that method is used in most of this book’s examples.

However, if you really need to support multiple event handlers, you can use some if

statements to use either the W3C method or Microsoft’s method. For example, the

following code adds the ClickMe() function as an event for the element with the id

attribute btn:

obj = document.getElementById(“btn”);
if (obj.addEventListener) {

obj.addEventListener(‘click’,ClickMe,false);
} else if (obj.attachEvent) {

obj.attachEvent(‘onclick’,ClickMe);
} else {

obj.onclick=ClickMe;
}

This checks for the addEventListener() method, and uses it if it’s found.

Otherwise, it checks for the attachEvent() method, and uses that. If neither is

found, it uses the traditional method to attach the event handler. This technique is

called feature sensing and is explained in detail later this hour.

Many universal functions are available to compensate for the lack of a consistent

way to attach events. If you are using a third-party library, there’s a good chance it

includes an event function that can simplify this process for you.

The Yahoo! UI Library includes an event-handling function that can attach events in
any browser, attach the same event handler to many objects at once, and other nice
features. See http://developer.yahoo.net/yui/ for details, and see Hour 8, “Using
Built-in Functions and Libraries,” for information about using third-party libraries.

Web Standards: Avoid Being Browser Specific
The Web was built on standards, such as the HTML standard developed by the W3C.

Now there are a lot of standards involved with JavaScript—CSS, the W3C DOM, and

the ECMAScript standard that defines JavaScript’s syntax.

Right now, both Microsoft and the Mozilla Project are improving their browsers’ sup-

port for web standards, but there are always going to be some browser-specific,

nonstandard features, and some parts of the newest standards won’t be consistently

supported between browsers.

Did you
Know?

http://developer.yahoo.net/yui/

240 HOUR 15: Unobtrusive Scripting

Although it’s perfectly fine to test your code in multiple browsers and do whatever it

takes to get it working, it’s a good idea to follow the standards rather than browser-

specific techniques when you can. This ensures that your code will work on future

browsers that improve their standards support, whereas browser-specific features

might disappear in new versions.

One reason to make sure you follow standards is that your pages can be better
interpreted by search engines, which often helps your site get search traffic.
Separating content, presentation, and behavior is also good for search engines
because they can focus on the HTML content of your site without having to skip
over JavaScript or CSS.

Documenting Your Code
As you create more complex scripts, don’t forget to include comments in your code

to document what it does, especially when some of the code seems confusing or is

difficult to get working. It’s also a good idea to document all of the data structures

and variables, and function arguments used in a larger script.

Comments are a good way to organize code, and will help you work on the script in

the future. If you’re doing this for a living, you’ll definitely need to use comments so

that others can work on your code as easily as you can.

Usability
While you’re adding cool features to your site, don’t forget about usability—making

things as easy, logical, and convenient as possible for users of your site. Although

there are many books and websites devoted to usability information, a bit of com-

mon sense goes a long way.

For example, suppose you use a drop-down list as the only way to navigate between

pages of your site. This is a common use for JavaScript, and it works well, but is it

usable? Try comparing it to a simple set of links across the top of a page.

. The list of links lets you see at a glance what the site contains; the drop-down

list requires you to click to see the same list.

. Users expect links and can spot them quickly—a drop-down list is more likely

to be part of a form than a navigation tool, and thus won’t be the first thing

they look for when they want to navigate your site.

. Navigating with a link takes a single click—navigating with the drop-down

list takes at least two clicks.

By the
Way

Scripting Best Practices 241

Remember to consider the user’s point of view whenever you add JavaScript to a site,

and be sure you’re making the site easier to use—or at least not harder to use. Also

make sure the site is easy to use even without JavaScript.

Design Patterns
If you learn more about usability, you’ll undoubtedly see design patterns mentioned.

This is a computer science term meaning “an optimal solution to a common prob-

lem.” In web development, design patterns are ways of designing and implementing

part of a site that webmasters run into over and over.

For example, if you have a site that displays multiple pages of data, you’ll have

“Next Page” and “Previous Page” links, and perhaps numeric links for each page.

This is a common design pattern—a problem many web designers have had to

solve, and one with a generally agreed-upon solution. Other common web design

patterns include a login form, a search engine, or a list of navigation links for a site.

Of course, you can be completely original and make a search engine, a shopping

cart, or a login form that looks nothing like any other, but unless you have a way of

making them even easier to use, you’re better off following the pattern, and giving

your users an experience that matches their expectations.

Although you can find some common design patterns just by browsing sites similar

to yours and noticing how they solved particular problems, there are also sites that

specialize in documenting these patterns, and they’re a good place to start if you

need ideas on how to make your site work.

The Yahoo! Developer Network documents a variety of design patterns used on
their network of sites, many of which are implemented using JavaScript:
http://developer.yahoo.net/ypatterns/.

Accessibility
One final aspect of usability to consider is accessibility—making your site as accessi-

ble as possible for all users, including the disabled. For example, blind users might

use a text-reading program to read your site, which will ignore images and most

scripts. More than just good manners, accessibility is mandated by law in some

countries.

The subject of accessibility is complex, but you can get most of the way there by fol-

lowing the philosophy of progressive enhancement: Keep the HTML as simple as

possible, keep JavaScript and CSS separate, and make JavaScript an enhancement

rather than a requirement for using your site.

Did you
Know?

http://developer.yahoo.net/ypatterns/

242 HOUR 15: Unobtrusive Scripting

Reading Browser Information
In Hour 4, “Working with the Document Object Model (DOM),” you learned about

the various objects (such as window and document) that represent portions of the

browser window and the current web document. JavaScript also includes an object

called navigator that you can use to read information about the user’s browser.

The navigator object isn’t part of the DOM, so you can refer to it directly. It

includes a number of properties, each of which tells you something about the brows-

er. These include the following:

. navigator.appCodeName is the browser’s internal code name, usually

Mozilla.

. navigator.appName is the browser’s name, usually Netscape or Microsoft

Internet Explorer.

. navigator.appVersion is the version of the browser being used—for example,

4.0(Win95;I).

. navigator.userAgent is the user-agent header, a string that the browser

sends to the web server when requesting a web page. It includes the entire ver-

sion information—for example, Mozilla/4.0(Win95;I).

. navigator.language is the language (such as English or Spanish) of the

browser. This is stored as a code, such as “en_US” for U.S. English. This proper-

ty is supported only by Netscape and Firefox.

. navigator.platform is the computer platform of the current browser. This is

a short string, such as Win16, Win32, or MacPPC. You can use this to enable

any platform-specific features—for example, ActiveX components.

As you might have guessed, the navigator object is named after Netscape
Navigator, the browser that originally supported JavaScript. Fortunately, this object
is also supported by Internet Explorer and most other recent browsers.

Displaying Browser Information
As an example of how to read the navigator object’s properties, Listing 15.1 shows

a script that displays a list of the properties and their values for the current browser.

By the
Way

Reading Browser Information 243

LISTING 15.1 A Script to Display Information About the Browser
<html>
<head>
<title>Browser Information</title>
</head>
<body>
<h1>Browser Information</h1>
<hr>
<p>
The navigator object contains the following information
about the browser you are using.
</p>

<script language=”JavaScript” type=”text/javascript”>
document.write(“Code Name: “ + navigator.appCodeName);
document.write(“App Name: “ + navigator.appName);
document.write(“App Version: “ + navigator.appVersion);
document.write(“User Agent: “ + navigator.userAgent);
document.write(“Language: “ + navigator.language);
document.write(“Platform: “ + navigator.platform);
</script>

<hr>
</body>
</html>

This script includes a basic HTML document. A script is used within the body of the

document to display each of the properties of the navigator object using the docu-

ment.write() statement.

To try this script, load it into the browser of your choice. If you have more than one

browser or browser version handy, try it in each one. Firefox’s display of the script is

shown in Figure 15.1.

Dealing with Dishonest Browsers
If you tried the browser information script in Listing 15.1 using one of the latest ver-

sions of Internet Explorer, you probably got a surprise. Figure 15.2 shows how

Internet Explorer 6.0 displays the script.

There are several unexpected things about this display. First of all, the

navigator.language property is listed as undefined. This isn’t much of a surprise

because this property isn’t yet supported by Internet Explorer.

More important, you’ll notice that the word Mozilla appears in the Code Name and

User Agent fields. The full user agent string reads as follows:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

244 HOUR 15: Unobtrusive Scripting

Believe it or not, Microsoft did have a good reason for this. At the height of the
browser wars, about the time Netscape 3.0 and IE 3.0 came out, it was becoming
common to see “Netscape only” pages. Some webmasters who used features such as
frames and JavaScript set their servers to turn away browsers without Mozilla in
their user agent string. The problem with this was that most of these features were
also supported by Internet Explorer.

FIGURE 15.1
Firefox displays
the browser
information
script.

FIGURE 15.2
Internet Explorer
displays the
browser infor-
mation script.

Cross-Browser Scripting 245

Microsoft solved this problem in IE 4.0 by making IE’s user agent read Mozilla, with

the word compatible in parentheses. This allows IE users to view those pages, but

still includes enough details to tell web servers which browser is in use.

You’ve probably already noticed the other problem with Internet Explorer 6.0’s user

agent string: the portion reading Mozilla/4.0. Not only is IE claiming to be

Netscape, but it’s also masquerading as version 4.0. Why?

As it turns out, this was another effort by Microsoft to stay one step ahead of the brows-

er wars, although this one doesn’t make quite as much sense. Because poorly written

scripts were checking specifically for “Mozilla/4” for dynamic HTML pages, Microsoft

was concerned that its 5.0 version would fail to run these pages. Since changing it now

would only create more confusion, this tradition continues with IE 6.0.

Microsoft isn’t alone in confusing browser IDs. Netscape version 6 displays a user
agent string beginning with Mozilla/5, and an app version of 5.0. (Netscape 5.0
was Netscape’s open-source browser, code named Mozilla, which formed the foun-
dation of Netscape 6 and Firefox.)

Although these are two interesting episodes in the annals of the browser wars, what

does all this mean to you? Well, you’ll need to be careful when your scripts are try-

ing to differentiate between IE and Netscape, and between different versions. You’ll

need to check for specific combinations instead of merely checking the

navigator.appVersion value. Fortunately, there’s a better way to handle this, as

you’ll learn in the next section.

Cross-Browser Scripting
If all of those details about detecting different browser versions seem confusing,

here’s some good news—in most cases, you can write cross-browser scripts without

referring to the navigator object at all. This is not only easier, it’s better, because

browser-checking code is often confused by new browser versions, and has to be

updated each time a new browser is released.

Feature Sensing
Checking browser versions is sometimes called browser sensing. The better way of

dealing with multiple browsers is called feature sensing. In feature sensing, rather

than checking for a specific browser, you check for a specific feature. For example,

suppose your script needs to use the document.getElementById() function. You can

begin a script with an if statement that checks for the existence of this function:

By the
Way

246 HOUR 15: Unobtrusive Scripting

if (document.getElementById) {
// do stuff

}

If the getElementById function exists, the block of code between the brackets will

be executed. Another common way to use feature sensing is at the beginning of a

function that will make use of a feature:

function changeText() {
if (!document.getElementById) return;
// the rest of the function executes if the feature is supported

}

If this looks familiar, it’s because it’s been used in several previous examples in this

book. For example, most of the code listings in Hour 14, “Using Advanced DOM

Features,” make use of feature sensing to prevent errors in browsers that don’t sup-

port the W3C DOM.

You don’t need to check for every feature before you use it—for example, there’s not

much point in verifying that the window object exists in most cases. You can also

assume that the existence of one feature means others are supported: If

getElementById() is supported, chances are the rest of the W3C DOM functions

are supported.

Feature sensing is a very reliable method of keeping your JavaScript unobtrusive—if

a browser supports the feature, it works, and if the browser doesn’t, your script stays

out of the way. It’s also much easier than trying to keep track of hundreds of differ-

ent browser versions and what they support.

Feature sensing is also handy when working with third-party libraries, as discussed
in Hour 8. You can check for the existence of an object or a function belonging to
the library to verify that the library file has been loaded before your script uses its
features.

Dealing with Browser Quirks
So, if feature sensing is better than browser sensing, why do you still need to know

about the navigator object? There’s one situation where it still comes in handy,

although if you’re lucky you won’t find yourself in that situation.

As you develop a complex script and test it in multiple browsers, you might run

across a situation where your perfectly standard code works as it should in one

browser, and fails to work in another. Assuming you’ve eliminated the possibility of

a problem with your script, you’ve probably run into a browser bug, or a difference

in features between browsers at the very least. Here are some tips for this situation:

By the
Way

Supporting Non-JavaScript Browsers 247

. Double-check for a bug in your own code. See Hour 16, “Debugging JavaScript

Applications,” for debugging tips.

. Search the Web to see if others have run into the same bug. Often you’ll find

that someone else has already found a workaround.

. Try a different approach to the code, and you might sidestep the bug.

. If the problem is that a feature is missing in one browser, use feature sensing

to check for that feature.

. When all else fails, use the navigator object to detect a particular browser

and substitute some code that works in that browser. This should be your last

resort.

Peter-Paul Koch’s QuirksMode, www.quirksmode.org, is a good place to start when
you’re looking for specific information about browser bugs.

Supporting Non-JavaScript Browsers
Some visitors to your site will be using browsers that don’t support JavaScript at all.

These aren’t just a few holdouts using ancient browsers—actually, there are more

non-JavaScript browsers than you might think:

. Both Internet Explorer and Firefox include an option to turn off JavaScript,

and some users do so. More often, the browser might have been set up by their

ISP or employer with JavaScript turned off by default, usually in a misguided

attempt to increase security.

. Some corporate firewalls and personal antivirus software block JavaScript.

. Some ad-blocking software mistakenly prevents scripts from working even if

they aren’t related to advertising.

. More and more mobile phones are coming with web browsers these days, and

most of these support little to no JavaScript.

. Some disabled users use special-purpose browsers or text-only browsers that

might not support JavaScript.

As you can see, it would be foolish to assume that all of your visitors will support

JavaScript. Two techniques you can use to make sure these users can still use the site

are discussed in the following sections.

Did you
Know?

www.quirksmode.org

248 HOUR 15: Unobtrusive Scripting

Search engines are another “browser” that will visit your site frequently, and they
usually don’t pay any attention to JavaScript. If you want search engines to fully
index your site, it’s critical that you avoid making JavaScript a requirement to navi-
gate the site.

Using the <noscript> Tag
One way to be friendly to non-JavaScript browsers is to use the <noscript> tag.

Supported in most modern browsers, this tag displays a message to non-JavaScript

browsers. Browsers that support JavaScript ignore the text between the <noscript>

tags, whereas others display it. Here is a simple example:

<noscript>
This page requires JavaScript. You can either switch to a browser
that supports JavaScript, turn your browser’s script support on,
or switch to the Non-JavaScript version of
this page.
</noscript>

Although this works, the trouble is that <noscript> is not consistently supported by

all browsers that support JavaScript. An alternative that avoids <noscript> is to

send users with JavaScript support to another page. This can be accomplished with a

single JavaScript statement:

<script language=”JavaScript” type=”text/javascript”>
window.location=”JavaScript.html”;
</script>

This script redirects the user to a different page. If the browser doesn’t support

JavaScript, of course, the script won’t be executed, and the rest of the page can dis-

play a warning message to explain the situation.

Keeping JavaScript Optional
Although you can detect JavaScript browsers and display a message to the rest, the

best choice is to simply make your scripts unobtrusive. Use JavaScript to enhance

rather than as an essential feature, keep JavaScript in separate files, assign event

handlers in the JavaScript file rather than in the HTML, and browsers that don’t

support JavaScript will simply ignore your script.

In those rare cases where you absolutely need JavaScript—for example, an AJAX

application or a JavaScript game—you can warn users that JavaScript is required.

However, it’s a good idea to offer an alternative JavaScript-free way to use your site,

especially if it’s an e-commerce or business site that your business relies on. Don’t

turn away customers with lazy programming.

By the
Way

Supporting Non-JavaScript Browsers 249

One place you should definitely not require JavaScript is in the navigation of your

site. Although you can create drop-down menus and other fancy navigation tools

using JavaScript, they prevent users’ non-JavaScript browsers from viewing all of

your site’s pages. They also prevent search engines from viewing the entire site, com-

promising your chances of getting search traffic.

Google’s Gmail application (mail.google.com), one of the most well-known uses of
AJAX, requires JavaScript for its elegant interface. However, Google offers a Basic
HTML View that can be used without JavaScript. This allows them to support older
browsers and mobile phones without compromising the user experience for those
with modern browsers.

Avoiding Errors
If you’ve made sure JavaScript is only an enhancement to your site, rather than a

requirement, those with browsers that don’t support JavaScript for whatever reason

will still be able to navigate your site. One last thing to worry about: It’s possible for

JavaScript to cause an error, or confuse these browsers into displaying your page

incorrectly.

This is a particular concern with browsers that partially support JavaScript, such as

mobile phone browsers. They might interpret a <script> tag and start the script,

but might not support the full JavaScript language or DOM. Here are some guide-

lines for avoiding errors:

. Use a separate JavaScript file for all scripts. This is the best way to guarantee

that the browser will ignore your script completely if it does not have

JavaScript support.

. Use feature sensing whenever your script tries to use the newer DOM features,

such as document.getElementById().

. Test your pages with your browser’s JavaScript support turned off. Make sure

nothing looks strange, and make sure you can still navigate the site.

The developer’s toolbars for Firefox and Internet Explorer include a convenient way
to turn off JavaScript for testing. See Hour 16 for details.

By the
Way

Did you
Know?

▼

250 HOUR 15: Unobtrusive Scripting

Try It Yourself

Creating an Unobtrusive Script
As an example of unobtrusive scripting, you can create a script that adds function-

ality to a page with JavaScript without compromising its performance in older

browsers. In this example, you will create a script that creates graphic check boxes

as an alternative to regular check boxes.

Note: See Hour 11, “Getting Data with Forms,” for the basics of working with
forms in JavaScript.

Let’s start with the final result: Figure 15.3 shows this example as it appears in

Firefox. The first check box is an ordinary HTML one, and the second is a graphic

check box managed by JavaScript.

By the
Way

FIGURE 15.3
The graphic
check box
example in
action.

The graphic check box is just a larger graphic that you can click on to display the

checked or unchecked version of the graphic. Although this could just be a simple

JavaScript simulation that acts like a check box, it’s a bit more sophisticated. Take a

look at the HTML for this example in Listing 15.2.

LISTING 15.2 The HTML File for the Graphic Check box Example
<html>
<head>
<title>Graphic Checkboxes</title>
</head>
<body>
<h1>Graphic Checkbox Example</h1>
<form name=”form1”>
<p>
<input type = “checkbox” name=”check1” id=”check1”>
An ordinary checkbox.
</p><p>
<input type = “checkbox” name=”check2” id=”check2”>

Supporting Non-JavaScript Browsers 251

A graphic checkbox, created with unobtrusive JavaScript.
</p>
</form>
<script language=”JavaScript” type=”text/javascript”

src=”checkbox.js”>
</script>
</body>
</html>

If you look closely at the HTML, you’ll see that the two check boxes are defined in

exactly the same way with the standard <input> tag. Rather than substitute for a

check box, this script actually replaces the regular check box with the graphic ver-

sion. The script for this example is shown in Listing 15.3.

LISTING 15.3 The JavaScript File for the Graphic Check box Example
function graphicBox(box) {

// be unobtrusive
if (!document.getElementById) return;
// find the object and its parent
obj = document.getElementById(box);
parentobj = obj.parentNode;
// hide the regular checkbox
obj.style.visibility = “hidden”;
// create the image element and set its onclick event
img = document.createElement(“IMG”);
img.onclick = Toggle;
img.src = “unchecked.gif”;
// save the checkbox id within the image ID
img.id = “img” + box;
// display the graphic checkbox
parentobj.insertBefore(img,obj);

}
function Toggle(e) {

if (!e) var e=window.event;
// find the image ID
img = (e.target) ? e.target : e.srcElement;
// find the checkbox by removing “img” from the image ID
checkid = img.id.substring(3);
checkbox = document.getElementById(checkid);
// “click” the checkbox
checkbox.click();
// display the right image for the clicked or unclicked state
if (checkbox.checked) file = “checked.gif”;

else file=”unchecked.gif”;
img.src=file;

}
//replace the second checkbox with a graphic
graphicBox(“check2”);

LISTING 15.2 Continued

252 HOUR 15: Unobtrusive Scripting

This script has three main components:

. The graphicBox() function converts a regular check box to a graphic one. It

starts by hiding the existing check box by changing its style.visibility

property, and then creates a new image node containing the unchecked.gif

graphic and inserts it into the DOM next to the original check box. (These

DOM features were described in the previous hour.) It gives the image an id

attribute containing the text img plus the check box’s id attribute to make it

easier to find the check box later.

. The Toggle() function is specified by graphicBox() as the event handler for

the new image’s onClick event. This function removes img from the image’s

id attribute to find the id of the real check box. It executes the click()

method on the check box, toggling its value. Finally, it changes the image to

unchecked.gif or checked.gif depending on the state of the real check box.

. The last line of the script file runs the graphicBox() function to replace the

second check box with the id attribute check2.

Using this technique has three important advantages. First, it’s an unobtrusive

script. The HTML has been kept simple, and browsers that don’t support JavaScript

will display the ordinary check box. Second, because the real check box is still on

the page but hidden, it will work correctly when the form is submitted to a server-

side script. Last but not least, you can use it to create any number of graphic check

boxes simply by defining regular ones in the HTML file and adding a call to

graphicBox() to transform each one.

See Hour 19, “Using Graphics and Animation,” for details on the image manipula-
tion features used in this example.

To try this example, save the JavaScript file as checkbox.js, and be sure the HTML

file is in the same folder. You’ll also need two graphics the same size,

unchecked.gif and checked.gif, in the same folder. You can download all of the

files you need for this example from this book’s website.

Summary
In this hour, you’ve learned many guidelines for creating scripts that work in as

many browsers as possible, and learned how to avoid errors and headaches when

working with different browsers. Most important, you learned how you can use

JavaScript while keeping your pages small, efficient, and valid with web standards.

By the
Way

▲

Quiz Questions 253

In the next hour, you’ll learn about another thing you’ll run into frequently when

working with more advanced scripts: bugs. Hour 16 shows you how to avoid com-

mon JavaScript errors, and how to use debugging tools and techniques to find and

fix errors when they happen.

Q&A
Q. Is it possible to create 100% unobtrusive JavaScript that can enhance a

page without causing any trouble for anyone?

A. Not quite. For example, the unobtrusive script in the Try It Yourself section of
this hour is close—it will work in the latest browsers, and the regular check
box will display and work fine in even ancient browsers. However, it can still
fail if someone with a modern browser has images turned off: The script will
hide the check box because JavaScript is supported, but the image won’t be
there. This is a rare circumstance, but it’s an example of how any feature you
add can potentially cause a problem for some small percentage of your users.

Q. Can I detect the user’s email address using the navigator object or another
technique?

A. No, there is no reliable way to detect users’ email addresses using JavaScript.
(If there was, you would get hundreds of advertisements in your mailbox
every day from companies that detected your address as you browsed their
pages.) You can use a signed script to obtain the user’s email address, but this
requires the user’s permission and only works in some versions of Netscape.

Q. Are there browsers besides Firefox, Netscape, and Internet Explorer that
support JavaScript?

A. Yes. Opera is a multiplatform browser that supports JavaScript and the W3C
DOM. Apple’s Safari browser for Macintosh also supports JavaScript. It’s
always best to support all browsers if you can, and to focus on web standards
rather than particular browsers.

Quiz Questions
Test your knowledge of unobtrusive scripting by answering the following questions.

1. Which of the following is the best place to put JavaScript code?

a. Right in the HTML document

b. In a separate JavaScript file

c. In a CSS file

254 HOUR 15: Unobtrusive Scripting

2. Which of the following is something you can’t do with JavaScript?

a. Send browsers that don’t support a feature to a different page

b. Send users of Internet Explorer to a different page

c. Send users of non-JavaScript browsers to a different page

3. Which of the following is the best way to define an event handler that works

in all modern browsers?

a. <body onLoad=”MyFunction()”>

b. window.onload=MyFunction;

c. window.attachEvent(‘load’,MyFunction,false);

Quiz Answers
1. b. The best place for JavaScript is in a separate JavaScript file.

2. c. You can’t use JavaScript to send users of non-JavaScript browsers to a differ-

ent page because the script won’t be executed at all.

3. b. The code window.onload=MyFunction; defines an event handler in all

modern browsers. This is better than using an inline event handler as in (a)

because it keeps JavaScript out of the HTML document. Option (c) uses the

W3C’s standard method, but does not work in Internet Explorer.

Exercises
If you want to gain more experience creating cross-browser scripts, try the following

exercises:

. Add several check boxes to the HTML document in Listing 15.2, and add the

corresponding function calls to the script in Listing 15.3 to replace all of them

with graphic check boxes.

. Modify the script in Listing 15.3 to convert all check boxes with a class value

of graphic into graphic check boxes. You can use getElementsByTagName()

and then check each item for the right className property.

HOUR 16

Debugging JavaScript
Applications

What You’ll Learn in This Hour:
. Using good programming practices to avoid bugs
. Tips for debugging with the JavaScript console
. Using alert messages and comments to debug scripts
. Creating custom error handlers
. Using advanced debugging tools
. Debugging an actual script

As you move on to more advanced JavaScript applications in the remaining hours of this
book, it’s important to know how to deal with problems in your scripts. In this hour, you’ll
learn a few pointers on keeping your scripts bug-free, and you’ll look at the tools and
techniques you can use to find and eliminate bugs when they occur.

Avoiding Bugs
A bug is an error in a program that prevents it from doing what it should do. If you’ve
tried writing any scripts on your own, you’ve probably run into one or more bugs. If not,
you will—no matter how careful you are.

Although you’ll undoubtedly run into a few bugs if you write a complex script, you can
avoid many others by carefully writing and double-checking your script.

Using Good Programming Practices
There’s not a single programmer out there whose programs always work the first time, with-

out any bugs. However, good programmers share a few habits that help them avoid some of

the more common bugs. Here are a few good habits you can develop to improve your scripts:

256 HOUR 16: Debugging JavaScript Applications

. Format your scripts neatly and try to keep them readable. Use consistent spac-

ing and variable names that mean something. It’s hard to determine what’s

wrong with a script when you can’t even remember what a particular line

does.

. Similarly, use JavaScript comments liberally to document your script. This will

help if you need to work on the script after you’ve forgotten the details of how

it works—or if someone else inherits the job.

. End all JavaScript statements with semicolons. Although this is optional, it

makes the script more readable. Additionally, it might help the browser to pro-

duce meaningful error messages.

. Declare all variables with the var keyword. This is optional in most cases, but

it will help make sure you really mean to create a new variable and will avoid

problems with variable scope.

. Divide complicated scripts logically into functions. This will make the script

easier to read, and it will also make it easy to pinpoint the cause of a problem.

. Write a large script in several phases and test the script at each phase before

adding more features. This way, you can avoid having several new errors

appear at once.

Avoiding Common Mistakes
Along with following good scripting practices, you should also watch for common

mistakes in your scripts. Different people make different mistakes in JavaScript pro-

gramming, but the following sections explore some of the most common ones.

Syntax Errors
A syntax error is an incorrect keyword, operator, punctuation mark, or other item in

a script. Most often, it’s caused by a typing error.

Typical syntax errors include mistyped commands, missing parentheses, and functions

with the wrong number of arguments. Syntax errors are usually obvious—both to you

when you look at the script and to the browser’s JavaScript interpreter when you load

the script. These errors usually result in an error message and can easily be corrected.

Assignment and Equality
One of the most common syntax errors made by beginning JavaScript programmers

is confusing the assignment operator (=) with the equality operator (==). This can be

a hard error to spot because it might not result in an error message.

Avoiding Bugs 257

If you’re confused about which operator to use, follow this simple rule: Use = to

change the value of a variable, and use == to compare two values. Here’s an exam-

ple of a statement that confuses the two:

If (a = 5) alert(“found a five.”);

The statement looks logical enough, but a = 5 will actually assign the value 5 to

the a variable rather than compare the two. The browser usually detects this type of

error and displays an error message in the JavaScript console, but the opposite type

of error (using == when you mean =) may not be detected.

Local and Global Variables
Another common mistake is confusing local and global variables, such as trying to

use the value of a variable that was declared in a function outside the function. If

you actually need to do this, you should either use a global variable or return a

value from the function.

Hour 5, “Using Variables, Strings, and Arrays,” describes the differences between
local and global variables in detail.

Using Objects Correctly
Another common error is to refer to JavaScript objects incorrectly. It’s important to
use the correct object names and to remember when to explicitly name the parent of
an object.

For example, you can usually refer to the window.alert() method as simply
alert(). However, there are some cases when you must use window.alert(), such
as in some event handlers. If you find that alert() or another method or property
is not recognized by the browser, try specifying the window object.

Another common mistake is to assume that you can omit the document object’s
name, such as using write() instead of document.write(). This won’t work
because most scripts have a window object as their scope.

HTML Errors
Last but not least, don’t forget that JavaScript isn’t the only language that can have
errors. It’s easy to accidentally create an error in an HTML document—for example,
forgetting to include a closing </table> tag, or even a closing </script> tag.

Although writing proper HTML is beyond the scope of this book, you should be
aware that sometimes improper HTML can cause errors in your JavaScript. When
you experience bugs, be sure to double-check the HTML, especially the objects (such
as forms or images) that your script manipulates.

By the
Way

258 HOUR 16: Debugging JavaScript Applications

Your script can also introduce HTML errors if it modifies the DOM, particularly if it
uses the innerHTML property. Double-check HTML produced by a script to avoid
these problems.

Basic Debugging Tools
If checking your script for common mistakes and obvious problems doesn’t fix

things, it’s time to start debugging. This is the process of finding errors in a program

and eliminating them. Some basic tools for debugging scripts are described in the

following sections.

Firefox’s JavaScript Console
The first thing you should do if your script doesn’t work is check for error messages.

In Firefox and other Mozilla-based browsers, the messages are not displayed by

default, but are logged to the JavaScript console.

To access the console, type javascript: in the browser’s Location field or select

Tools, JavaScript Console from the menu. The console displays the last few error

messages that have occurred, as shown in Figure 16.1.

Along with reading the error messages, you can use the console to type a JavaScript

command or expression and see its results. This is useful if you need to make sure a

line of your script uses the correct syntax.

Watch
Out!

FIGURE 16.1
The JavaScript
console dis-
plays recent
error messages.

Basic Debugging Tools 259

Displaying Error Messages in Internet Explorer
Microsoft Internet Explorer 4.0 and later do not display JavaScript error messages by

default. This can make browsing poorly written pages a more pleasant experience,

but it can be frustrating to JavaScript programmers.

To enable the display of error messages in Internet Explorer, select Internet Options

from the Tools menu. Select the Advanced tab. In the list under Browsing, deselect

the Disable Script Debugging option and enable the Display a Notification About

Every Script Error option.

If you haven’t enabled the display of error messages, Internet Explorer still displays

an error icon on the status line when an error occurs. You can double-click this icon

to display the error message.

Alert Messages
If you’re lucky, the error messages in the console will tell you how to fix your script.

However, your script might not generate any error messages at all—but still fail to

work correctly. In this case, the real debugging process begins.

One useful debugging technique is to add temporary statements to your script to let

you know what’s going on. For example, you can use an alert statement to display

the value of a variable. After you understand what’s happening to the variable, you

can figure out what’s wrong with the script.

You can also display debugging information in a separate browser window or
frame. You can use document.write in some cases, but this only works when the
document hasn’t finished loading yet and thus isn’t a reliable debugging tool.

Using Comments
When all else fails, you can use JavaScript comments to eliminate portions of your

script until the error goes away. If you do this carefully, you can pinpoint the place

where the error occurred.

You can use // to begin a single-line comment, or /* and */ around a section of

any length. Using comments to temporarily turn off statements in a program or a

script is called commenting out and is a common technique among programmers.

JavaScript comments were introduced and described in more detail in Hour 3,
“Getting Started with JavaScript Programming.”

By the
Way

By the
Way

260 HOUR 16: Debugging JavaScript Applications

Other Debugging Tools
Although you can use alert messages and a little common sense to quickly find a

bug in a simple script, larger scripts can be difficult to debug. Here are a few tools

you might find useful as you develop and debug larger JavaScript applications:

. HTML validators can check your HTML documents to see if they meet the

HTML standard. The validation process can also help you find errors in

your HTML. The W3C has a validator online at http://validator.w3.org/.

. Mozilla’s JavaScript debugger enables you to set breakpoints, display variable

values, and perform other debugging tasks. You can download the debugger

at http://www.mozilla.org/projects/venkman/.

. Microsoft Script Debugger is similar, but works with Internet Explorer. It is

available at http://msdn.microsoft.com/library/en-us/sdbug/Html/sdbug_1.asp.

. Although text and HTML editors are good basic editing tools, they can also

help with debugging by displaying line numbers and using color codes to indi-

cate valid commands.

Appendix B, “Tools for JavaScript Developers,” includes links to HTML validators,
editors, and other debugging tools.

Creating Error Handlers
In some cases, there may be times when an error message is unavoidable and, in a

large JavaScript application, errors are bound to happen. Your scripts can respond to

errors in a friendlier way using error handlers.

Using the onerror Property
You can set up an error handler by assigning a function to the onerror property of

the window object. When an error occurs in a script in the document, the browser

calls the function you specify instead of the normal error dialog. For example, these

statements set up a function that displays a simple message when an error occurs:

function errmsg(message,url,line) {
alert(“There wasn’t an error. Nothing to see here.”);
return true;

}
window.onerror=errmsg;

Did you
Know?

http://www.mozilla.org/projects/venkman/
http://validator.w3.org/
http://msdn.microsoft.com/library/en-us/sdbug/Html/sdbug_1.asp

Did you
Know?

Creating Error Handlers 261

These statements define a function, errmsg(), which handles errors by displaying a

simple dialog. The last statement assigns the errmsg() function to the

window.onerror property.

The return true; statement tells the browser that this function has handled the

error, and prevents the standard error dialog from being displayed. If you use return

false; instead, the standard error dialog will be displayed after your function exits.

You can’t define an onError event handler in HTML. You must define it using the
window.onerror property as shown here.

Displaying Information About the Error
When the browser calls your error-handling function, it passes three parameters: the

error message, the URL of the document where the error happened, and the line

number. The simple error handler in the previous example didn’t use these values.

You can create a more sophisticated handler that displays the information.

As usual, you can download this hour’s examples from this book’s website.

Listing 16.1 shows a complete example including an enhanced errmsg() function.

This version displays the error message, URL, and line number in a dialog box.

LISTING 16.1 Handling Errors with a JavaScript Function
<html><head>
<title>Error handling test</title>
<script language=”JavaScript” type=”text/javascript”>
function errmsg(message,url,line) {

amsg = “A JavaScript error has occurred. Please let us know about it.\n”;
amsg += “Error Message: “ + message + “\n”;
amsg += “URL: “ + url + “\n”;
amsg += “Line #: “ + line;
alert(amsg);
return true;

}
window.onerror=errmsg;
</script>
</head>
<body>
<h1> Error handling test</h1>
<p>This page includes a JavaScript function to handle errors.
Test it by clicking the button below.</p>
<form>

<input type=”button” value=”ERROR” onClick=”garble”>
</form>
</body>
</html>

By the
Way

262 HOUR 16: Debugging JavaScript Applications

This example includes a button with a nonsensical event handler. To test the error

handler, click the button to generate an error. Figure 16.2 shows the example in

action in Internet Explorer with the alert message displayed.

FIGURE 16.2
The error-han-
dler example in
action.

If you try to use an error handler and still get system error messages, make sure
there isn’t a syntax error in your error handler itself.

Using try and catch
A more modern way of handling errors, supported by the latest browsers, is the try
and catch keywords. To use it, include the try keyword, then a block of code (with-
in braces) that might cause an error, then the catch keyword, and a block of code to
handle the error:

try {
DoThis();

} catch(err) {
alert(err.description);

}

The try block of code always executes. If it generates an error, the catch block is
executed. If there is no error, the catch block does not execute.

The error-handling code is passed an argument (err in the example) indicating the
type of error. This is an object with properties including name (the error name) and
description (a description of the error).

Did you
Know?

Advanced Debugging Tools 263

Handling errors with try and catch is a good way to deal with browser-specific
code that might cause errors when run in the wrong browser. See the next hour
for an example that uses try and catch to create a cross-browser AJAX function.

Advanced Debugging Tools
Although it’s possible to get a simple script working with an alert message or two,

you might find some other tools useful as you build more complex scripts, and espe-

cially as you work with scripts that modify the DOM. The following are some useful

debugging tools available for Firefox and Internet Explorer.

Web Developer Toolbar (Firefox)
The Web Developer Extension by Chris Pederick is an open-source extension for

Firefox and other Mozilla-based browsers. This extension adds a toolbar to the

browser with a variety of functions useful to developers. The following features are

useful for JavaScript in particular:

. Disable, JavaScript—Disables JavaScript, useful for making sure pages func-

tion on non-JavaScript browsers.

. Information, Display ID and Class Details—Displays the values of id and

class attributes for all of the elements in a page; useful for attaching event

handlers or CSS styles.

. Information, View JavaScript—Displays all of the scripts that affect the cur-

rent page, including those in external files.

. View Source, View Generated Source—Displays the HTML source of the cur-

rent page. Unlike the browser’s regular View Source function, this displays the

source after any scripts have acted upon it; useful for debugging scripts that

modify the DOM.

Along with these functions, the toolbar includes many useful tools for debugging

HTML and CSS, working with forms, and validating pages. To install it or for more

information, see its official site at http://chrispederick.com/work/webdeveloper/.

Developer Toolbar (Internet Explorer)
Inspired by the Web Developer Extension for Firefox, Microsoft created a Developer

Toolbar for Internet Explorer. Currently in beta, the toolbar works with Internet

Explorer 6.0 or later. Here are some of its features useful for JavaScript programmers:

Did you
Know?

http://chrispederick.com/work/webdeveloper/

264 HOUR 16: Debugging JavaScript Applications

. View DOM—Allows you to browse the DOM of the current page and view

details of elements, similar to Firefox’s DOM Inspector. This feature is shown

in Figure 16.3.

. Disable, Script—Disables JavaScript, enabling you to test how your site works

without it.

. View, Class and ID Information—Displays id and class attribute values;

useful for attaching event handlers or CSS styles.

FIGURE 16.3
The Internet
Explorer
Developer
Toolbar’s view
DOM feature.

To download the IE Developer Toolbar, go to http://www.microsoft.com/downloads/

and search for “Developer Toolbar.” The download is available for free and includes

an easy installer.

DOM Inspector (Firefox)
The DOM Inspector is a tool built in to Firefox and other Mozilla-based browsers that

enables you to browse the DOM of a web page and view the attributes of elements.

You need to specifically select this feature at installation time, so you might need to

reinstall Firefox to gain access to this feature. To see if your copy includes the DOM

Inspector, open the Tools menu and check for a DOM Inspector menu item.

To use this tool, open the page you wish to inspect and then select Tools, DOM

Inspector. You can then browse the DOM by clicking the [+] symbols for each section

http://www.microsoft.com/downloads/

Advanced Debugging Tools 265

of the hierarchy. Select an item within the DOM tree to view its details in the right

section of the window. The DOM Inspector is shown in Figure 16.4.

FIGURE 16.4
The DOM
Inspector
opened within
Firefox.

Viewing Generated Source
When your script modifies the DOM, the browser’s View Source feature only gives

you part of the picture—you see the source of the page when it was loaded, rather

than the source created by your script as it modified the page. To test scripts that

modify the DOM, you can view the generated source as modified by the script.

In Firefox, this feature is built in: If you select part of a page, right-click, and select

View Selection Source, you’ll see the generated source. You can also use the Tools

menu of the Web Developer Toolbar, discussed previously, to view the generated

source.

For Internet Explorer, you can use a bookmarklet—a short script stored as a browser

bookmark—to view the generated source in a window. This bookmarklet is available

at Jesse Ruderman’s site at http://www.squarefree.com/bookmarklets/.

JavaScript Shell
Sometimes it’s helpful to be able to simply type a few JavaScript commands to see

what they do, either to narrow down a bug or simply to remember the syntax of a

rarely used feature. The JavaScript Shell is a bookmarklet that opens a shell window

that lets you type JavaScript commands and shows the results.

http://www.squarefree.com/bookmarklets/

▼

266 HOUR 16: Debugging JavaScript Applications

The shell opens in the context of the current document, so you can use it to explore

the DOM of a page or to test scripts you’re working on. This feature works only in

Firefox, but an online version of the shell without the context feature works in

Internet Explorer.

The JavaScript Shell is available from http://www.squarefree.com/bookmarklets/.

Try It Yourself

Debugging a Script
You should now have a good understanding of what can go wrong with JavaScript

programs and the tools you have available to diagnose these problems. You can

now try your hand at debugging a script.

Listing 16.2 shows a script I wrote to play the classic “Guess a Number” game. The

script picks a number between 1 and 100 and then allows the user 10 guesses. If a

guess is incorrect, it provides a hint as to whether the target number is higher or

lower.

This is a relatively simple script with a twist: It includes at least one bug and doesn’t

work at all in its present form.

LISTING 16.2 The Number-Guesser Script (Complete with Bugs)
1 <html>
2 <head>
3 <title>Guess a Number</title>
4 <script LANGUAGE=”JavaScript” type=”text/javascript”>
5 var num = Math.random() * 100 + 1;
6 var tries = 0;
7 function Guess() {
8 var g = document.form1.guess1.value;
9 tries++;
10 status = “Tries: “ + tries;
11 if (g < num)
12 document.form1.hint.value = “No, guess higher.”;
13 if (g > num)
14 document.form1.hint.value = “No, guess lower.”;
15 if (g == num) {
16 window.alert(“Correct! You guessed it in “ + tries + “ tries.”);
17 location.reload();
18 }
19 if (tries == 10) {
20 window.alert(“Sorry, time’s up. The number was: “ + num);
21 location.reload();
22 }
23 }
24 </script>
25 </head>
26 <body>

http://www.squarefree.com/bookmarklets/

Advanced Debugging Tools 267

27 <h1>Guess a Number</h1>
28 <hr>
29 <p>I’m thinking of a number between 1 and 100. Try to guess
30 it in less than 10 tries.</p>
31 <form name=”form1”>
32 <input type=”text” size=”25” name=”hint” value=”Enter your Guess.”>
33

34 Guess:
35 <input type=”text” name=”guess1” size=”5”>
36 <input type=”button” value=”Guess” onClick=”guess();”>
37 </form>
38 </body>
39 </html>

Here’s a summary of how this script should work:

. The first line within the <script> section picks a random number and stores

it in the num variable.

. The Guess() function is defined in the header of the document. This function

is called each time the user enters a guess.

. Within the Guess() function, several if statements test the user’s guess. If it is

incorrect, a hint is displayed in the text box. If the guess is correct, the script

displays an alert message to congratulate the user.

Testing the Script
To test this program, load the HTML document into your browser. It appears to load

correctly and does not immediately cause any errors. However, when you enter a

guess and press the Guess button, a JavaScript error occurs.

According to the JavaScript console, the error message is this:

Line 36: guess is undefined

Internet Explorer’s error message refers to the same line number:

Line 36, character 1: Object expected

Fixing the Error
As the error message indicates, there must be something wrong with the function

call to the Guess() function in the event handler on line 36. The line in question

looks like this:

<input type=”button” value=”Guess” onClick=”guess();”>

LISTING 16.2 Continued

268 HOUR 16: Debugging JavaScript Applications

Upon further examination, you’ll notice that the first two lines of the function are as

follows (lines 7 and 8 of Listing 16.2):

function Guess() {
var guess = document.form1.guess1.value;

Although this might look correct at first glance, there’s a problem here: guess() is

lowercase in the event handler, whereas the function definition uses a capitalized

Guess(). This is easy to fix. Simply change the function call in the event handler

from guess() to Guess(). The corrected line will look like this:

<input type=”button” value=”Guess” onClick=”Guess();”>

Testing Again
Now that you’ve fixed the error, try the script again. This time it loads without an

error, and you can enter a guess without an error. The hints about guessing higher

or lower are even displayed correctly.

However, to truly test the script, you’ll need to play the game all the way through.

When you do, you’ll discover that there’s still another problem in the script: You

can’t win, no matter how hard you try.

After your 10 guesses are up, an alert message informs you that you’ve lost the

game. Coincidentally, this alert message also tells you what’s wrong with the script.

Figure 16.5 shows how the browser window looks after a complete game, complete

with this dialog box.

FIGURE 16.5
The number
guesser script’s
display after a
game is fin-
ished.

Advanced Debugging Tools 269

As you can see from the alert message, it’s no wonder you didn’t win: The random

number the computer picked includes more than 10 decimal places, and you’ve

been guessing integers. You could guess decimal numbers, but you’d need a whole

lot more than 10 guesses, and the game would start to lose its simplicity and charm.

To fix this problem, look at the statement at the beginning of the script that gener-

ates the random number:

var num = Math.random() * 100 + 1;

This uses the Math.random() method, which results in a random number between 0

and 1. The number is then multiplied and incremented to result in a number

between 1 and 100.

This statement does indeed produce a number between 1 and 100, but not an inte-

ger. To fix the problem, you can add the Math.floor() method to chop off the deci-

mal portion of the number. Here’s a corrected statement:

var num = Math.floor(Math.random() * 100) + 1;

To fix the script, make this change and then test it again. If you play a game or two,

you’ll find that it works just fine. Listing 16.3 shows the complete, debugged script.

LISTING 16.3 The Complete, Debugged Number-Guesser Script
<html>
<head>
<title>Guess a Number</title>
<script LANGUAGE=”JavaScript” type=”text/javascript”>
var num = Math.floor(Math.random() * 100) + 1;
var tries = 0;
function Guess() {
var g = document.form1.guess1.value;
tries++;
status = “Tries: “ + tries;
if (g < num)

document.form1.hint.value = “No, guess higher.”;
if (g > num)

document.form1.hint.value = “No, guess lower.”;
if (g == num) {

window.alert(“Correct! You guessed it in “ + tries + “ tries.”);
location.reload();
}

if (tries == 10) {
window.alert(“Sorry, time’s up. The number was: “ + num);
location.reload();
}

}
</script>
</head>
<body>
<h1>Guess a Number</h1>
<hr>
<p>I’m thinking of a number between 1 and 100. Try to guess

270 HOUR 16: Debugging JavaScript Applications

it in less than 10 tries.</p>
<form name=”form1”>
<input type=”text” size=”25” name=”hint” value=”Enter your Guess.”>

Guess:
<input type=”text” name=”guess1” size=”5”>
<input type=”button” value=”Guess” onClick=”Guess();”>
</form>
</body>
</html>

Figure 16.6 shows the debugged example in action in Firefox after a successful

game.

LISTING 16.3 Continued

FIGURE 16.6
The number-
guesser exam-
ple after a suc-
cessful game.

Summary
In this hour, you’ve learned how to debug JavaScript programs. You examined some

techniques for producing scripts with a minimum of bugs and learned about some

tools that will help you find bugs in scripts. Finally, you tried your hand at debug-

ging a script.

In Hour 17, “AJAX: Remote Scripting,” you’ll continue your JavaScript education by

learning about AJAX, a technique that lets JavaScript work with server-side files and

programs without reloading pages.

▲

271Quiz Questions

Q&A
Q. Why are some errors displayed after the script runs for a time, whereas

others are displayed when the script loads?

A. The JavaScript interpreter looks at scripts in the body or the heading of the

document, such as function definitions, when the page loads. Event handlers

aren’t checked until the event happens. Additionally, a statement might look

fine when the page loads, but will cause an error because of the value of a

variable it uses later.

Q. What is the purpose of the location.reload statements in the number-
guesser script?

A. This is an easy way to start a new game because reloading the page reinitial-

izes the variables. This results in a new number being picked, and the default

“Guess a Number” message is displayed in the hint field.

Q. Which browser is best for developing and debugging scripts?

A. You may or may not agree, but I find that Firefox offers the best tools for

debugging scripts, such as the JavaScript console and the Web Developer

Toolbar. Regardless of your preferred browser, be sure to test your scripts in

multiple browsers to find any browser-specific issues they might have.

Quiz Questions
Test your knowledge of debugging JavaScript by answering the following questions.

1. If you mistype a JavaScript keyword, which type of error is the result?

a. Syntax error

b. Function error

c. Pilot error

2. The process of dealing with errors in a script or a program is known as

a. Error detection

b. Frustration

c. Debugging

272 HOUR 16: Debugging JavaScript Applications

3. Which of the following is a useful technique when a script is not working but

does not generate an error message?

a. Rewriting from scratch

b. Removing <script> tags

c. Adding alert statements

Quiz Answers
1. a. A syntax error can result from a mistyped JavaScript keyword.

2. c. Debugging is the process of finding and fixing errors in a program.

3. c. You can add alert statements to a script to display variables or the current

status of the script and aid in debugging.

Exercises
If you want to gain more experience debugging scripts, try the following exercises:

. Although the number-guesser script in Listing 16.3 avoids JavaScript errors, it

is still vulnerable to user errors. Add a statement to verify that the user’s guess

is between 1 and 100. If it isn’t, display an alert message and make sure that

the guess doesn’t count toward the total of 10 guesses.

. Load Listing 16.2, the number-guesser script with bugs, into Mozilla’s

JavaScript Debugger or Microsoft’s Script Debugger. Try using the watch and

breakpoint features and see whether you find this to be an easier way to diag-

nose the problem.

HOUR 17

AJAX: Remote Scripting

What You’ll Learn in This Hour:
. How AJAX enables JavaScript to communicate with server-side programs and

files
. Using the XMLHttpRequest object’s properties and methods
. Creating your own AJAX library
. Using AJAX to read data from an XML file
. Debugging AJAX applications
. Using AJAX to communicate with a PHP program

Remote scripting, also known as AJAX, is a browser feature that enables JavaScript to

escape its client-side boundaries and work with files on a web server, or with server-side

programs. In this hour, you’ll learn how AJAX works and create two working examples.

Introducing AJAX
Traditionally, one of the major limitations of JavaScript is that it couldn’t communicate

with a web server. For example, you could create a game in JavaScript, but keeping a list

of high scores stored on a server would require submitting a page to a server-side form.

One of the limitations of web pages in general was that getting data from the user to the

server, or from the server to the user, generally required a new page to be loaded and dis-

played.

AJAX (Asynchronous JavaScript and XML) is the answer to both of these problems. AJAX

refers to JavaScript’s capability to use a built-in object, XMLHttpRequest, to communicate

with a web server without submitting a form or loading a page. Although not part of the

DOM standard yet, this object is supported by Internet Explorer, Firefox, and other modern

browsers.

274 HOUR 17: AJAX: Remote Scripting

Although the term AJAX was coined in 2005, XMLHttpRequest has been supported

by browsers for years—it was developed by Microsoft and first appeared in Internet

Explorer 5. Nonetheless, it has only recently become a popular way of developing

applications because browsers that support it have become more common. Another

name for this technique is remote scripting.

The term AJAX first appeared in an online article by Jesse James Garrett of
Adaptive Path on February 18, 2005. It still appears here:
http://adaptivepath.com/publications/essays/archives/000385.php

The JavaScript Client (Front End)
JavaScript traditionally only has one way of communicating with a server—submitting

a form. Remote scripting allows for much more versatile communication with the serv-

er. The A in AJAX stands for asynchronous, which means that the browser (and the user)

isn’t left hanging while waiting for the server to respond. Here’s how a typical AJAX

request works:

1. The script creates an XMLHttpRequest object and sends it to the web server.

The script can continue after sending the request.

2. The server responds by sending the contents of a file, or the output of a server-

side program.

3. When the response arrives from the server, a JavaScript function is triggered to

act on the data.

4. Because the goal is a more responsive user interface, the script usually dis-

plays the data from the server using the DOM, eliminating the need for a

page refresh.

In practice, this happens quickly, but even with a slow server, it can still work. Also,

because the requests are asynchronous, more than one can be in progress at a time.

The Back End
The part of an application that resides on the web server is known as the back end.

The simplest back end is a static file on the server—JavaScript can request the file

with XMLHttpRequest, and then read and act on its contents. More commonly, the

back end is a server-side program running in a language like PHP, Perl, or Ruby.

By the
Way

http://adaptivepath.com/publications/essays/archives/000385.php

Introducing AJAX 275

JavaScript can send data to a server-side program using GET or POST methods, the

same two ways an HTML form works. In a GET request, the data is encoded in the

URL that loads the program. In a POST request, it is sent separately, and can contain

more data.

XML
The X in AJAX stands for XML (extensible markup language), the universal markup

language upon which the latest versions of HTML are built. A server-side file or pro-

gram can send data in XML format, and JavaScript can act on the data using its

methods for working with XML. These are similar to the DOM methods you’ve

already used—for example, you can use the getElementsByTagName() method to

find elements with a particular tag in the data.

Keep in mind that XML is just one way to send data, and not always the easiest. The

server could just as easily send plain text, which the script could display, or HTML,

which the script could insert into the page using the innerHTML property. Some pro-

grammers have even used server-side scripts to return data in JavaScript format,

which can be easily executed using the eval function.

JSON (JavaScript Object Notation) takes the idea of encoding data in JavaScript
and formalizes it. See http://www.json.org/ for details and code examples in
many languages.

Popular Examples of AJAX
Although typical HTML and JavaScript is used to build web pages and sites, AJAX

techniques often result in web applications—web-based services that perform work for

the user. Here are a few well-known examples of AJAX:

. Google’s Gmail mail client (http://mail.google.com/) uses AJAX to make a

fast-responding email application. You can delete messages and perform other

tasks without waiting for a new page to load.

. Amazon.com uses AJAX for some functions. For example, if you click on one

of the Yes/No voting buttons for a product comment, it sends your vote to the

server and a message appears next to the button thanking you, all without

loading a page.

. Digg (http://www.digg.com) is a site where users can submit news stories and

vote to determine which ones are displayed on the front page. The voting hap-

pens inside the page next to each story.

By the
Way

http://www.json.org/
http://www.digg.com
http://mail.google.com/

276 HOUR 17: AJAX: Remote Scripting

These are just a few examples. Subtle bits of remote scripting are appearing all over

the Web, and you might not even notice them—you’ll just be annoyed a little bit

less often at waiting for a page to load.

Frameworks and Libraries
Because remote scripting can be complicated, especially considering the browser dif-

ferences you’ll learn about later this hour, several frameworks and libraries have

been developed to simplify AJAX programming.

For starters, three of the libraries described earlier in this book, Dojo, Prototype, and

script.aculo.us, include functions to simplify remote scripting. There are also some

dedicated libraries for languages like PHP, Python, and Ruby.

Some libraries are designed to add server-side functions to JavaScript, whereas others

are designed to add JavaScript interactivity to a language like PHP. You’ll build a

simple library later this hour that will be used to handle the remote scripting func-

tions for this hour’s examples.

See this book’s website for an up-to-date list of AJAX libraries. See Hour 8, “Using
Built-in Functions and Libraries,” for information about using third-party libraries
with JavaScript.

Limitations of AJAX
Remote scripting is a relatively new technology, so there are some things it can’t do,

and some things to watch out for. Here are some of the limitations and potential

problems of AJAX:

. The script and the XML data or server-side program it requests data from must

be on the same domain.

. Internet Explorer 5 and 6 use ActiveX to implement XMLHttpRequest.

Although the security settings allow this by default, users with different settings

might be unable to use AJAX. (Internet Explorer 7 does not have this problem.)

. Some older browsers and some less common browsers (such as mobile

browsers) don’t support XMLHttpRequest, so you can’t count on its availability

for all users.

. Requiring AJAX might compromise the accessibility of a site for disabled users.

. Users are accustomed to seeing a new page load each time they change some-

thing, so there might be a learning curve for them to understand an AJAX

application.

Did you
Know?

Using XMLHttpRequest 277

As with other advanced uses of JavaScript, the best approach is to be unobtrusive—

make sure there’s still a way to use the site without AJAX support if possible, and

use feature sensing to prevent errors on browsers that don’t support it. See Hour 15,

“Unobtrusive Scripting,” for details.

Using XMLHttpRequest
You will now take a look at how to use XMLHttpRequest to communicate with a

server. This might seem a bit complex, but the process is the same for any request.

Later, you will create a reusable code library to simplify this process.

Creating a Request
The first step is to create an XMLHttpRequest object. To do this, you use the new key-

word, as with other JavaScript objects. The following statement creates a request

object in some browsers:

ajaxreq = new XMLHttpRequest();

The previous example works with Firefox, Mozilla, and Safari, and with Internet

Explorer 7, but not Internet Explorer 5 or 6. For those browsers, you have to use

ActiveX syntax:

ajaxreq = new ActiveXObject(“Microsoft.XMLHTTP”);

The library section later this hour demonstrates how to use the correct method

depending on the browser in use. In either case, the variable you use (ajaxreq in

the example) stores the XMLHttpRequest object. You’ll use the methods of this object

to open and send a request, as explained in the following sections.

Opening a URL
The open() method of the XMLHttpRequest object specifies the filename as well as

the method in which data will be sent to the server: GET or POST. These are the same

methods supported by web forms.

ajaxreq.open(“GET”,”filename”);

For the GET method, the data you send is included in the URL. For example, this

command opens the search.php program and sends the value “John” for the query

parameter:

ajaxreq.open(“GET”,”search.php?query=John”);

278 HOUR 17: AJAX: Remote Scripting

Sending the Request
You use the send() method of the XMLHttpRequest object to send the request to the

server. If you are using the POST method, the data to send is the argument for

send(). For a GET request, you can use the null value instead:

ajaxreq.send(null);

Awaiting a Response
After the request is sent, your script will continue without waiting for a result.

Because the result could come at any time, you can detect it with an event handler.

The XMLHttpRequest object has an onreadystatechange event handler for this pur-

pose. You can create a function to deal with the response and set it as the handler

for this event:

ajaxreq.onreadystatechange = MyFunc;

The request object has a property, readyState, that indicates its status, and this

event is triggered whenever the readyState property changes. The values of

readyState range from 0 for a new request to 4 for a complete request, so your

event handling function usually needs to watch for a value of 4.

Although the request is complete, it may not have been successful. The status

property is set to 200 if the request succeeded, or an error code if it failed. The

statusText property stores a text explanation of the error, or “OK” for success.

As usual with event handlers, be sure to specify the function name without paren-
theses. With parentheses, you’re referring to the result of the function; without
them, you’re referring to the function itself.

Interpreting the Response Data
When the readyState property reaches 4 and the request is complete, the data

returned from the server is available to your script in two properties: responseText

is the response in raw text form, and responseXML is the response as an XML object.

If the data was not in XML format, only the text property will be available.

JavaScript’s DOM methods are meant to work on XML, so you can use them with

the responseXML property. Later this hour, you’ll use the getElementsByTagName()

method to extract data from XML.

Watch
Out!

Creating a Simple AJAX Library 279

Creating a Simple AJAX Library
You should be aware by now that AJAX requests can be a bit complex. To make

things easier, you can create an AJAX library. This is a JavaScript file that provides

functions that handle making a request and receiving the result, which you can

reuse any time you need AJAX functions.

This library will be used in the two examples later this hour. Listing 17.1 shows the

complete AJAX library.

LISTING 17.1 The AJAX Library
// global variables to keep track of the request
// and the function to call when done
var ajaxreq=false, ajaxCallback;
// ajaxRequest: Sets up a request
function ajaxRequest(filename) {

try {
// Firefox / IE7 / Others
ajaxreq= new XMLHttpRequest();
} catch (error) {
try {
// IE 5 / IE 6
ajaxreq = new ActiveXObject(“Microsoft.XMLHTTP”);

} catch (error) {
return false;

}
}
ajaxreq.open(“GET”, filename);
ajaxreq.onreadystatechange = ajaxResponse;
ajaxreq.send(null);

}
// ajaxResponse: Waits for response and calls a function
function ajaxResponse() {

if (ajaxreq.readyState !=4) return;
if (ajaxreq.status==200) {

// if the request succeeded...
if (ajaxCallback) ajaxCallback();

} else alert(“Request failed: “ + ajaxreq.statusText);
return true;

}

The following sections explain how this library works and how to use it.

The ajaxRequest() Function
The ajaxRequest() function handles all of the steps necessary to create and send

an XMLHttpRequest. First, it creates the XMLHttpRequest object. This requires a dif-

ferent command for different browsers, and will cause an error if the wrong one

280 HOUR 17: AJAX: Remote Scripting

executes, so try and catch are used to create the request. First the standard method

is used, and if it causes an error, the ActiveX method is tried. If that also causes an

error, the ajaxreq variable is set to false to indicate that AJAX is unsupported.

The ajaxResponse() Function
The ajaxResponse() function is used as the onreadystatechange event handler.

This function first checks the readyState property for a value of 4. If it has a differ-

ent value, the function returns without doing anything.

Next, it checks the status property for a value of 200, which indicates the request

was successful. If so, it runs the function stored in the ajaxCallback variable. If not,

it displays the error message in an alert box.

Using the Library
To use this library, follow these steps:

1. Save the library file as ajax.js in the same folder as your HTML documents

and scripts.

2. Include the script in your document with a <script src> tag. It should be

included before any other scripts that use its features.

3. In your script, create a function to be called when the request is complete, and

set the ajaxCallback variable to the function.

4. Call the ajaxRequest() function. Its parameter is the filename of the server-

side program or file. (This library supports GET requests only, so you don’t

need to specify the method.)

5. Your function specified in ajaxCallback will be called when the request com-

pletes successfully, and the global variable ajaxreq will store the data in its

responseXML and responseText properties.

The two remaining examples in this hour make use of this library to create AJAX

applications.

Creating an AJAX Quiz Using the
Library
Now that you have a reusable AJAX library, you can use it to create JavaScript

applications that take advantage of remote scripting. This first example displays

quiz questions on a page and prompts you for the answers.

Creating an AJAX Quiz Using the Library 281

Rather than including the questions in the script, this example reads the quiz ques-

tions and answers from an XML file on the server as a demonstration of AJAX.

Unlike most of the scripts in this book, this example requires a web server. It will
not work on a local machine due to browsers’ security restrictions on remote
scripting.

The HTML File
The HTML for this example is straightforward. It defines a simple form with an

Answer field and a Submit button, along with some hooks for the script. The HTML

for this example is shown in Listing 17.2.

LISTING 17.2 The HTML File for the Quiz Example
<html>
<head><title>Ajax Test</title>
<script language=”JavaScript” type=”text/javascript”

src=”ajax.js”>
</script>
</head>
<body>
<h1>Ajax Quiz Example</h1>
<form>
<p>Question:
...

</p>
<p>Answer:
<input type=”text” name=”answer” id=”answer”>
<input type=”button” value=”Submit” id=”submit”>
</p>
<input type=”button” value=”Start the Quiz” id=”startq”>
</form>
<script language=”JavaScript” type=”text/javascript”

src=”quiz.js”>
</script>
</body>
</html>

This HTML file includes the following elements:

. The <script> tag in the <head> section includes the AJAX library you created

in the previous section from the ajax.js file.

. The <script> tag in the <body> section includes the quiz.js file, which will

contain the quiz script.

. The tag sets up a place for the question to be inserted

by the script.

Watch
Out!

282 HOUR 17: AJAX: Remote Scripting

. The text field with the id value answer is where the user will answer the ques-

tion.

. The button with the id value submit will submit an answer.

. The button with the id value startq will start the quiz.

You can test the HTML document at this time, but the buttons won’t work until you

add the script.

The XML File
The XML file for the quiz is shown in Listing 17.3. I’ve filled it with a few JavaScript

questions, but it could easily be adapted for another purpose.

LISTING 17.3 The XML File Containing the Quiz Questions and Answers
<?xml version=”1.0” ?>
<questions>

<q>What DOM object contains URL information for the window?</q>
<a>location
<q>Which method of the document object finds the object for an element?</q>
<a>getElementById
<q>If you declare a variable outside a function, is it global or local?</q>
<a>global
<q>What is the formal standard for the JavaScript language called?</q>
<a>ECMAScript

</questions>

The <questions> tag encloses the entire file, and each question and answer are
enclosed in <q> and <a> tags. Remember, this is XML, not HTML—these are not
standard HTML tags, but tags that were created for this example. Because this file
will be used only by your script, it does not need to follow a standard format.

To use this file, save it as questions.xml in the same folder as the HTML document.
It will be loaded by the script you create in the next section.

Of course, with a quiz this small, you could have made things easier by storing the
questions and answers in a JavaScript array. But imagine a much larger quiz, with
thousands of questions, or a server-side program that pulls questions from a data-
base, or even a hundred different files with different quizzes to choose between, and
you can see the benefit of using a separate XML file.

The JavaScript File
Because you have a separate library to handle the complexities of making an AJAX
request and receiving the response, the script for this example only needs to deal with
the action for the quiz itself. Listing 17.4 shows the JavaScript file for this example.

Creating an AJAX Quiz Using the Library 283

LISTING 17.4 The JavaScript File for the Quiz Example
// global variable qn is the current question number
var qn=0;
// load the questions from the XML file
function getQuestions() {

obj=document.getElementById(“question”);
obj.firstChild.nodeValue=”(please wait)”;
ajaxCallback = nextQuestion;
ajaxRequest(“questions.xml”);

}
// display the next question
function nextQuestion() {

questions = ajaxreq.responseXML.getElementsByTagName(“q”);
obj=document.getElementById(“question”);
if (qn < questions.length) {

q = questions[qn].firstChild.nodeValue;
obj.firstChild.nodeValue=q;

} else {
obj.firstChild.nodeValue=”(no more questions)”;

}
}
// check the user’s answer
function checkAnswer() {

answers = ajaxreq.responseXML.getElementsByTagName(“a”);
a = answers[qn].firstChild.nodeValue;
answerfield = document.getElementById(“answer”);
if (a == answerfield.value) {

alert(“Correct!”);
}
else {

alert(“Incorrect. The correct answer is: “ + a);
}
qn = qn + 1;
answerfield.value=””;
nextQuestion();

}
// Set up the event handlers for the buttons
obj=document.getElementById(“startq”);
obj.onclick=getQuestions;
ans=document.getElementById(“submit”);
ans.onclick=checkAnswer;

This script consists of the following:

. The first var statement defines a global variable, qn, which will keep track of

which question is currently displayed. It is initially set to zero for the first ques-

tion.

. The getQuestions() function is called when the user clicks the Start Quiz but-

ton. This function uses the AJAX library to request the contents of the ques-

tions.xml file. It sets the ajaxCallback variable to the nextQuestion()

function.

284 HOUR 17: AJAX: Remote Scripting

. The nextQuestion() function is called when the AJAX request is complete.

This function uses the getElementsByTagName() method on the responseXML

property to find all of the questions (<q> tags) and store them in the ques-

tions array.

. The checkAnswer() function is called when the user submits an answer. It

uses getElementsByTagName() to store the answers (<a> tags) in the answers

array, and then compares the answer for the current question with the user’s

answer and displays an alert indicating whether they were right or wrong.

. The script commands after this function set up two event handlers. One

attaches the getQuestions() function to the Start Quiz button to set up the

quiz; the other attaches the checkAnswer() function to the Submit button.

Testing the Quiz
To try this example, you’ll need all four files in the same folder: ajax.js (the AJAX

library), quiz.js (the quiz functions), questions.xml (the questions), and the

HTML document. All but the HTML document need to have the correct filenames so

they will work correctly. Also remember that because it uses AJAX, this example

requires a web server.

Figure 17.1 shows the quiz in action. The second question has just been answered.

FIGURE 17.1
The quiz exam-
ple as displayed
by Internet
Explorer.

▼

Debugging AJAX Applications 285

This example should work on Internet Explorer 5–7, Mozilla 1.0 or later, any ver-
sion of Firefox, or recent versions of Apple Safari. If you have trouble, try the lat-
est Firefox.

Debugging AJAX Applications
Dealing with remote scripting means working with several languages at once—

JavaScript, server-side languages such as PHP, XML, and of course HTML. Thus,

when you find an error, it can be difficult to track down. Here are some tips for

debugging AJAX applications:

. Be sure all filenames are correct, and that all files for your application are in

the same folder on the server.

. If you are using a server-side language, test it without the script: Load it in the

browser and make sure it works, and try passing variables to it in the URL and

checking the results.

. Check the statusText property for the results of your request—an alert mes-

sage is helpful here. It is often a clear message such as “File not found” that

might explain the problem.

. If you’re using a third-party AJAX library, check its documentation—many

libraries have built-in debugging features you can enable to examine what’s

going on.

Hour 16, “Debugging JavaScript Applications,” includes more information on
JavaScript debugging in general and includes descriptions of some useful debug-
ging tools.

Try It Yourself

Making a Live Search Form
One of the most impressive demonstrations of AJAX is live search: Whereas a normal

search form requires that you click a button and wait for a page to load to see the

results, a live search displays results within the page immediately as you type in the

search field. As you type letters or press the backspace key, the results are updated

instantly to make it easy to find the result you need.

By the
Way

Did you
Know?

286 HOUR 17: AJAX: Remote Scripting

Using the AJAX library you created earlier, live search is not too hard to implement.

This example will use a PHP program on the server to provide the search results,

and can be easily adapted to any search application.

Once again, because it uses AJAX, this example requires a web server. You’ll also
need PHP version 3 or later, which is available on most servers.

The HTML Form
The HTML for this example simply defines a search field and leaves some room for

the dynamic results. The HTML document is shown in Listing 17.5.

LISTING 17.5 The HTML File for the Live Search Example
<html>
<head>
<title>Live Search Ajax Example</title>
<script language=”javascript” type=”text/javascript”

src=”ajax.js”>
</script>
</head>
<body>
<h1>Live Search: Ajax Example</h1>
<form>
<p>
Search for: <input type=”text” size=”40” id=”searchlive”>
</p>
<div id=”results”>
<ul id=”list”>
Results will display here.

</div>
</form>
<script language=”javascript” type=”text/javascript”

src=”search.js”>
</script>
</body>
</html>

This HTML document includes the following:

. The <script> tag in the <head> section includes the AJAX library, ajax.js.

. The <script> tag in the <body> section includes the search.js script, which

you’ll create next.

. The <input> element with the id value searchlive is where you’ll type your

search query.

Watch
Out!

Debugging AJAX Applications 287

. The <div> element with the id value results will act as a container for the

dynamically fetched results. A bulleted list is created with a tag; this will

be replaced with a list of results when you start typing.

The PHP Back End
Next, you’ll need a server-side program to produce the search results. This PHP pro-

gram includes a list of names stored in an array. It will respond to a JavaScript

query with the names that match what the user has typed so far. The names will be

returned in XML format. For example, here is the output of the PHP program when

searching for “smith”:

<names>
<name>John Smith</name>
<name>Jane Smith</name>
</names>

Although the list of names is stored within the PHP program here for simplicity, in a

real application it would more likely be stored in a database—and this script could

easily be adapted to work with a database containing thousands of names. The PHP

program is shown in Listing 17.6.

LISTING 17.6 The PHP Code for the Live Search Example
<?php
header(“Content-type: text/xml”);

$names = array (
“John Smith”, “John Jones”, “Jane Smith”, “Jane Tillman”,
“Abraham Lincoln”, “Sally Johnson”, “Kilgore Trout”,
“Bob Atkinson”,”Joe Cool”, “Dorothy Barnes”,
“Elizabeth Carlson”, “Frank Dixon”, “Gertrude East”,
“Harvey Frank”, “Inigo Montoya”, “Jeff Austin”,
“Lynn Arlington”, “Michael Washington”, “Nancy West”);

if (!$query) $query=$_GET[‘query’];
echo “<?xml version=\”1.0\” ?>\n”;
echo “<names>\n”;
while (list($k,$v)=each($names)) {

if (stristr($v,$query))
echo “<name>$v</name>\n”;

}
echo “</names>\n”;
?>

This hour is too small to teach you PHP, but here’s a summary of how this program

works:

. The header statement sends a header indicating that the output is in XML for-

mat. This is required for XMLHttpRequest to correctly use the responseXML

property.

288 HOUR 17: AJAX: Remote Scripting

. The $names array stores the list of names. You can use a much longer list of

names without changing the rest of the code.

. The program looks for a GET variable called query and uses a loop to output

all of the names that match the query.

. Because PHP can be embedded in an HTML file, the <?php and ?> tags indi-

cate that the code between them should be interpreted as PHP.

The following books are good resources if you want to learn more on PHP quickly:
. Sams Teach Yourself PHP in 10 Minutes; ISBN: 0672327627
. Sams Teach Yourself PHP in 24 Hours; ISBN: 0672326191

Save the PHP program as search.php in the same folder as the HTML file. You can

test it by typing a query such as search.php?query=John in the browser’s URL field.

Use the View Source command to view the XML result.

The JavaScript Front End
Finally, the JavaScript for this example is shown in Listing 17.7.

LISTING 17.7 The JavaScript File for the Live Search Example
// global variable to manage the timeout
var t;
// Start a timeout with each keypress
function StartSearch() {

if (t) window.clearTimeout(t);
t = window.setTimeout(“LiveSearch()”,200);

}
// Perform the search
function LiveSearch() {

// assemble the PHP filename
query = document.getElementById(“searchlive”).value;
filename = “search.php?query=” + query;
// DisplayResults will handle the Ajax response
ajaxCallback = DisplayResults;
// Send the Ajax request
ajaxRequest(filename);

}
// Display search results
function DisplayResults() {

// remove old list
ul = document.getElementById(“list”);
div = document.getElementById(“results”);
div.removeChild(ul);
// make a new list
ul = document.createElement(“UL”);
ul.id=”list”;

Did you
Know?

Debugging AJAX Applications 289

names = ajaxreq.responseXML.getElementsByTagName(“name”);
for (i = 0; i < names.length; i++) {

li = document.createElement(“LI”);
name = names[i].firstChild.nodeValue;
text = document.createTextNode(name);
li.appendChild(text);
ul.appendChild(li);

}
if (names.length==0) {

li = document.createElement(“LI”);
li.appendChild(document.createTextNode(“No results”));
ul.appendChild(li);

}
// display the new list
div.appendChild(ul);

}
// set up event handler
obj=document.getElementById(“searchlive”);
obj.onkeydown = StartSearch;

This script includes the following components:

. A global variable, t, is defined. This will store a pointer to the timeout used

later in the script.

. The StartSearch() function is called when the user presses a key. This func-

tion uses setTimeout() to call the LiveSearch() function after a 200-mil-

lisecond delay. The delay is necessary so that the key the user types has time

to appear in the search field.

. The LiveSearch() function assembles a filename that combines search.php

with the query in the search field, and launches an AJAX request using the

library’s ajaxRequest() function.

. The DisplayResults() function is called when the AJAX request is complete.

It deletes the bulleted list from the <div id=”results”> section, and then

assembles a new list using the W3C DOM and the AJAX results. If there were

no results, it displays a “No results” message in the list.

. The final lines of the script set the StartSearch() function up as an event

handler for the onkeydown event of the search field.

Making It All Work
To try this example, you’ll need three files on a web server: ajax.js (the library),

search.js (the search script), and the HTML file. Figure 17.2 shows this example in

action.

LISTING 17.7 Continued

290 HOUR 17: AJAX: Remote Scripting

Summary
In this hour, you’ve learned how AJAX, otherwise known as remote scripting, can let

JavaScript communicate with a web server. You created a reusable AJAX library that

can be used to create any number of AJAX applications, and you created an exam-

ple using an XML file. Finally, you created a live search form using AJAX and PHP.

You’ve nearly reached the end of Part IV. In the next hour, you’ll learn about

Greasemonkey, a Firefox extension that enables you to use JavaScript to enhance

sites you visit, even those created by others.

Q&A
Q. Why would I want to use POST instead of GET when making a request?

A. Although GET is easy to use, it is limited to about 255 characters. If you are

using a large amount of data, POST is the only way to send it to the server.

Q. What happens if the server is slow, or never responds to the request?

A. This is another reason you should use AJAX as an optional feature—whether

caused by the server or by the user’s connection, there will be times when a

request is slow to respond or never responds. In this case, the callback function

will be called late, or not at all. This can cause trouble with overlapping

requests: for example, in the live search example, an erratic server might

cause the responses for the first few characters typed to come in a few seconds

apart, confusing the user. You can remedy this by checking the readyState

property to make sure a request is not already in progress before you start

another one.

FIGURE 17.2
The live search
example as dis-
played by
Firefox.

▲

Quiz Questions 291

Q. In the live search example, why is the onkeydown event handler necessary?
Wouldn’t the onchange event be easier to use?

A. Although onchange tells you when a form field has changed, it is not trig-

gered until the user moves on to a different field—it doesn’t work for “live”

search, so you have to watch for key presses instead. The onkeypress handler

would work, but in some browsers it doesn’t detect the Backspace key, and it’s

nice to have the search update when you backspace to shorten the query.

Quiz Questions
Test your knowledge of AJAX by answering the following questions.

1. Which of the following is the A in AJAX?

a. Advanced

b. Asynchronous

c. Application

2. Which property of an XMLHttpRequest object indicates whether the request

was successful?

a. status

b. readyState

c. success

3. Which browsers require ActiveX for remote scripting?

a. Internet Explorer 5–7

b. Firefox 1.0–1.5

c. Internet Explorer 5–6

292 HOUR 17: AJAX: Remote Scripting

Quiz Answers
1. b. AJAX stands for Asynchronous JavaScript and XML.

2. a. The status property indicates whether the request was successful;

readyState indicates whether the request is complete, but does not indicate

success.

3. c. Internet Explorer 5 and 6 require ActiveX. Internet Explorer 7 supports the

XMLHttpRequest object natively.

Exercises
If you want to gain more experience with AJAX, try the following exercises:

. Build your own XML file of questions and answers on your favorite topic and

try it with the quiz example.

. Use the AJAX library to add an AJAX feature to your site, or create a simple

example of your own.

HOUR 18

Greasemonkey: Enhancing the
Web with JavaScript

What You’ll Learn in This Hour:
. How Greasemonkey and user scripts can enhance your web browser
. How to install and configure Greasemonkey in Firefox
. Installing and managing user scripts
. Creating your own user scripts
. Defining metadata for scripts
. Using the Greasemonkey API
. Adding macros to web forms

One of the recent trends is that JavaScript is being used in new ways, both inside and out-

side web browsers. In this hour, you’ll look at Greasemonkey, a Firefox extension that

enables you to write scripts to modify the appearance and behavior of sites you visit. User

scripts can also work in Internet Explorer, Opera, and Safari with the right add-ons.

Introducing Greasemonkey
So far in this book, you’ve been using JavaScript to work on your own sites. In this hour,

you’ll take a break from that and learn about a way to use JavaScript on other people’s

sites. Greasemonkey is an extension for the Firefox browser that enables user scripts. These

are scripts that run as soon as you load a page and can make changes to the page’s DOM.

A user script can be designed to work on all web pages, or only to affect particular sites.

Here are some of the things user scripts can do:

. Change the appearance of one or more sites—colors, font size, and so on.

. Change the behavior of one or more sites with JavaScript.

294 HOUR 18: Greasemonkey: Enhancing the Web with JavaScript

. Fix a bug in a site before the site author does.

. Add a feature to your browser, such as text macros—see the Try It Yourself sec-

tion of this hour for an example.

As a simple example, a user script called Linkify is provided with Greasemonkey. It

affects all pages you visit and turns unlinked URLs into hyperlinks. In other words,

the script looks for any string that resembles a URL in the page, and if it finds a URL

that is not enclosed in an <a> tag, it modifies the DOM to add a link to the URL.

Greasemonkey scripts can range from simple ones such as Linkify to complex

scripts that add a feature to the browser, rearrange a site to make it more usable, or

eliminate annoying features of sites such as pop-up ads.

Keep in mind that Greasemonkey doesn’t do anything to the websites you visit—it

strictly affects your personal experience with the sites. In this way, it’s similar to

other browser customizations, such as personal style sheets and browser font set-

tings.

Greasemonkey was created in 2004 by Aaron Boodman. Its official site is
http://greasemonkey.mozdev.org/. At this writing, the current version of
Greasemonkey is 0.6.4. The current developers are Aaron Boodman and Jeremy
Dunck.

Installing Greasemonkey in Firefox
Greasemonkey works in Firefox for Windows, Macintosh, and Linux platforms. You

can install it by visiting the Greasemonkey site and running the installer. Start at

http://greasemonkey.mozdev.org/ and follow these steps:

1. Click the Install Greasemonkey link.

2. You will probably see a message in a yellow bar at the top of the window

warning you about installing software. Click the Edit Options button within

the yellow bar.

3. In the Allowed Sites dialog, shown in Figure 18.1, click the Allow button to

allow the current site to install software, and then click Close.

4. Click the Install link again, and then click the Install button in the Software

Installation dialog that appears.

5. Exit and restart Firefox. You should see a small monkey icon in the lower-right

hand corner of the browser window if the extension was successfully installed.

By the
Way

http://greasemonkey.mozdev.org/
http://greasemonkey.mozdev.org/

Introducing Greasemonkey 295

When you first install Greasemonkey, the extension doesn’t do anything—you’ll
need to install one or more user scripts, as described in the next section, to make
it useful.

Turnabout for Internet Explorer
Greasemonkey was written as a Firefox extension, and does not work on other

browsers. Fortunately, there’s an alternative for those who prefer Internet Explorer:

Turnabout, from Reify, is an open-source add-on for Internet Explorer that supports

user scripts. Turnabout is available for free from its official site at

http://www.reifysoft.com/turnabout.php. Two versions are available:

. Turnabout Basic, which only supports the scripts bundled with it

. Turnabout Advanced, which supports any user script, similar to

Greasemonkey

Turnabout supports most of Greasemonkey’s features, and user scripts for

Greasemonkey often work with Turnabout Advanced without modification. The only

potential problem is with differences in JavaScript and in the DOM between Internet

Explorer and Firefox. If you follow the same cross-browser coding practices you

learned throughout this book, there’s a good chance you can make a user script that

works on both platforms.

FIGURE 18.1
Firefox prompts
you to allow a
site for installing
extensions.

By the
Way

http://www.reifysoft.com/turnabout.php

296 HOUR 18: Greasemonkey: Enhancing the Web with JavaScript

Other Browsers
Although Greasemonkey itself is still relatively new software, user script features

have also appeared for other browsers. Along with Turnabout for IE, two other

browsers can support user scripts:

. Opera, the cross-platform browser from Opera Software ASA, has built-in sup-

port for user scripts, and supports Greasemonkey scripts in many cases. See

Opera’s site for details at http://www.opera.com/.

. Creammonkey is a beta add-on for Apple’s Safari browser to support user

scripts. You can find it at http://8-p.info/Creammonkey/.

User Script Security
Before you get into user scripting, a word of warning: Don’t install a script unless

you understand what it’s doing, or you’ve obtained it from a trustworthy source.

Although the Greasemonkey developers have spent a great deal of time eliminating

security holes, it’s still possible for a malicious script to cause you trouble—at the

very least, it could send information about which sites you visit to a third-party web-

site.

To minimize security risks, be sure you’re running the latest version of

Greasemonkey or Turnabout. Only enable scripts you are actively using, and limit

scripts you don’t trust to specific pages so they don’t run on every page you visit.

Working with User Scripts
User scripts are a whole new way of working with JavaScript—rather than uploading

them for use on your website, you install them in the browser for your own personal

use. The following sections show you how to find useful scripts, and install and

manage them.

Finding Scripts
Anyone can write user scripts, and many people have. Greasemonkey sponsors a

directory of user scripts at http://userscripts.org/. There you can browse or search for

scripts, or submit scripts you’ve written.

The script archive has thousands of scripts available. Along with general-purpose

scripts, many of the scripts are designed to add features to—or remove annoying

features from—particular sites.

http://www.opera.com/
http://8-p.info/Creammonkey/
http://userscripts.org/

Working with User Scripts 297

Installing a Script
After you’ve found a script you wish to install, you can install it from the Web:

. In Firefox with Greasemonkey, open the script in the browser and then select

Tools, Install This User Script from the menu.

. In IE with Turnabout, right-click on a link to the script and select Turnabout,

Install Script.

You can also install a script from a local file. You’ll use this technique to install your

own script later this hour.

Managing Scripts
After you’ve installed one or more scripts with Greasemonkey, you can manage

them by selecting Tools, Manage User Scripts from the Firefox menu. The Manage

User Scripts dialog is shown in Figure 18.2.

FIGURE 18.2
Managing user
scripts in
Greasemonkey.

The user scripts you have available are listed in the left column. Click on a script

name to manage it:

. Use the Included Pages and Excluded Pages lists to control which pages the

script works on. You can specify wildcards, such as * for all pages or

.google.com/ for all Google pages.

. Use the Enabled check box to enable or disable each script.

298 HOUR 18: Greasemonkey: Enhancing the Web with JavaScript

. Click the Uninstall button to remove a script.

. Click Edit to open a script in a text editor. When it is saved, it will immediate-

ly take effect on pages you load.

Turnabout for IE has a similar dialog. To access it, click the Reify button in the

Turnabout toolbar and select Options. The dialog is similar to Greasemonkey’s dia-

log, except that each script has a separate check box to enable or disable it. There is

also an Install Feature button that prompts you for a new script to install. The

Turnabout Options dialog is shown in Figure 18.3.

FIGURE 18.3
The Turnabout
Options dialog.

Testing User Scripts
If you have a script enabled, it will be activated as soon as you load a page that

matches one of the Included Pages specified for the script. (The script is run after the

page is loaded, but before the onLoad event.) If you want to make sure

Greasemonkey is running, either try one of the scripts available for download, or

type in the simple script in the next section.

Activating and Deactivating Greasemonkey or
Turnabout
Sometimes you’ll want to turn off Greasemonkey altogether, especially if one of the

scripts you’ve installed is causing an error. To do this, right-click on the monkey icon

in the lower-right corner of the browser window and select the Enabled option to

deselect it. The monkey icon changes to a gray sad-faced monkey, and no user

scripts will be run at all. You can re-enable it at any time using the same option.

Creating Your Own User Scripts 299

With Turnabout for Internet Explorer, the procedure is similar: Click the Reify button

in the Turnabout toolbar, and select the Enable Turnabout option. The icon changes to

indicate that Turnabout is disabled. Choose Enable Turnabout again to re-enable it.

Creating Your Own User Scripts
You’ve already learned most of what you need to know to create user scripts since

they’re written in JavaScript. In this section, you’ll create and test a simple script,

and look at some features you’ll use when creating more advanced scripts.

Creating a Simple User Script
One of the best uses for Greasemonkey is to solve annoyances with sites you visit.

For example, a site might use green text on an orange background. Although you

could contact the webmaster and beg for a color change, user scripting lets you deal

with the problem quickly yourself.

As a simple demonstration of user scripting, you can create a user script that

changes the text and background colors of paragraphs in sites you visit. Listing 18.1

shows this user script.

LISTING 18.1 A Simple User Script to Change Paragraph Colors
// Change the color of each paragraph
var zParagraphs = document.getElementsByTagName(“p”);
for (var i=0; i<zParagraphs.length; i++) {

zParagraphs[i].style.backgroundColor=”#000000”;
zParagraphs[i].style.color=”#FFFFFF”;

}

This script uses the getElementsByTagName() DOM method to find all of the para-

graph tags in the current document and store their objects in the zParagraphs

array. The for loop iterates through the array and changes the style.color and

style.backgroundColor properties for each one.

Describing a User Script
Greasemonkey supports metadata at the beginning of your script. These are JavaScript

comments that aren’t executed by the script, but provide information to Greasemonkey.

To use this feature, enclose your comments between // ==UserScript== and

// ==/UserScript comments.

The metadata section can contain any of the following directives. All of these are

optional, but using them will make your user script easier to install and use.

300 HOUR 18: Greasemonkey: Enhancing the Web with JavaScript

. @name—A short name for the script, displayed in Greasemonkey’s list of scripts

after installation.

. @namespace—An optional URL for the script author’s site. This is used as a

namespace for the script: Two scripts can have the same name as long as the

namespace is different.

. @description—A one-line description of the script’s purpose.

. @include—The URL of a site on which the script should be used. You can spec-

ify any number of URLs, each in its own @include line. You can also use the

wildcard * to run the script on all sites, or a partial URL with a wildcard to run

it on a group of sites.

. @exclude—The URL of a site on which the script should not be used. You can

specify a wildcard for @include and then exclude one or more sites that the

script is incompatible with. The @exclude directive can also use wildcards.

Listing 18.2 shows the color-changing example with a complete set of metadata

comments added at the top.

LISTING 18.2 The Color-Changing Script with Metadata Comments
// ==UserScript==
// @name WhiteOnBlack
// @namespace http://www.jsworkshop.com/
// @description Display paragraphs in white text on black
// @include *
// ==/UserScript==
//
// Change the color of each paragraph
var zParagraphs = document.getElementsByTagName(“p”);
for (var i=0; i<zParagraphs.length; i++) {

zParagraphs[i].style.backgroundColor=”#000000”;
zParagraphs[i].style.color=”#FFFFFF”;

}

Testing Your Script
Now that you’ve added the metadata, installing your script is simple. Follow these

steps to install the script in Firefox:

1. Save the script file as colors.user.js. The filename must end in .user.js to

be recognized as a Greasemonkey script.

2. In Firefox, choose File, Open from the menu.

3. Select your script from the Open File dialog.

By the
Way

Creating Your Own User Scripts 301

4. After the script is displayed in the browser, select Tools, Install This User Script.

5. An alert will display to inform you that the installation was successful. The

new user script is now running on all sites.

If you’re using Turnabout under Internet Explorer, click on the Turnabout toolbar

and select Options, and then click the Install Feature button. Select the script and

click Open to install it.

Both Greasemonkey and Turnabout for IE will use the metadata you specified to set

the script’s included pages, description, and other options when you install it.

After you’ve installed and enabled the script, any page you load will have its para-

graphs displayed in white text on a black background. For example, Figure 18.4

shows the user script’s effect on the Date and Time example from Hour 2, “Creating

Simple Scripts.” Because the date and time are within <p> tags, they are displayed in

white on black.

FIGURE 18.4
The Date and
Time example
altered by the
color-changing
user script.

You probably don’t want to make a change this drastic to all sites you visit.
Instead, you can use @include to make this script affect only one or two sites
whose colors you find hard to read. Don’t forget that you can also change the
colors in the script to your own preference.

302 HOUR 18: Greasemonkey: Enhancing the Web with JavaScript

Greasemonkey API Functions
You can use all of the DOM methods covered in this book to work with pages in user

scripts, along with JavaScript’s built-in functions. In addition to these,

Greasemonkey defines an API (Application Programmer’s Interface) with a few func-

tions that can be used exclusively in user scripts:

. GM_log(message, level)—Inserts a message into the JavaScript console. The

level parameter indicates the severity of the message: 0 for information, 1 for

a warning, and 2 for an error.

. GM_setValue(variable, value)—Sets a variable stored by Greasemonkey.

These variables are stored on the local machine. They are specific to the script

that set them, and can be used in the future by the same script. (These are

similar to cookies, but are not sent to a server.)

. GM_getValue(variable)—Retrieves a value previously set with GM_setValue.

. GM_registerMenuCommand(command, function)—Adds a command to the

browser menu. These commands appear under Tools, User Script Commands.

The command parameter is the name listed in the menu, and function is a

function in your script that the menu selection will activate.

. GM_xmlhttpRequest(details)—Requests a file from a remote server, similar

to the AJAX features described in Hour 17, “AJAX: Remote Scripting.” The

details parameter is an object that can contain a number of properties to

control the request. See the Greasemonkey documentation for all of the prop-

erties you can specify.

Turnabout for Internet Explorer also supports all of these API functions, so aside

from the usual browser differences, scripts that use these functions should work in

both browsers. Because Internet Explorer does not have a JavaScript console,

Turnabout includes its own console, available from the menu, where log messages

are displayed.

Creating a Site-Specific Script
You might want to use a user script to fix a problem or add a feature to a specific

site. In addition to using @include to specify the site’s URL, you’ll need to know

something about the site’s DOM.

You can use the DOM Inspector in Firefox (or the similar feature in Internet

Explorer’s developer toolbar) to browse the DOM for the site and find the objects you

want to work with. Depending on how they are marked up, you can access them

through the DOM:

Creating Your Own User Scripts 303

. If an element has an id attribute, you can simply use

document.getElementById() in your script to find its object.

. If a nearby element has an id defined, you can use DOM methods to find it—

for example, if the parent element has an id, you can use a method such as

firstChild() to find the object you need.

. If all else fails, you can use document.getElementsByTagName() to find all

objects of a certain type—for example, all paragraphs. If you need to refer to a

specific one, you can use a loop and check each one for a certain attribute.

See Hour 16, “Debugging JavaScript Applications,” for information about Firefox’s
DOM Inspector and IE’s developer toolbar. See Hours 13, “Using the W3C DOM”
and 14, “Using Advanced DOM Features,” for information about DOM methods.

As an example, Listing 18.3 shows a simple user script you could use as a site-specif-

ic script to automatically fill out certain fields in forms.

LISTING 18.3 A User Script to Fill Out Form Fields Automatically
// ==UserScript==
// @name AutoForm
// @namespace http://www.jsworkshop.com/
// @description Fills in forms automatically
// @include *
// ==/UserScript==
// this function fills out form fields
//
var zTextFields = document.getElementsByTagName(“input”);
for (var i=0; i<zTextFields.length; i++) {
thefield=zTextFields[i].name;
if (!thefield) thefield=zTextFields[i].id;
// Set up your auto-fill values here
if (thefield == “yourname”) zTextFields[i].value=”Your Name Here”;
if (thefield == “phone”) zTextFields[i].value=”(xxx) xxx-xxxx”;
alert(“field:” + thefield + “ value: “ + zTextFields[i].value);

}

This script uses getElementsByTagName() to find all of the <input> elements in a doc-

ument, including text fields. It uses a for loop to examine each one. If it finds a field

with the name or id value “yourname” or “phone”, it inserts the appropriate value.

To test this script, save it as autoform.user.js and install the user script as

described earlier in this hour. To test it, load Listing 11.1 from Hour 11, “Getting

Data with Forms,” into the browser—it happens to have both of the field names the

script looks for. The yourname and phone fields will be automatically filled out, as

shown in Figure 18.5.

By the
Way

304 HOUR 18: Greasemonkey: Enhancing the Web with JavaScript

To make it easy to test, Listing 18.3 doesn’t include specific sites in the @include

line. To make a true site-specific script, you would need to find out the field names

for a particular site, add if statements to the script to fill them out, and use

@include to make sure the script only runs on the site.

Debugging User Scripts
Debugging a user script is much like debugging a regular JavaScript program—

errors are displayed in the JavaScript Console in Firefox or in an error message in

Internet Explorer. Here are a few debugging tips:

. As with regular scripts, you can also use the alert() method to display infor-

mation about what’s going on in your script.

. The browser may display a line number with an error message, but when

you’re working with user scripts, these line numbers are meaningless—they

refer neither to lines in your user script nor to the page you’re currently view-

ing.

. Use the GM_log() method described earlier in this hour to log information

about your script, such as the contents of variables, to the JavaScript console.

. If you’re trying to write a cross-browser user script, watch for methods that are

browser specific. See Hour 15, “Unobtrusive Scripting,” for information about

cross-browser issues.

FIGURE 18.5
The form-filling
user script in
action.

▼

Creating Your Own User Scripts 305

. Watch for conflicts with any existing scripts on the page.

. If you’re using multiple user scripts, be sure they don’t conflict. Use unique

variable and function names in your scripts.

Most of the issues with user scripts are the same as for regular JavaScript. See Hour

16 for information on debugging tools, techniques, and common mistakes.

Try It Yourself

Creating a User Script
Now that you’ve learned the basics of Greasemonkey, you can try a more complex—

and more useful—example of a user script.

If you spend much time on the Web, you’ll find yourself needing to fill out web

forms often, and you probably type certain things—such as your name or URL—into

forms over and over. The user script you create here will let you define macros for

use in any text area. When you type a macro keyword (a period followed by a code)

and then type another character, the macro keyword will be instantly replaced by

the text you’ve defined. For example, you can define a macro so that every time you

type .cu, it will expand into the text “See you later.”.

This script has been tested on Greasemonkey 0.6.4 for Firefox and Turnabout
Advanced 0.31 b3 for Internet Explorer. Because browsers and extensions are
always changing, it might stop working at some point—see this book’s website for
the latest updates.

Listing 18.4 shows the text area macro user script.

LISTING 18.4 The Text Area Macro User Script
// ==UserScript==
// @name TextMacro
// @namespace http://www.jsworkshop.com/
// @description expands macros in text areas as you type
// @include *
// ==/UserScript==
// this function handles the macro replacements
function textmacro(e) {

// define your macros here
zmacros = [
[“.mm”, “Michael Moncur”],
[“.js”, “JavaScript”],
[“.cu”, “See you later.”]

];
if (!e) var e = window.event;

Watch
Out!

306 HOUR 18: Greasemonkey: Enhancing the Web with JavaScript

// which textarea are we in?
thisarea= (e.target) ? e.target : e.srcElement;
// replace text
for (i=0; i<zmacros.length; i++) {

vv = thisarea.value;
vv = vv.replace(zmacros[i][0],zmacros[i][1]);
thisarea.value=vv;

}
}
// install the event handlers
var zTextAreas = document.getElementsByTagName(“textarea”);
for (var i=0; i<zTextAreas.length; i++) {

if (zTextAreas[i].addEventListener)
zTextAreas[i].addEventListener(“keydown”,textmacro,0);

else if (zTextAreas[i].attachEvent)
zTextAreas[i].attachEvent(“onkeydown”,textmacro);

}

How It Works
This user script begins with the usual comment metadata. The @include command

specifies a wildcard, *, so the script will work on all sites. The actual work is done in

the textmacro() function. This function begins by defining the macros that will be

available:

zmacros = [
[“.mm”, “Michael Moncur”],
[“.js”, “JavaScript”],
[“.cu”, “See you later.”]

];

This example defines three macros using a two-dimensional array. To make the script

useful to you, define your own. You can have any number of macros—just add a

comma after the last macro line and add your items before the closing bracket.

Next, the function uses the target property to find the text area in which you’re

currently typing. Next, it uses a for loop to do a search and replace within the text

area’s value property for each of your macros.

The section of code after the textmacro() function sets up an event handler for

each text area. First, it uses getElementsByTagName() to find all of the text areas,

and then it uses a for loop to add an onkeydown event handler to each one.

To avoid conflicts with existing event handlers within web pages, this example
uses the addEventListener() method to add the event handler. This method
defines an event handler without overwriting existing events. In Internet Explorer, it
uses the similar attachEvent() method. See Hour 15 for more information.

LISTING 18.4 Continued

By the
Way

Q&A 307

Using This Script
To use this script, first make sure you’ve installed and enabled Greasemonkey as

described earlier this hour. Save the script as textmacro.user.js. You can then

install the user script.

After the script is installed, try loading any page with a text area. You should be

able to type a macro, such as .mm or .js, followed by another character such as a

space, within the text area and see it instantly expand into the correct text.

This script runs on all sites by default. If you only want the macros to work on cer-
tain sites, you can change the @include directive to specify them. If the script
causes trouble on some sites, you can exclude them with @exclude.

Summary
In this hour, you’ve learned how to use Greasemonkey—and its counterpart for

Internet Explorer, Turnabout—to enable user scripting in your browser. You’ve

learned how user scripts work and how to install and manage them. Finally, you

created two examples of functioning user scripts.

Congratulations! You’ve reached the end of Part IV of this book, and you’re well on

your way to becoming a JavaScript expert. In Part V, you’ll look at multimedia

applications of JavaScript—graphics, animation, sound, and working with plug-ins.

Hour 19, “Using Graphics and Animation,” starts by helping you move beyond

scripts that work with text.

Q&A
Q. Is there any way to prevent users from using Greasemonkey while viewing

my site?

A. Because Greasemonkey only affects the user who installed it, it’s usually

harmless to allow it. If you still want to prevent its use, this is difficult but not

impossible, and varies with different versions of Greasemonkey. Search the

Web to find current solutions.

Q. What if I want to do something more sophisticated, such as modifying
Firefox’s menu?

A. This capability does not exist in Greasemonkey, but Firefox extensions are also

written in JavaScript. In fact, you can compile a user script into a Firefox exten-

sion and then add more advanced features. See http://www.letitblog.com/

greasemonkey-compiler/ for details.

Did you
Know?

▲

http://www.letitblog.com/greasemonkey-compiler/
http://www.letitblog.com/greasemonkey-compiler/

308 HOUR 18: Greasemonkey: Enhancing the Web with JavaScript

Q. What happens when a new version of Firefox or Internet Explorer is
released?

A. Although I have faith in the Greasemonkey developers, there’s no guarantee

that this extension will work in future browser versions. If you’re concerned

about this, you might want to write your own Firefox extension instead.

Q. Are there limits to how much I can modify a page using Greasemonkey?

A. No—in fact, you can yank the entire content of the page’s DOM out and

replace it with HTML of your choosing using the innerHTML property. You’d

have to do quite a bit of work to make something as useful as the original

page, of course.

Quiz Questions
Test your knowledge of Greasemonkey and user scripts by answering the following

questions.

1. Which of the following offers user scripting for Microsoft Internet Explorer?

a. Greasemonkey

b. Microsoft Live Scripting Toolbar

c. Turnabout

2. Which of the following is not a valid Greasemonkey API function?

a. GM_log()

b. GM_alert()

c. GM_setValue()

3. Which is the correct @include directive to run a script on both

www.google.com and google.com?

a. @include *.google.com

b. @include www.google.com.*

c. @include google.com

www.google.com
www.google.com

Exercises 309

Quiz Answers
1. c. Turnabout is a user script add-on for Internet Explorer.

2. b. There is no GM_alert() method, although the standard alert() method will

work in a user script.

3. a. Using @include *.google.com will run the script on any page on any site

within the google.com domain.

Exercises
If you want to gain more experience with user scripts, try the following exercises:

. Modify the color-changing user script in Listing 18.2 to use different colors, and

add another style attribute—for example, use style.fontSize to change the

font size.

. The color-changing example works on paragraphs, but text often appears in

other places, such as bullet lists. Modify Listing 18.2 to make the changes to

 tags as well as paragraphs.

. Currently, the macro example in the Try It Yourself section only works on text

inputs that use <textarea> tags. Modify the script in Listing 18.3 to work on

<input> tags also. (You’ll need to add a second call to getElementsByTagName()

and a loop to add the event handlers.)

This page intentionally left blank

PART V:

Building Multimedia
Applications with JavaScript

HOUR 19 Using Graphics and Animation 313

HOUR 20 Working with Sound and Plug-ins 329

This page intentionally left blank

HOUR 19

Using Graphics and Animation

What You’ll Learn in This Hour:
. Using JavaScript to swap images within a page
. Using JavaScript rollovers
. Using CSS rollovers
. Creating an image slideshow
. Adding animation to the slideshow

Welcome to Part V! So far, you’ve used JavaScript to work with text and forms in web

pages. In the next two hours, you’ll look at how JavaScript can work with graphics,

sounds, and plug-ins. This hour focuses on using JavaScript to manipulate graphics and

create animated displays.

Using Dynamic Images
Long before the W3C DOM allowed JavaScript to change any part of a web page, a fea-

ture called dynamic images enabled you to swap one image for another with JavaScript.

This technique is still supported by current browsers, and is still the most convenient (and

compatible) way to work with images in JavaScript.

Working with image Objects
You can change images dynamically by using the image object associated with each one.

The traditional way to do this is with the document.images array. This array contains an

item for each of the images defined on the page. In the object hierarchy, each image

object is a child of the document object.

With the W3C DOM, you can also assign an id attribute to an image within the

tag, and then use document.getElementById to find the object for that image. Each

image object has the following properties:

314 HOUR 19: Using Graphics and Animation

. complete is a flag that tells you whether the image has been completely

loaded. This is a Boolean value (true or false).

. height and width reflect the corresponding image attributes. This is for infor-

mation only; you can’t change an image’s size dynamically.

. hspace and vspace represent the corresponding image attributes, which

define the image’s placement on the page. Again, this is a read-only attribute.

. name is the image’s name. You can define this with the NAME attribute in the

image definition.

. src is the image’s source, or URL. You can change this value to change images

dynamically.

For most purposes, the src attribute is the only one you’ll use. The image object has

no methods. It does have three event handlers you can use:

. The onLoad event occurs when the image finishes loading. (Because the

onLoad event for the entire document is triggered when all images have fin-

ished loading, it’s usually a better choice.)

. The onAbort event occurs if the user aborts the page before the image is

loaded.

. The onError event occurs if the image file is not found or corrupt.

Although changing image sources works fine, you can also use the W3C DOM to
completely remove or replace image objects, or insert new ones, just like any
other object.

Preloading Images
You can also create an independent image object. This enables you to specify an

image that will be loaded and placed in the cache, but will not be displayed on the

page.

This might sound useless, but it’s a great way to work with modem-speed connec-

tions. After you’ve preloaded an image, you can replace any of the images on the

page with that image—and because it’s already cached, the change happens

instantly. Even on a fast connection, this avoids flickering and makes animation

smoother.

By the
Way

Creating Rollovers 315

You can cache an image by creating a new image object, using the new keyword.

Here’s an example:

Image2 = new Image();
Image2.src = “arrow1.gif”;

You learned about the new keyword and its other uses for object-oriented program-
ming in Hour 6, “Using Functions and Objects.”

Creating Rollovers
One of the classic uses of JavaScript is to create rollovers—images that change when

you move the mouse over them. They are typically used to create navigation links

that give the user a bit of guidance by highlighting the one the mouse is over.

In this section, you’ll learn how to use JavaScript’s dynamic images to create

rollovers—and then you’ll learn why you shouldn’t do this most of the time, and

how to create rollovers with no scripting at all.

JavaScript Rollovers
First, let’s take a quick look at how to create rollovers using JavaScript. To do this,

you start with regular and highlighted versions of each rollover image. Figure 19.1

shows two examples of navigation buttons in both states.

By the
Way

FIGURE 19.1
Regular and
highlighted ver-
sions of two
button images.

As you might guess, all this requires in JavaScript is to combine an onMouseOver

event handler with a dynamic image. Adding onMouseOut allows your script to

restore the original image when the mouse moves away. Listing 19.1 shows a simple

way to do this with inline event handlers.

316 HOUR 19: Using Graphics and Animation

LISTING 19.1 Using Basic JavaScript Rollovers
<html>
<head>
<title>Rollovers - JavaScript</title>
</head>
<body>
<h1>JavaScript Rollovers</h1>
<a href=”home.html”

onmouseover=”document.images[0].src=’home2.gif’;”
onmouseout=”document.images[0].src=’home1.gif’;”>
<image border=”0” src=”home1.gif”>

<a href=”archives.html”

onmouseover=”document.images[1].src=’archives2.gif’;”
onmouseout=”document.images[1].src=’archives1.gif’;”>
<image border=”0” src=”archives1.gif”>

</body>
</html>

This is just a basic bit of inline JavaScript, so you can test it by simply loading the

HTML file into a browser. The results are shown in Figure 19.2. In the figure, the

mouse cursor is over the Archives button.

FIGURE 19.2
The rollover
example in
action.

CSS Rollovers Without JavaScript
Although JavaScript rollovers work fine in today’s browsers, the technique was devel-

oped in the days before CSS, and there is now a better way to accomplish the same

thing. Using the :hover directive in CSS, you can create text links that change color

when the mouse hovers over them. Listing 19.2 shows a simple example of CSS

rollovers.

Creating Rollovers 317

LISTING 19.2 JavaScript-Free Rollovers with CSS
<html>
<head>
<title>Rollovers - CSS</title>
<style>
#home,#archives {

font-size: 30px;
text-decoration: none;

}
#home:hover, #archives:hover {

background-color: #AAAAAA;
}
</style>
</head>
<body>
<h1>JavaScript-Free Rollovers</h1>
Home

Archives
</body>
</html>

To try this example, simply load the HTML document into a browser. When you

move the mouse over the links, their background color changes from white to gray.

This example is shown in Figure 19.3.

FIGURE 19.3
Simple CSS-only
rollovers.

This isn’t as fancy as the JavaScript rollovers, but it has some advantages—first of all,

it doesn’t require JavaScript. Second, the links are actual text—this means they’ll work

even in text-based browsers, primitive mobile phone browsers, and voice-reading

browsers for the blind, although the rollover effects won’t work in these situations.

Third, the page loads faster, and you can add more links without creating graphics.

Graphic CSS Rollovers
Suppose you’re really attached to the nifty graphic look of the first rollover example.

Before you do something like that, take a look at Listing 19.3. This listing uses CSS

to implement graphic rollovers, which look and work exactly like Figure 19.2, with

no JavaScript.

318 HOUR 19: Using Graphics and Animation

LISTING 19.3 Graphic Rollovers with CSS
<html>
<head>
<title>Rollovers - CSS</title>
<style>
#home {

display: block;
height: 60px;
width: 126px;
background-image: url(“home1.gif”);

}
#home:hover {

background-image: url(“home2.gif”);
}
#archives {

display: block;
height: 60px;
width: 168px;
background-image: url(“archives1.gif”);

}
#archives:hover {

background-image: url(“archives2.gif”);
}
#home b, #archives b {

display: none;
}
</style>
</head>
<body>
<h1>JavaScript-Free Rollovers</h1>
Home

Archives
</body>
</html>

Here’s a summary of how the CSS works:

. The #home and #archives rules, which match the id attribute of the two

links, set their display attribute to block and the width and height attrib-

utes to allow the links to be as large as their corresponding graphics. They

then use the background-image property to display the unhighlighted graph-

ics (home1.gif and archives1.gif).

. The #home:hover and #archives:hover rules change the background images

to the highlighted versions (home2.gif and archives2.gif).

. The #home b and #archives b rule hides the text of the links within the

tags. This prevents the text from appearing on top of the graphics.

A Simple JavaScript Slideshow 319

Notice that the HTML portion of this example is identical to the previous example,

and it will work exactly the same on text-based browsers and browsers with

JavaScript turned off. Users with modern browsers will see the graphic versions of

the links instead. This gives you the look of graphic rollovers without JavaScript,

and without compromising accessibility.

Another reason to use this type of rollover: Because the links are still in the HTML
as text, search engines see them as ordinary links, and can do a better job of
indexing your site. See Hour 15, “Unobtrusive Scripting,” for more information on
accessibility and search engine optimization.

A Simple JavaScript Slideshow
Suppose you wanted to create a simple picture slideshow using JavaScript: The page

displays the first picture, and when you click on it the next picture replaces it. You

can continue to click and view all of the pictures in the slideshow. The obvious way

to do this is to change the .src attribute of an image object, and that will work

fine—but here you’ll take a look at a different approach that uses the W3C DOM to

make a more flexible slideshow.

The HTML File
First, you’ll need an HTML document that defines the page and where the images

will appear. Before you start on the scripting, take a look at the HTML file in Listing

19.4.

LISTING 19.4 The HTML File for the Slideshow
<html>
<head>
<title>Image Slideshow Test</title>

<script language=”javascript” type=”text/javascript”
src=”slideshow.js”>

</script>
</head>
<body>
<h1>Image Slideshow Test</h1>

<p>Click the image to view the next slide.</p>
</body>
</html>

By the
Way

320 HOUR 19: Using Graphics and Animation

You might notice something peculiar about this document: All five of the images are

included with tags. If you load the document into a browser before you add

the JavaScript file, you’ll see all five images on the page at once.

The slideshow.js script is included with the <script> tag in the header. This script

will hide all but the first image, and allow the images to be shown one at a time.

This is an example of unobtrusive scripting—users without JavaScript can see the

images just fine, although they’ll have to scroll the page, and they’ll miss the nifty

slideshow feature.

Because the markup of this example uses ordinary tags, we’ve used a special

class=”slide” attribute on the slide images. The script will check for this class to

determine which images belong to the slideshow because there’s a good chance

you’ll have other images on the page.

This is a flexible way to create a slideshow—you can change the order of the slides

simply by rearranging the HTML, and you can add more slides just by adding more

images with the right class value.

See Hour 15 for more information about keeping JavaScript unobtrusive and
optional.

The JavaScript File
The script that brings the slideshow to life is shown in Listing 19.5. The script consists of

two basic functions: MakeSlideShow(), which rearranges the images into a slideshow,

and NextSlide(), which responds to a click and advances to the next image.

LISTING 19.5 The JavaScript File for the Slideshow
var numslides=0,currentslide=0;
var slides = new Array();
function MakeSlideShow() {

// find all images with the class “slide”
imgs=document.getElementsByTagName(“img”);
for (i=0; i<imgs.length; i++) {

if (imgs[i].className != “slide”) continue;
slides[numslides]=imgs[i];
// hide all but first image
if (numslides==0) {

imgs[i].style.display=”block”;
} else {

imgs[i].style.display=”none”;
}
imgs[i].onclick=NextSlide;
numslides++;

} // end for loop

By the
Way

A Simple JavaScript Slideshow 321

} // end MakeSlideShow()
function NextSlide() {

slides[currentslide].style.display=”none”;
currentslide++;
if (currentslide >= numslides) currentslide = 0;
slides[currentslide].style.display=”block”;

}
// create the slideshow when the page loads
window.onload=MakeSlideShow;

Let’s take a look at how this script works:

. The first lines define three global variables: numslides to store the current

number of slides, currentslide to keep track of the current slide, and the

slides array to store the image objects for each slide.

. The MakeSlides() function starts by using getElementsByTagName() to find

all of the images on the page, and iterates through the array with a for loop.

The first if statement in the loop checks the className attribute of the

image, and if it does not belong to the slide class, the loop is continued with-

out any action.

. The next statements store the image in the slides array, and then check num-

slides for a value of zero, meaning the first image in the array. For the first

image, the display attribute is set to block; for all others, display is set to

none so that only one image is visible at a time.

. The final statements in the loop set the image’s onclick event handler to the

NextSlide() function and increment the numslides variable.

. The NextSlide() function first hides the current slide by setting its display

property to none. Next, it increments currentslide. The if statement resets

currentslide to zero when the last slide is clicked on. Finally, the new slide is

displayed by setting its display property to block.

. The final line of the script sets an onLoad event handler for the window to run

the MakeSlideShow() function. This rearranges the images into a slideshow as

soon as the page loads.

To test the script, save it as slideshow.js in the same folder as the HTML document

you created previously, and load the HTML document into a browser. Figure 19.4

shows the script in action with the first image displayed.

LISTING 19.5 Continued

▼

322 HOUR 19: Using Graphics and Animation

You might see a brief flicker when you load the page and the five images display
before being hidden by the script. You can eliminate this by adding a
display:none rule in CSS for the slide class, making all of the images invisible
until the script displays the first one.

Try It Yourself

Adding Animation to the Slideshow
Although the slideshow example works, the transitions between images are instan-

taneous—somewhat of a utilitarian effect. With a bit more code, you can use

JavaScript and the CSS positioning properties to create an animated transition

between the slides.

See Hour 13, “Using the W3C DOM,” for information about the CSS positioning
properties used in this example.

The HTML File
The HTML for this example is similar to that of the basic slideshow, with two differ-

ences: First, the images are enclosed in a <div> element with the id attribute

“slideshow”. This element will be used to make the transition between slides work.

FIGURE 19.4
The JavaScript
slideshow
shows the first
image.

Did you
Know?

By the
Way

A Simple JavaScript Slideshow 323

Second, a <link> tag in the header specifies a style sheet, slideshow2.css, because

this example will require some CSS styles. The HTML document is shown in Listing

19.6.

LISTING 19.6 The HTML File for the Animated Slideshow
<html>
<head>
<title>Animated Slideshow Test</title>

<script language=”javascript” type=”text/javascript”
src=”slideshow2.js”>

</script>
<link rel=”stylesheet” type=”text/css” href=”slideshow2.css”>
</head>
<body>
<h1>Animated Slideshow Test</h1>
<div id=”slideshow”>

</div>
<p>Click the image to view the next slide.</p>
</body>
</html>

As before, if you load this document into a browser without the JavaScript or CSS

files, it will display all five images on the page.

The CSS File
You’ll need a bit of CSS to set things up for the slideshow. The style sheet will set the

initial position of the images and set the positioning properties so that the anima-

tion will work. The CSS file for this example is shown in Listing 19.7. Save the file as

slideshow2.css in the same folder as the HTML document you created previously.

LISTING 19.7 The CSS File for the Animated Slideshow
img.slide {

position: absolute;
left:0;
top:0;

}
#slideshow {

position: relative;
overflow: hidden;
width: 400;
height: 300;

}

324 HOUR 19: Using Graphics and Animation

The #slideshow rule defines the styles for the <div> element that encloses the

images. The position: relative rule enables positioning for the element and its

children, while leaving it where it landed in the page by default. The overflow

property hides the part of an image that lies outside the <div>, so the new image

can “slide in” from the side. Finally, the width and height properties make the

<div> as large as the images so that the slideshow is always one size.

The img.slide rule sets up the styles for the images themselves. The position prop-

erty is set to absolute. In combination with the relative value on the <div>, this

means that the image is positioned relative to its parent. It is set to left: 0 and

top: 0, which positions each image at the upper-left corner of the <div>—to begin,

all of the images will be on top of each other, so only one will be visible.

Instead of using the display property, the animated slideshow will use the z-index

property (zIndex in JavaScript). This controls which of the overlapping images is

“on top.” To change slides, the script will set the new image to be on the top of the

stack and position it off the right edge of the <div>, and then gradually slide both

the old and new slides to the left until the new one is the only one visible.

The JavaScript File
Now that you have the HTML and CSS files, all that remains is the script. Listing

19.8 shows the JavaScript file for the animated slideshow.

LISTING 19.8 The JavaScript File for the Animated Slideshow
// Global variables
var numslides=0;
var currentslide=0,oldslide=4;
var x = 0;
var slides = new Array();
function MakeSlideShow() {

// find all images with the class “slide”
imgs=document.getElementsByTagName(“img”);
for (i=0; i<imgs.length; i++) {

if (imgs[i].className != “slide”) continue;
slides[numslides]=imgs[i];
// stack images with first slide on top
if (numslides==0) {

imgs[i].style.zIndex=10;
} else {

imgs[i].style.zIndex=0;
}
imgs[i].onclick=NextSlide;
numslides++;

} // end for loop
} // end MakeSlideShow()
function NextSlide() {

// Set current slide to be under the new top slide
slides[currentslide].style.zIndex=9;

A Simple JavaScript Slideshow 325

// Move older slide to the bottom of the stack
slides[oldslide].style.zIndex=0;
oldslide = currentslide;
currentslide++;
if (currentslide >= numslides) currentslide = 0;
// start at the right edge
slides[currentslide].style.left=400;
x=400;
// Move the new slide to the top
slides[currentslide].style.zIndex=10;
AnimateSlide();

}
function AnimateSlide() {

// Lower moves slower, higher moves faster
x = x - 25;
slides[currentslide].style.left=x;
// previous image moves off the left edge
// (comment the next line for a different effect)
slides[oldslide].style.left=x-400;
// repeat until slide is at zero position
if (x > 0) window.setTimeout(“AnimateSlide();”,10);

}
// create the slideshow when the page loads
window.onload=MakeSlideShow;

Here’s how this script differs from the original slideshow script:

. An oldslide global variable has been added to keep track of the previous
slide, so it can be moved out as the new slide moves in. Another global vari-
able, x, will store the current horizontal position of the sliding image.

. Instead of using the display property, the MakeSlideShow() function sets the
zIndex property to 10 for the first image and to zero for the others.

. The NextSlide() function works differently. First, it sets the current slide’s
zIndex property to 9, so it is the second one in the stack. (See the Did You
Know? sidebar at the end of this section for the reason.) Next, it sets zIndex to
zero for the old slide to move it to the bottom. It then assigns the oldslide
value for next time, and increments the current slide as before.

. NextSlide() finishes by setting the new slide’s left property to 400, and the
x variable to the same value. The slide will start off the right edge of the
<div> and gradually become visible as it moves to the left. It then sets zIndex
to 10 for the new slide to put it on top of the stack. Last, it calls the new
AnimateSlide() function to make the transition.

. AnimateSlide() handles the animation. It starts by subtracting 25 from the
value of x and setting the current slide’s left property to that value. It also
sets the position of the old slide 400 pixels to the left of the current one, so it
slides out of the frame as the new one slides in.

LISTING 19.8 Continued

326 HOUR 19: Using Graphics and Animation

. The last line in AnimateSlide() checks x, and if it has not yet reached zero, it

uses setTimeout() to call itself after a brief (10 millisecond) delay. This func-

tion will be called repeatedly until the new slide reaches its final resting place

on the left side.

The reason for setting the old slide’s zIndex to 9 instead of 10 is to allow you to
try a different transition effect. If you remove the slides[oldstyle].style.left
assignment in AnimateSlide(), the old slide will stay in one place while the new
slide moves over it.

Putting It All Together
To try out the animated slideshow, make sure you have all three files in the same

folder: the HTML document, the style sheet (slideshow2.css), and the JavaScript

file (slideshow2.js). Load the HTML document into a browser; then click on the

image to advance the slideshow.

The AnimateSlide() function uses a lot of code, but on a reasonably fast machine,

the transition will be very fast, taking about half a second. If you want to slow it

down to see what’s going on, change the 25 value in AnimateSlide() to a lower

number—a value of 1 will make the transition extremely slow. Figure 19.5 shows the

slideshow in action, halfway between the first slide and the second.

Did you
Know?

FIGURE 19.5
The animated
slideshow in
action.

▲

Summary 327

Summary
In this hour, you learned some techniques for working with graphics in JavaScript.

You learned how to use dynamic images to create rollovers, and how to use CSS for

JavaScript-free rollovers. Finally, you created a script to turn any group of images on

a page into an animated slideshow.

In the next hour, you’ll look at how JavaScript works with plug-ins, particularly

Flash, and learn how to add sounds to your scripts.

Q&A
Q. Isn’t it possible to make JavaScript rollovers unobtrusive?

A. Yes, you could use a separate JavaScript file and do JavaScript rollovers “the

right way.” You would still have image links instead of text links, but aside

from that it’s arguably no worse than CSS rollovers. JavaScript rollovers can

also go beyond what CSS can do—for example, the links could change in an

animated way rather than simply changing graphics.

Q. Can JavaScript work with any type of image?

A. Yes, JavaScript’s dynamic image features (and the W3C DOM features you

used in the slideshow) will work fine with GIF, JPG, and PNG (Portable

Network Graphics, the newest standard) images.

Q. Why doesn’t the slideshow example require preloading images for fast tran-
sitions?

A. Because the images are all on the page in the HTML document, they are

loaded with the page, although the JavaScript immediately hides them. Thus,

they’re available instantly when the slideshow switches them.

Q. How do I speed up the transitions in the animated slideshow?

A. There are two ways: Either increase the amount subtracted from x, or reduce

the timeout in the setTimeout statement. Subtracting too much can make the

transition jerky, and timeouts below 10 aren’t handled well by browsers, so

experiment with your changes to reach the best compromise.

328 HOUR 19: Using Graphics and Animation

Quiz Questions
Test your knowledge of JavaScript graphics by answering the following questions.

1. Which property of an image object stores the filename of the image?

a. href

b. filename

c. src

2. Which of the following languages cannot be used to implement rollovers?

a. HTML

b. CSS

c. JavaScript

3. If image1 is the object for an image on the page, which of the following would
you modify to change the image’s horizontal position?

a. image1.left

b. image1.style.left

c. image1.style.xPosition

Quiz Answers
1. c. The src property of the image stores its filename.

2. a. You can create rollovers using JavaScript or CSS, but it can’t be done in
plain HTML.

3. b. The style.left property controls the image’s horizontal position.

Exercises
If you want to gain more experience working with graphics in JavaScript, try the fol-
lowing exercises:

. Change the animated slideshow example to move the slides downward
instead of right to left to make the transition. You’ll need to change the
style.top property instead of style.left.

. Firefox and some other browsers support a CSS 3 property, style.opacity,
which controls how opaque an element is, with a value of 100 being com-
pletely opaque and a value of 0 being completely transparent. Try changing
the animated slideshow to fade the new slide in from 0 to 100 rather than
slide it in from right to left.

HOUR 20

Working with Sound
and Plug-Ins

What You’ll Learn in This Hour:
. How browser plug-ins work
. How JavaScript works with plug-ins
. Scripting objects in plug-ins
. Integrating JavaScript and Flash
. Testing JavaScript’s sound support
. Creating an application using sounds

Browser plug-ins enable the browser to work with sounds, printer-ready documents, and

other formats instead of being limited to HTML. JavaScript can connect with some plug-

ins to add interactive features. In this hour, you’ll explore JavaScript’s plug-in support and

look specifically at playing sounds.

Introducing Plug-Ins
Plug-ins were introduced by Netscape in Navigator 3.0. Rather than adding support direct-

ly to the browser for media types such as formatted text, video, and audio, Netscape creat-

ed a modular architecture that allows programmers to write their own browser add-ons for

these features.

There are now hundreds of plug-ins available for Netscape, Firefox, and Internet Explorer.

Here are a few of the most popular:

. Macromedia’s Shockwave and Flash plug-ins support animation and video.

. Adobe’s Acrobat plug-in supports precisely formatted, cross-platform text.

330 HOUR 20: Working with Sound and Plug-Ins

. Apple’s QuickTime plug-in supports many audio and video formats.

. RealPlayer supports streaming audio and video.

Firefox and Internet Explorer use different plug-in formats and usually require dif-

ferent versions of a plug-in. Additionally, some plug-ins are available only for one

platform, such as Windows or Macintosh.

The <embed> and <object> Tags
Browsers support two tags for plug-ins, <embed> and <object>. The following is an

example of the <embed> tag that embeds a sound in a page:

<embed src=”sound.wav” autostart=”false” loop=”false”>

This example uses the sound.wav file. It sets two parameters: autostart controls

whether the sound automatically plays when the page loads, and loop controls

whether the sound repeats after it plays the first time. The parameters supported

depend on the plug-in being used.

A more standard tag, <object>, is part of the HTML 4.0 specification. Here’s the

same sound file using <object>:

<object type=”audio/x-wav” data=”sound.wav” width=”100” height=”50”>
<param name=”src” value=”sound.wav”>
<param name=”autostart” value=”false”>

</object>

Although <object> is a more standard way of embedding a file, most current
browsers still support <embed>, which works better in some cases. Always try your
pages that use plug-ins in different browsers to make sure they work.

Understanding MIME Types
Multipurpose Internet Mail Extensions types (MIME) is a standard for classifying dif-

ferent types of files and transmitting them over the Internet. The different types of

files are known as MIME types.

You’ve already worked with a few MIME types: HTML (MIME type text/html), text

(MIME type text/plain), and GIF images (MIME type image/gif). The <script>

tag also uses a MIME type to indicate the language: text/javascript. Although

web browsers don’t normally support many more than these types, external applica-

tions and plug-ins can provide support for additional types.

Did you
Know?

Introducing Plug-Ins 331

When a web server sends a document to a browser, it includes that document’s

MIME type in the header. If the browser supports that MIME type, it displays the file.

If not, you’re asked what to do with the file (such as when you click on a .zip or

.exe file to download it).

How JavaScript Works with Plug-Ins
Some plug-ins, such as the sound plug-ins you’ll use later this hour, support scripting

with JavaScript. Scripting plug-ins works just like scripting the DOM: You assign an id

attribute to the <embed> or <object> tag, and then use document.getElementById()

to find the object corresponding to the embedded item.

After you’ve found the object, what you can do with it depends on the file type and

the plug-in. For example, most sound plug-ins support a Play() method. Here’s an

example that finds an embedded sound with the id attribute sound1 and plays the

sound:

obj = document.getElementById(“sound1”);
obj.Play();

Because plug-in methods are not part of the standard DOM, you’ll need to consult

the plug-in’s documentation to find out what methods are supported and what your

script can do with the embedded object.

Plug-In Feature Sensing
Any time you work with plug-ins, it’s important to remember that not all browsers

will have the needed plug-in installed. Although both Firefox and Internet Explorer

will attempt to notify users and let them know where to install the plug-in, expect-

ing users to install software just to view your site is a bit optimistic.

Instead, you should use feature sensing to use the plug-in only when it is supported.

For example, you could check for the Play() method like this:

if (obj.Play) {
obj.Play();

} else alert(“Can’t Play.”);

A more sophisticated method that handles errors as well as feature sensing is pre-

sented later in this hour.

Feature sensing is the same technique you’ve used to make sure browsers sup-
port the W3C DOM. See Hour 15, “Unobtrusive Scripting,” for information on fea-
ture sensing.

By the
Way

332 HOUR 20: Working with Sound and Plug-Ins

JavaScript and Flash
Adobe (formerly Macromedia) Flash is the Web’s most popular format for movies

and interactive content that require a bit more graphical splendor than HTML and

JavaScript can provide. Flash’s programming language is similar to JavaScript, and

JavaScript can work with Flash.

ActionScript
If you program scripts for a Flash movie, you use a language called ActionScript.

You may find that ActionScript has a strong similarity to JavaScript, and for good

reason—the version of ActionScript used in Flash 5.0 and later is based on the same

ECMAScript standard that specifies the syntax for JavaScript.

Although the language is the same, Flash programming is quite different from writ-

ing JavaScript for the Web—you are scripting Flash objects rather than working with

the DOM. However, you’ll find that the basic syntax of the language is the same,

which makes it easy for a JavaScript programmer to work with Flash when its capa-

bilities are needed.

JavaScript and Flash Communication
JavaScript and Flash can communicate and work together. Adobe’s Flash/JavaScript

Integration Kit, available as a free download, enables JavaScript to call ActionScript

functions within Flash objects, and also enables Flash scripts to call JavaScript func-

tions within the page that contains them.

The Flash/JavaScript Integration Kit works best with Flash Player 6.0 or later,

although it also includes basic support for earlier versions of Flash. If you are devel-

oping a Flash application and need it to communicate with JavaScript, you can

download the kit from http://weblogs.macromedia.com/flashjavascript/.

If you’re using an existing Flash object, the author might have already set it up to

work with JavaScript, in which case it will have a list of methods available like other

plug-in objects.

Embedding Flash with JavaScript
One other common use of JavaScript with Flash is to use JavaScript to generate the

<object> or <embed> tag to embed a Flash object. Although you could use HTML

directly, using JavaScript enables you to sidestep Internet Explorer’s warning dialog

that pops up whenever an embedded object is in use. JavaScript can also pass

parameters, such as the user’s screen size, to Flash by writing them into the <embed>

or <object> tag.

http://weblogs.macromedia.com/flashjavascript/

Playing Sounds with JavaScript 333

Microsoft added the warning dialog for embedded objects in response to a patent
dispute. See the Try It Yourself section later this hour for an example that uses
JavaScript to embed objects in a page and avoid this warning.

Playing Sounds with JavaScript
Although the W3C DOM has made advanced effects and applications possible in

JavaScript in a painless, cross-browser fashion, no standard has emerged to do the

same for JavaScript’s sound support. There are a few ways of making JavaScript play

sounds, and none of them work consistently in all browsers all of the time.

Nonetheless, with a bit of effort, you can play sounds in most browsers.

Because sound support in browsers is inconsistent, there’s no guarantee your
sounds will work for everyone. Be sure any sound you use in JavaScript applica-
tions is optional and that the script still works even on browsers that won’t play
the sounds.

Sound Formats
There are a wide variety of sound formats, usually identified by their file extensions.

The following are some of the most common sound formats on the Web:

. .au (Audio Unit)—The earliest sound format supported by browsers, and still

the most widely supported. Some browsers have built-in support for this for-

mat. In Firefox, the QuickTime plug-in supports .au files.

. .wav—The standard Windows sound format (usually played by Media Player

on Windows machines).

. .mp3—A compressed format for larger files, such as music. MP3 plug-ins are

not included with most browsers, but are often installed by users.

. .mid (MIDI)—Rather than audio, MIDI files store note information to re-cre-

ate a song using a standard set of instruments. Most computers support MIDI

music, although a browser plug-in might be required.

Any of these formats can be supported by most browsers, but unfortunately there is

no format that is universally supported. If you’re hoping as many visitors as possi-

ble will be able to hear your sounds, the best choice is .au if you’re using standard

audio plug-ins, or .mp3 if you’re using Flash.

Did you
Know?

By the
Way

334 HOUR 20: Working with Sound and Plug-Ins

Sound-Playing Plug-Ins
Browsers almost always require a plug-in to play sounds. Fortunately, sound plug-

ins are widely used and many of your site’s visitors already have one or more of

them installed. Here are the most common sound-playing plug-ins:

. QuickTime—Apple’s sound and video player, installed by default on

Macintosh systems. QuickTime plug-ins are also available for Internet

Explorer for Windows and for Firefox on Windows and Macintosh.

. Windows Media Player—Microsoft’s sound and video player, installed by

default on Windows systems.

. RealPlayer—A popular third-party plug-in for playing music and video, avail-

able from http:// www.real.com.

. Flash—Although the Flash plug-in doesn’t play standard embedded sounds,

Flash animations and movies can play sounds, as you’ll learn later in this

section.

Embedding Sounds
The following is a simple example of an <embed> tag to embed a sound in a page:

<embed id=”note_c1” src=”c1.au” width=”0” height=”0”
autostart=”false” enablejavascript=”true”/>

This example works with the most common sound plug-ins. It specifies a source file-

name for the sound file (c1.au) and autostart=”false” to prevent the sound from

playing when the page loads. The enablejavascript parameter is required by

some plug-ins to allow scripting.

The width and height parameters set the size of the embedded player. If they are

not zero, the player will be visible with Play, Pause, and Stop buttons. Setting them

to zero hides the player, useful when you intend to control it strictly with JavaScript.

(A hidden parameter is supposed to hide the player, but this causes sounds not to

play in some browsers.)

Controlling Sounds with JavaScript
After you’ve embedded a sound—assuming a browser plug-in supports it—you can

use the following methods of the sound object to control the sound:

. Play() or DoPlay()—Starts playing the sound, and stops when the sound is

finished. DoPlay() is supported by RealPlayer, and Play() is supported by

most other sound plug-ins.

http://www.real.com

Playing Sounds with JavaScript 335

. Stop()—Stops the currently playing sound.

. Rewind()—Restarts the current sound at the beginning.

Depending on the audio plug-in in use, the methods supported might be different.
Always use try and catch when attempting to control sounds to avoid errors.

Detecting Sound Support
Because you can’t count on sounds being supported by all browsers, it’s a good prac-

tice to use try and catch to test the statements and display a message (or take

another appropriate action) if sounds are not supported:

try {
sound.DoPlay();

} catch (e) {
try {
sound.Play();

} catch (e) {
alert(“No sound support.”);

}
}

This code first tries RealPlayer’s DoPlay() method. If that doesn’t work, it tries the

Play() method. If neither approach works, it displays an error message.

The try and catch keywords are used to test a risky statement, find out whether
it works, and suppress the browser’s usual error messages. See Hour 16,
“Debugging JavaScript Applications” for more information.

Using Flash
If you are relying on sounds for an application, you might want to consider using

Flash. You can create a simple Flash object that loads sound files and allows

JavaScript to play them. This gives you scriptable sounds using one consistent plug-

in that works on most platforms.

Scott Schiller’s SoundManager provides an easy way to use Flash sounds from

JavaScript. SoundManager uses a Flash object to play MP3-formatted sounds you

specify in an XML file. After you’ve created the XML file and included

SoundManager using a <script> tag, you can use its methods to control the

sounds. More information and the download for SoundManager are available at

http://www.schillmania.com/projects/soundmanager/.

Watch
Out!

By the
Way

http://www.schillmania.com/projects/soundmanager/

336 HOUR 20: Working with Sound and Plug-Ins

Testing Sounds in JavaScript
You can now create a simple example that uses JavaScript to play a sound. Listing

20.1 shows an HTML document with an embedded script to play a sound when you

click a button.

LISTING 20.1 A Simple Example of Playing Sounds Using JavaScript
<html>
<head>
<title>Sound Test</title>
<script language=”JavaScript” type=”text/javascript”>
function PlaySound() {
var sound = document.getElementById(“note_c1”);
try {
// RealPlayer
sound.DoPlay();

} catch (e) {
try {
// Windows Media / Quicktime
sound.Play();

} catch (e) {
alert(“No sound support.”);

}
}

}
</script>
</head>
<body>
<h1>Sound Test</h1>
<embed id=”note_c1” src=”c1.au” width=”0” height=”0”
autostart=”false” enablejavascript=”true”/>

<input type=”button” value=”Play the Sound”
onClick=”PlaySound()”>

</body>
</html>

To try the example, you’ll need a sound file: the c1.au file is available at this book’s
website, or you can substitute the .au format sound of your choice. Load the docu-
ment into a browser and click the button to play the sound.

If you don’t hear a sound, or if the “No sound support” message is displayed, try
looking at the JavaScript Console in Firefox or clicking the error icon in the lower-
left corner of the window in Internet Explorer. You might need to install a plug-in to
get it to work.

Internet Explorer might display an alert message when you load the page, as shown
in Figure 20.1. Due to a patent dispute, Microsoft made their browser require you to
click on something in order for embedded objects to work. Although this is only a
minor annoyance in this example, it’s possible to eliminate it by using JavaScript to
write the <embed> tag. The Try It Yourself section of this hour includes an example
of this technique.

▼

Testing Sounds in JavaScript 337

Try It Yourself

Playing Music with the Mouse
As an example of scripting multiple embedded objects, you can create a simple

demonstration that displays a piano keyboard and plays piano notes when you

click on the keys. This example requires an .au sound file for each key, which you

can download from this book’s website.

The HTML Document
The HTML file for this document includes a series of <div> tags that will act as the

black and white piano keys. A <link> tag is used to include a CSS file to style the

keys, and a <script> tag includes a script you’ll create later in this section. The

complete HTML document is shown in Listing 20.2.

LISTING 20.2 The HTML Document for the Piano Example
<html>
<head>
<title>JavaScript Piano</title>
<link rel=”stylesheet” type=”text/css” href=”piano.css”>
</head>
<body>
<h1>JavaScript Piano</h1>
<div class=”white” id=”c1”> </div>
<div class=”black” id=”cs1”> </div>
<div class=”white” id=”d1”> </div>

FIGURE 20.1
Internet Explorer
warns you
before enabling
an embedded
object.

338 HOUR 20: Working with Sound and Plug-Ins

<div class=”black” id=”ds1”> </div>
<div class=”white” id=”e1”> </div>
<div class=”white” id=”f1”> </div>
<div class=”black” id=”fs1”> </div>
<div class=”white” id=”g1”> </div>
<div class=”black” id=”gs1”> </div>
<div class=”white” id=”a1”> </div>
<div class=”black” id=”as1”> </div>
<div class=”white” id=”b1”> </div>
<div class=”white” id=”c2”> </div>
<p style=”clear:left”>
Click the piano keys above to play sounds.
</p>
<script language=”javascript” type=”text/javascript”
src=”piano.js”> </script>

</body>
</html>

Type this document or download it from this book’s website and store it in the same

folder as the sound files. You’ll also need the CSS and JavaScript files described in

the next sections.

The CSS Style Sheet
Using CSS, you can make the browser display the series of <div> tags in the HTML

document as something resembling piano keys. Listing 20.3 shows the CSS file for

this example.

LISTING 20.3 The CSS File for the Piano Example
.white {
float: left;
background-color: white;
height: 300px;
width: 30px;
border: 2px solid black;

}
.black {
float: left;
background-color: black;
height: 225px;
width: 25px;

}

This file defines two styles for the two classes used in the HTML document, white

and black. The float attribute makes the keys appear as a horizontal set of boxes.

The size of the keys is set using width and height attributes, and background-

color sets the colors to differentiate the keys.

LISTING 20.2 Continued

Testing Sounds in JavaScript 339

Playing the Sounds
The PlaySound() function will be called when a key is clicked to play a sound. The

first lines of this function detect which key was clicked and use the id attribute of

the key <div> element to construct the id attribute of the corresponding sound:

function PlaySound(e) {
if (!e) var e = window.event;
// which key was clicked?
thiskey = (e.target) ? e.target: e.srcElement;
var sound = document.getElementById(“note_” + thiskey.id);

The remainder of PlaySound() will attempt to play the piano note using the try

and catch routine described earlier in this hour.

Embedding the Sounds
This example will use JavaScript document.write() statements to write out an

<embed> tag for each note. Although this is a roundabout way of doing things, it

conveniently avoids Internet Explorer’s warning dialog about embedded objects,

which would otherwise pop up 13 times—once for each embedded sound. Here are

the lines that write an <embed> tag:

document.write(‘<embed id=”’ + ‘note_’ + divs[i].id + ‘“‘);
document.write(‘ src=”’ + divs[i].id + ‘.au” width=”0” height=”0”’);
document.write(‘ autostart=”false” enablejavascript=”true”>’);

The src attribute of the <embed> tag is set using the id attribute of each <div> ele-

ment to embed the corresponding sound file for each key.

Putting It All Together
To get the piano working, you can combine the techniques discussed previously with

a bit more JavaScript. Listing 20.4 shows the JavaScript file for this example.

LISTING 20.4 The JavaScript File for the Piano Example
function Setup() {
if (!document.getElementById) return;
// Set up event handlers and embed the sounds
divs = document.getElementsByTagName(“div”);
for (i=0; i<divs.length; i++) {
// embed the appropriate sound using document.write
document.write(‘<embed id=”’ + ‘note_’ + divs[i].id + ‘“‘);
document.write(‘ src=”’ + divs[i].id + ‘.au” width=”0” height=”0”’);
document.write(‘ autostart=”false” enablejavascript=”true”>’);
// set up the event handler
divs[i].onclick = PlaySound;

}
}

340 HOUR 20: Working with Sound and Plug-Ins

function PlaySound(e) {
if (!e) var e = window.event;
// which key was clicked?
thiskey = (e.target) ? e.target: e.srcElement;
var sound = document.getElementById(“note_” + thiskey.id);
try {
// RealPlayer
sound.DoPlay();

} catch (e) {
try {
// Windows Media / Quicktime
sound.Play();

} catch (e) {
alert(“No sound support.”);

}
}

}
// Run the setup routine when this script executes
Setup();

The Setup() function executes when the script loads. Because the <script> tag

appears after the <div> elements in the HTML file, it can set event handlers for each

<div> and write out the <embed> tags. Setup() uses

document.getElementsByTagName and a for loop to do this for each of the keys.

To test the piano, make sure you have everything in one folder: The HTML docu-

ment, the CSS file (piano.css), the JavaScript file (piano.js), and all 13 sound files.

The complete example is shown in Figure 20.2.

LISTING 20.4 Continued

FIGURE 20.2
The JavaScript
piano example
in action.

Quiz Questions 341

Summary
In this hour, you learned about browser plug-ins and how they work with

JavaScript. You also learned about JavaScript’s support for sound (or the lack there-

of) and how you can use JavaScript to detect and work with common sound-playing

plug-ins. Finally, you created a piano keyboard with audio using JavaScript.

Congratulations—you’ve reached the end of Part V of this book. In part VI, you’ll

apply your JavaScript knowledge to create some complex applications. This begins

in Hour 21, “Building JavaScript Drop-Down Menus.”

Q&A
Q. Is there a way to list all of the plug-ins installed in the browser?

A. Yes. Type about:plugins to display a list of plug-ins installed in Netscape or

Firefox. These browsers also support a proprietary navigator.plugins object,

an array that contains information about each installed plug-in, which you

can access with JavaScript. Unfortunately, this is not a standard part of the

DOM and is not supported by other browsers.

Q. Can I add sounds to a site’s navigation bar or user interface?

A. Yes, this can be done using the techniques in this hour and onMouseOver or

onClick event handlers. However, given the inconsistency of sound support in

browsers, this is a lot of trouble for a feature that will probably annoy your

visitors anyway.

Q. Can the browser play more than one sound at the same time?

A. This ultimately depends on the audio plug-in, but none of the current ones

support playing more than one sound at a time.

Quiz Questions
Test your knowledge of JavaScript’s sound and plug-in features by answering the fol-

lowing questions.

1. Which HTML tag is often used to include a plug-in object within a web page?

a. <sound>

b. <embed>

c. <plugin>

342 HOUR 20: Working with Sound and Plug-Ins

2. Which of the following is not a sound-playing plug-in?

a. RealPlayer

b. QuickTime

c. Acrobat

3. Which is the correct statement to play a sound?

a. sound.Go();

b. sound.Play();

c. sound.Submit();

Quiz Answers
1. b. The <embed> tag embeds a plug-in object in a page.

2. c. The Acrobat plug-in displays PDF files.

3. b. The Play() method plays a sound.

Exercises
If you want to gain more experience working with sounds in JavaScript, try the fol-

lowing exercises:

. Expand the piano keyboard in Listing 20.2 to include more notes. (Additional

sound files are available from this book’s website.) You should only need to

change the HTML file.

. Try adding one or more sounds to the animated slideshow in the previous

hour (refer to Listing 19.8). You can adapt the PlaySound() function from this

hour to play a specific sound as the slideshow advances.

PART VI:

Creating Complex Scripts

HOUR 21 Building JavaScript Drop-down Menus 345

HOUR 22 Creating a JavaScript Game 359

HOUR 23 Creating JavaScript Applications 377

HOUR 24 Your Future with JavaScript 393

This page intentionally left blank

HOUR 21

Building JavaScript
Drop-Down Menus

What You’ll Learn in This Hour:
. How to create drop-down menus using JavaScript
. Defining menus using bullet lists
. Using CSS to lay out menus
. Using JavaScript to display and hide submenus
. Using CSS to improve the menu’s appearance

Welcome to Part VI! Now that you’ve spent some time learning both beginning and

advanced JavaScript techniques, it’s time to put them into action with some more compli-

cated examples. In this hour, you’ll use HTML, CSS, and JavaScript to create a drop-down

menu navigation system.

Designing Drop-Down Menus
One of the most common uses for JavaScript and the DOM is to create drop-down menus,

similar to those used in Windows and MacOS, as a navigation system for a page. Figure

21.1 shows a drop-down menu in action.

Why use drop-down menus? Ideally, you should use them when a website or web applica-

tion has too many options to conveniently fit on the page. Adding a drop-down menu to a

site with only a few pages will just make it more confusing to visitors.

Another potential problem with drop-down menus is that they traditionally require some

messy browser-specific code and some awkward HTML markup. Thanks to the now stan-

dard W3C DOM, you can create menus using simple markup and a script that works in

all modern browsers.

346 HOUR 21: Building JavaScript Drop-Down Menus

Creating the HTML Markup
’There will always be browsers that don’t support drop-down menus correctly—in

particular, mobile phone browsers are unlikely to work with this script. You can

avoid problems with compatibility by making an unobtrusive script using standard

markup. The HTML document for this example, shown in Listing 21.1, uses bullet

lists (and tags) to organize the links into menus.

LISTING 21.1 The HTML for the Drop-Down Menu
<html>
<head>
<title>A DOM drop-down menu</title>
<link rel=”stylesheet” type=”text/css” href=”dropdown.css”>
<script language=”javascript” type=”text/javascript”

src=”dropdown.js”>
</script>
</head>
<body>
<h1>Menu Test</h1>
<ul id=”menu”>
<li class=”menu”>Home
<li class=”menu”>Products

Sub-item 1
Sub-item 2
Item 3

<li class=”menu”>Support

Sub-item 1
Sub-item 2

<li class=”menu”>Employment

Sub-item 1
Sub-item 2

<li class=”menu”>Contact Us

Sub-item 1
Sub-item 2

</body>
</html>

FIGURE 21.1
A drop-down
menu.

Designing Drop-Down Menus 347

The top-level links (Home, Products, Support, Employment, and Contact Us) are for-

matted as a bullet list. Most of the links have subitems, listed in a nested bullet list.

These subitems will be displayed as drop-down menus using CSS formatting and

JavaScript.

Although you have not yet created the CSS or JavaScript for this example, you can

try the HTML document in a browser—it will be displayed as a simple bullet list, as

shown in Figure 21.2.

Notice the class and id attributes in the HTML—these will be used by the CSS and

JavaScript code to format the menu and add behavior. The main tag that

encloses the top-level items has an id attribute of menu, and each top-level item’s

 tag has the class attribute menu.

FIGURE 21.2
Without format-
ting, the links
display as bullet
lists.

The links in this example all link to a nonexistent URL, #. To use the menu on your
site, you’ll need to replace them with actual links.

Laying Out the Menu with CSS
As you can see in Figure 21.2, the list of links doesn’t look much like a drop-down

menu yet. You can now use CSS to format the links to appear in the right format.

Watch
Out!

348 HOUR 21: Building JavaScript Drop-Down Menus

The first step is to make the main list display in a horizontal format. This can be

done with two CSS rules:

#menu li {
float: left;
list-style-type: none;

}

The selector, #menu li, looks for any list item directly under the #menu list. The

float: left rule causes the items to display left to right instead of vertically, and

list-style-type: none prevents a bullet from being displayed. Next, a couple of

rules for the subitems:

#menu li ul li {
float: none;
list-style-type: none;

}

The selector here, #menu li ul li, looks for items nested under the main

 items. Once again, list-style-type: none is used to eliminate bullets. The

float: none rule is necessary because we want the subitems to be listed vertically

rather than inheriting the floating behavior of the main list.

Figure 21.3 shows what the list looks like with the styles so far. As you can see, the

menu is beginning to take shape: The main links are displayed in a horizontal row,

and each subitem list appears vertically underneath its corresponding item. The

spacing and alignment needs work, but it’s a start.

FIGURE 21.3
The list of links
with some basic
styles.

As you develop a complex layout using CSS, be sure to test in multiple browsers.
Floats are one area where Internet Explorer shows its quirks, and you may need to
adjust a few rules to make it work cross-browser.

To make the menu look more like a menu, you just need some padding, width, and

other settings. Listing 21.2 shows the complete style sheet for the drop-down menu.

By the
Way

Designing Drop-Down Menus 349

LISTING 21.2 The CSS File for the Drop-Down Menu
/* The whole menu */
#menu {

position: absolute;
}
/* Each menu name */
#menu li {

float: left;
list-style-type: none;
padding-right: 20px;
width: 100px;
background-color: silver;

}
/* The entire submenu */
#menu li ul {

background-color: silver;
margin: 0px;
padding: 0px;

}
/* Each submenu item */
#menu li ul li {

padding: 0px;
margin: 0px;
float: none;
list-style-type: none;
width: 80px;

}

This style sheet uses padding and width values to make sure the submenus line up

with their headings. Some background-color attributes are applied to make the

menu appear more solid.

The position: absolute rule is used so the menus can overlap the content of the

page when they drop down. There’s no content in the example, but on a real site

you don’t want to leave room for the menus—if you have that kind of room, you

might as well just display the links all of the time.

Using position:absolute has a downside—because the menu isn’t positioned in

the normal flow of the page, the main menu can overlap part of your page unless

you avoid it by positioning the other content around it. The ideal situation would be

for the main menu to use relative positioning while the submenus use absolute

positioning—unfortunately, this does not work consistently in Internet Explorer.

The styled menu is shown in Figure 21.4. As you can see, the entire menus are

shown at this time—the submenus will be hidden by the script. This ensures that the

menu will still be accessible to browsers that support CSS but not JavaScript.

350 HOUR 21: Building JavaScript Drop-Down Menus

When the script is added, the full menus will display for an instant before the
script hides them. If you find this annoying, you can add a display:none rule to
the CSS for the submenu . This eliminates the flicker, but makes the menu
less useful to browsers without JavaScript support.

Scripting Drop-Down Menu Behavior
You now have a list of links that looks like a drop-down menu. All you need now is

a script to make it act like one. Your script will set up the menu when the page

loads, and respond to event handlers to show and hide the submenus.

Setting Up the Menu
The SetupMenu() function will run when the page loads, and then configure the

drop-down menu. This mainly consists of hiding the submenus and configuring

some event handlers. The function will use a loop to look at all of the elements

in the page, and if they have a class attribute of menu, they’re considered part of

the menu. The following lines set up the event handlers for the link and hide the

submenu:

thelink=findChild(items[i],”A”);
thelink.onmouseover=ShowMenu;
thelink.onmouseout=StartTimer;
//is there a submenu?
if (ul=findChild(items[i],”UL”)) {

ul.style.display=”none”;

The findChild() function is used twice here. This function will also be defined in

your script, and will return the first child item of a particular type it finds for an

object. In the preceding lines, it is used to find the link (<a> tag) under the list item,

and to find the nested list of subitems (tag). The style.display property is

used to hide each submenu.

FIGURE 21.4
The menu with
full CSS styling.

By the
Way

Scripting Drop-Down Menu Behavior 351

Showing a Submenu
The ShowMenu() function will be called by the onmouseover event handler when

you move over a link. Here’s an excerpt from this function that handles showing the

submenu:

// find the submenu, if any
ul = findChild(thislink,”UL”);
if (!ul) return;
ul.style.display=”block”;

Once again, findChild() is used to find the element under the current item,

and the display property is set to block to display the menu.

Hiding Submenus
The logic for showing the submenus is simple—whenever the mouse pointer is over

a menu heading, the corresponding submenu is displayed. Hiding a submenu is a

bit more complicated—the menu needs to stay open while you select an item, but

get out of the way quickly when you’re not using it. The HideMenu() function will

accomplish this:

function HideMenu(thelink) {
// find the submenu, if any
ul = findChild(thelink,”UL”);
if (!ul) return;
ul.style.display=”none”;

}

One time you definitely want a menu to be hidden is when the user opens another

menu, so the ShowMenu() function will call HideMenu() to hide the previous menu.

You also want the menu to disappear if you move out of it, but a simple onmouse-

out event handler won’t work because the user could have moved off the menu

heading and into the submenu. Instead, the onmouseout event calls the

StartTimer() function:

function StartTimer() {
t = window.setTimeout(“HideMenu(current)”,200);

}

This function sets a timeout to hide the menu in 200 milliseconds. If the user moves

over any of the submenu items during the delay, the timer is reset with the

ResetTimer() function:

function ResetTimer() {
if (t) window.clearTimeout(t);

}

352 HOUR 21: Building JavaScript Drop-Down Menus

This function cancels the timeout using the clearTimeout() method, keeping the

menu on the screen until the onmouseout event starts the timer again. Finally, some

additional lines in the SetupMenu() function will set up event handlers to call

StartTimer() and ResetTimer() for each subitem:

for (j=0; j<ul.childNodes.length; j++) {
ul.childNodes[j].onmouseover=ResetTimer;
ul.childNodes[j].onmouseout=StartTimer;

}

Completing the Script
You can now combine all of the functions discussed above to create working drop-

down menus. The complete drop-down menu script is shown in Listing 21.3.

LISTING 21.3 The Complete JavaScript File for the Drop-Down Menus
// global variables for timeout and for current menu
var t=false,current;
function SetupMenu() {

if (!document.getElementsByTagName) return;
items=document.getElementsByTagName(“li”);
for (i=0; i<items.length; i++) {

if (items[i].className != “menu”) continue;
//set up event handlers
thelink=findChild(items[i],”A”);
thelink.onmouseover=ShowMenu;
thelink.onmouseout=StartTimer;
//is there a submenu?
if (ul=findChild(items[i],”UL”)) {

ul.style.display=”none”;
for (j=0; j<ul.childNodes.length; j++) {

ul.childNodes[j].onmouseover=ResetTimer;
ul.childNodes[j].onmouseout=StartTimer;

}
}

}
}
// find the first child object of a particular type
function findChild(obj,tag) {

cn = obj.childNodes;
for (k=0; k<cn.length; k++) {
if (cn[k].nodeName==tag) return cn[k];

}
return false;

}
function ShowMenu(e) {

if (!e) var e = window.event;
// which link was the mouse over?
thislink = (e.target) ? e.target: e.srcElement;
ResetTimer();
// hide the previous menu, if any
if (current) HideMenu(current);
// we want the LI, not the link

Scripting Drop-Down Menu Behavior 353

thislink = thislink.parentNode;
current=thislink;
// find the submenu, if any
ul = findChild(thislink,”UL”);
if (!ul) return;
ul.style.display=”block”;

}
function HideMenu(thelink) {

// find the submenu, if any
ul = findChild(thelink,”UL”);
if (!ul) return;
ul.style.display=”none”;

}
function ResetTimer() {

if (t) window.clearTimeout(t);
}
function StartTimer() {

t = window.setTimeout(“HideMenu(current)”,200);
}
// Set up the menu when the page loads
window.onload=SetupMenu;

Here’s a summary of how the script works from top to bottom:

. The first line defines two global variables: t stores a reference to the timeout

so that it can be canceled, and current is the object for the currently open

menu.

. The SetupMenu() function sets up event handlers to call ShowMenu(),

StartTimer(), and ResetTimer(), and hides the submenus.

. The findChild() function is used by several of the other functions to find a

child object.

. The ShowMenu() function shows a menu.

. The HideMenu() function hides a menu when the timeout expires.

. The StartTimer() and ResetTimer() functions manage the timeout dis-

cussed earlier.

. The final line of the script sets the window’s onload event handler to the

SetupMenu() function to set up the menu when the page loads.

To try the menu, first be sure you have all three files in the same folder: the HTML

document, the CSS file (dropdown.css), and the JavaScript file (dropdown.js). You

can then load the HTML document into a browser. Figure 21.5 shows the drop-down

menu in action.

LISTING 21.3 The Complete JavaScript File for the Drop-Down Menus
/

▼

354 HOUR 21: Building JavaScript Drop-Down Menus

Try It Yourself

Enhancing the Menu with CSS
Although the menu works as it is, the CSS could use some improvement. The menus

are not well delineated, and there are no rollover effects to let you know you’re mov-

ing over menu items. Also, to make a menu appear, you have to move the mouse

over the text of the menu name—for this menu to work like users expect, the entire

block that contains the menu name should be active.

An improved CSS style sheet can solve these problems. You might also want to add

more CSS rules to fine-tune its formatting. Here are some suggestions:

. Change the fonts and colors to match your site.

. Add an a:hover selector to make the subitems change color as you move over

them.

. Use border attributes to add borders around menus or subitems.

. Use margin attributes to add space between menu items.

Listing 21.4 shows a modified style sheet that makes the menu work as it should,

and implements several of these ideas to create a menu with a different style.

FIGURE 21.5
The drop-down
menu in action.

Scripting Drop-Down Menu Behavior 355

LISTING 21.4 A Style Sheet for a Different Style of Menu
/* The whole menu */
#menu {

position: absolute;
font-family: sans-serif;
font-size: 100%;

}
/* Each menu name */
#menu li {

float: left;
list-style-type: none;
width: 102px;
background-color: silver;
border: 1px solid black;
text-indent: 0px;
margin-left: 3px;

}
/* each main menu link */
#menu li a {

color: black;
text-decoration: none;
width: 100%;
display: block;

}
#menu li a:hover {

color: white;
}
/* The entire submenu */
#menu li ul {

background-color: silver;
margin: 0px;
padding: 0px;

}
/* Each submenu item */
#menu li ul li {

padding: 0px;
margin: 0px;
float: none;
list-style-type: none;
width: 100px;
text-indent: 0px;
border: none;

}
#menu li ul li a{

color: black;
text-decoration: none;

}
#menu li ul li a:hover{

color: black;
background-color: aqua;

}

356 HOUR 21: Building JavaScript Drop-Down Menus

This style sheet has the following features:

. A sans-serif font is used for a more modern appearance.

. Borders and margins are used to make the menu names appear as separate

boxes.

. An a:hover selector is used to make the menu names change color when the

mouse is over them.

. The width: 100% and display: block rules for the menu names make the

entire box active, not just the text.

. Another a:hover selector makes the submenu items change color when the

mouse is over them.

. The width: 100% rule for submenu items makes the entire width of the sub-

menu active, not just the text.

To use this style sheet, save it as dropdown2.css in the same folder as the HTML

document, and change the <link> tag in the HTML document to refer to the new

file. Figure 21.6 shows the drop-down menu with this style sheet.

FIGURE 21.6
The drop-down
menu with an
alternative style
sheet.

By the
Way

See Hour 12, “Working with Style Sheets,” for more information about using CSS
styles to format HTML elements.

▲

357Quiz Questions

Summary
In this hour, you’ve developed a complete application that uses HTML, CSS, and

JavaScript to create drop-down menus for navigating a site. You learned how to cre-

ate a simple HTML document using nested lists, and how to use CSS to format it as

a horizontal menu with vertical drop-downs. You used JavaScript to make the drop-

down menu work. Finally, you created an alternative style sheet to give the menu a

different look.

In the next hour, you’ll create another complex JavaScript application—a card

game that uses JavaScript, images, and CSS to interact with the user.

Q&A
Q. Can I make a vertical pop-out menu using the same script in Listing 21.3?

A. Yes. You’ll need a different style sheet that doesn’t use float for the menu

headings, but uses float:left for the submenu. The same script and HTML

document can be used with a vertical menu.

Q. Can I add some space before each menu heading?

A. Yes, but be aware that Internet Explorer has some bugs involving margins and

padding when float is in use. Be sure to test in multiple browsers.

Q. Which browsers support the drop-down menus?

A. The drop-down menus you created in this hour should work in Internet

Explorer 5.0 and later, Netscape 6.0 and later, and all versions of Firefox. Most

important, because it uses the standard W3C DOM, it should work in all stan-

dards-compliant browsers—but watch out for formatting quirks in different

browsers when you change the styles.

Quiz Questions
Test your knowledge of the techniques used in this hour by answering the following

questions.

1. Which of the following CSS rules makes the menu horizontal instead of vertical?

a. float: left

b. position: absolute

c. orientation: horizontal

358 HOUR 21: Building JavaScript Drop-Down Menus

2. Which of the following CSS selectors refers to an element directly under

the element with the id value menu?

a. #menu ul li

b. #menu li

c. ul #menu li

3. Which of the following is the correct command to cancel a timeout set with

the command t=window.timeout(“HideMenu(current)”,500);?

a. t = window.clearTimeout();

b. window.clearTimeout(t);

c. window.setTimeout(“HideMenu(current)”,0);

Quiz Answers
1. a. The drop-down menu uses float:left to make a horizontal menu.

2. b. The correct selector is #menu li.

3. b. The correct command is window.clearTimeout(t).

Exercises
If you want to gain more experience working with JavaScript drop-down menus, try

the following exercises:

. Change the drop-down menu to contain the appropriate links for your site, or

for an imaginary site. (You only need to change the HTML file, but each menu

item needs the class value of menu.)

. Modify the CSS file for the drop-down menu to use colors, borders, or other

attributes of your choice.

HOUR 22

Creating a JavaScript Game

What You’ll Learn in This Hour:
. How to design a JavaScript Game
. Creating game graphics
. Laying out the game board in HTML
. Using CSS to style the board
. Creating gameplay scripts
. Finalizing and testing the game

In this hour, you’ll look at another complex application of JavaScript: a Poker Solitaire

game that uses the W3C DOM, graphics, and some JavaScript logic to interact with the

user quickly and responsively.

About the Game
Although it’s possible to create just about any game with JavaScript, a card game is a sim-

ple choice because the graphics are easy to create and the gameplay is relatively simple.

In this hour, you’ll create a Poker Solitaire game using HTML, JavaScript, and a bit of CSS.

How to Play
Poker Solitaire is played on a five by five board. The deck of cards is shuffled, and you

draw one card from the deck at a time and place it anywhere on the board. Your goal is to

make each column, row, and diagonal row form the best possible poker hand. For exam-

ple, in Figure 22.1, several cards have been placed on the board and the score for the com-

pleted column and row is shown.

360 HOUR 22: Creating a JavaScript Game

Scoring
Because there are no other players, the game will be scored. The script will calculate

the score for each column, row, and diagonal on the board, and combine them for a

total score. Points are awarded for poker hands, with more difficult (and less likely)

combinations scoring higher:

. Pair—1 point (Two cards of the same number and different suits)

. Two pair—2 points (Two pairs)

. Three of a kind—3 points (Three cards of the same number)

. Straight—4 points (Five cards in numeric sequence)

. Full house—8 points (One pair plus three of a kind)

. Four of a kind—25 points (All four cards of the same number)

. Flush—5 points (Five cards of the same suit)

. Straight flush—50 points (Five cards of the same suit, in sequence)

. Royal flush—250 points (10, Jack, Queen, King, and Ace of the same suit)

In the JavaScript version of the game, the score for each row or column will be dis-

played as you complete it, and the total score will be updated in real time as you

place each card on the board.

FIGURE 22.1
Playing Poker
Solitaire.

Creating the HTML Document 361

Creating Graphics
This game will require some graphics—you’ll need 52 images, one for each card in a

standard deck. One more image, blank.gif, will be used to mark the spaces on the

board that don’t yet contain cards. You can download all of the graphics for the

game from this book’s website.

All of the graphics will be the same size, including the blank space image. The

board will consist entirely of blanks at the start of a game, and images will be

switched to the appropriate card when the user clicks to place a card. The images I

used in the example are all 53 × 68 pixels.

When you’re working with a large number of graphics, filenames become impor-

tant. It will make coding easier if you decide in advance on a naming scheme for

the images. In this case, the filenames will include a number for the card’s rank

(1–13, with 1 representing Ace, and 11, 12, and 13 representing Jack, Queen, and

King) and a letter for the suit. For example, the Seven of Hearts image would be

7h.gif, and the Queen of Spades would be 12s.gif.

Creating the HTML Document
The HTML document for the game is straightforward. In keeping with the unobtru-

sive scripting strategies you’ve learned in previous hours, it contains no JavaScript—

just a <script> tag that imports a script that will handle the game. Similarly, a sep-

arate CSS file will be used for styles. Listing 22.1 shows the HTML document.

LISTING 22.1 The HTML Document for the Poker Solitaire Game
<html>
<head>
<title>Poker Solitaire</title>
<script language=”JavaScript” type=”text/javascript”

src=”pokersol.js”>
</script>
<link rel=”stylesheet” type=”text/css” href=”pokersol.css”>
</head>
<body>
<table>
<tr>
<td colspan=”2”><h1>Poker Solitaire</h1></td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td class=”score” id=”row0”> </td>

</tr>
<tr>
<td> <img id=”dcard” border=”0”

362 HOUR 22: Creating a JavaScript Game

src=”blank.gif” height=”68” width=”53”></td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td class=”score” id=”row1”> </td>

</tr>
<tr>
<td valign=”top” id=”status”> Next Card</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td class=”score” id=”row2”> </td>

</tr>
<tr>
<td id=”total”> Total Score:

<div id=”totalscore”>0</div></td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td class=”score” id=”row3”> </td>

</tr>
<tr>
<td> Start Over</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td class=”score” id=”row4”> </td>

</tr>
<tr>
<td> </td>
<td class=”score” id=”diag1”> </td>
<td class=”score” id=”col0”> </td>
<td class=”score” id=”col1”> </td>
<td class=”score” id=”col2”> </td>
<td class=”score” id=”col3”> </td>
<td class=”score” id=”col4”> </td>
<td class=”score” id=”diag2”> </td>

</table>
</body>
</html>

The game board is laid out using an HTML table. Although the game board is five

by five squares, the table contains eight columns and six rows. The leftmost column

LISTING 22.1 Continued

Creating the Script 363

will be used for displaying the next card and the score, as well as a Start Over link.

The remaining columns and rows will be used to display the score for each column

and row as they are filled with cards.

The 25 spaces on the board are given unique id values, card1 through card25.

These will be used by the script to determine which card the user clicks on, and also

to replace the appropriate image when a card is placed. The table cells for display-

ing scores are given the id values row0-4, col0-4, diag1, and diag2.

Save the HTML document in a folder, or download it from this book’s website. You

can load it into a browser to see the game layout, as shown in Figure 22.2. The

game won’t be playable until you add the script you’ll develop in the next section.

FIGURE 22.2
The Poker
Solitaire game
layout.

Creating the Script
Because this is the longest script in this book, it will be easier to understand if you

look at some of its key functions before the entire script. The following sections dis-

cuss how the script will manage the game.

Using Objects to Store Cards
Because JavaScript is designed to work with numbers but not specifically with play-

ing cards, you can create a custom object to make it easier to manage the card

game. The following code is the constructor for a Card object:

364 HOUR 22: Creating a JavaScript Game

// make a filename for an image, given Card object
function fname() {

return this.num + this.suit + “.gif”;
}
// constructor for Card objects
function Card(num,suit) {

this.num = num;
this.suit = suit;
this.fname = fname;

}

Each Card object will represent a space on the board. It has two properties, num and

suit, and an fname() method that returns the filename for the graphic represent-

ing the card.

Setting Up the Board
Along with the graphics on the screen, the board array will represent the game

board by storing 25 Card objects, one for each space. Here’s the code that will set up

the board:

// array for board contents
board = new Array(26);
for (i=1; i<26; i++) {

board[i] = new Card(0,”x”);
obj=document.getElementById(“card”+i);
obj.src = “blank.gif”;
obj.onclick = PlaceCard;

}

The first line creates the board array. The for loop then sets up each space on the

board. First, it places a blank card in the array. Next, it finds the object for the corre-

sponding space on the screen. It makes sure blank.gif is displayed in each space,

and sets an event handler for onClick events to call the PlaceCard() function,

which will handle the user’s clicks on the board.

Shuffling the Deck
The deck array will be used to simulate a deck of cards. The following code fills the

array with Card objects:

deck = new Array(53);
for (i=1; i<14; i++) {
deck[i] = new Card(i,”c”);
deck[i+13] = new Card(i,”h”);
deck[i+26] = new Card(i,”s”);
deck[i+39] = new Card(i,”d”);

}

Creating the Script 365

To save time, the statements in the for loop insert cards of each of the four suits

into the deck. At this point, the cards are in order. The next step is to shuffle the

deck:

n = Math.floor(100 * Math.random() + 200);
for (i=1; i<n; i++) {

c1 = Math.floor(52*Math.random() + 1);
c2 = Math.floor(52*Math.random() + 1);
temp = deck[c2];
deck[c2] = deck[c1];
deck[c1] = temp;

}

This code starts by choosing a random number, n, ranging from 200 to 299. It then

loops n times using a for loop. Each iteration of the loop chooses two random cards

in the deck and swaps their positions. This ensures a reasonably random deck that

still contains exactly 52 unique cards.

Placing Cards on the Board
The PlaceCard() function will be called by an event handler when the user clicks

on a space on the board. This function begins by determining which space was

clicked:

function PlaceCard(e) {
if (!e) var e = window.event;
// which space on the board was clicked?
thiscard = (e.target) ? e.target: e.srcElement;
pos = thiscard.id.substring(4);
if (board[pos].suit != “x”) {

return;
}

These statements use the target or srcElement property to determine which space

was clicked. The pos variable stores the numeric position on the board (1–25), calcu-

lated by removing “card” from the id value using the substring() method. The

final if statement checks whether a card is already in place, and returns to prevent

placing a card over an existing card.

The next section of PlaceCard() does the actual card placement:

drawcard=document.getElementById(“dcard”);
thiscard.src = deck[nextcard].fname();
drawcard.src = “blank.gif”;
board[pos] = deck[nextcard];
nextcard++;
Score();

The nextcard variable keeps track of the next card in the deck, starting at one for

the top card. This function uses getElementById() to find the object for the “next

366 HOUR 22: Creating a JavaScript Game

card” display, and then uses the fname() method to assign the appropriate filename

to the src property of the image object. The board array is updated with the new

card, nextcard is incremented, and the Score() function is called to update the

scores.

The next task for PlaceCard() is to check whether the game is over:

// Game over?
if (nextcard > 25) {

EndGame();
}
else {

drawcard.src = deck[nextcard].fname();
// cache next image for draw pile

nexti = new Image(53,68);
nexti.src = deck[nextcard+1].fname();

}
}

If 25 cards have been placed, the EndGame() function is called to end the game.

Otherwise, the next card is displayed in the display. The next card image (not yet

displayed) is also preloaded so the game will respond quickly.

Scoring Columns, Rows, and Diagonals
The Score() function will update the scores for each column, row, and diagonal

each time a card is placed. Here is the code for the Score() function:

function Score() {
score=document.getElementById(“totalscore”);
totscore = 0;

// rows
for (x=0; x<5; x++) {

r = x * 5 + 1;
a =

AddScore(board[r],board[r+1],board[r+2],board[r+3],board[r+4],”row”+x);
totscore += a;

}
// columns

for (x=0; x<5; x++) {
r = x + 1;
a =

AddScore(board[r],board[r+5],board[r+10],board[r+15],board[r+20],”col”+x);
totscore += a;

}
// diagonals

a = AddScore(board[5],board[9],board[13],board[17],board[21],”diag1”)
totscore += a;
a = AddScore(board[1],board[7],board[13],board[19],board[25],”diag2”)
totscore += a;
score.firstChild.nodeValue = totscore;

}

Creating the Script 367

This function uses for loops to process each row and each column. It then handles

the diagonals. A separate function, AddScore(), will handle the actual detection of

poker hands in each of these.

The totscore variable stores a total of all of the scores. Each time a card is placed,

the updated total score is displayed in the left column.

Adding Up Scores
The AddScore() function is called by Score() for each column, row, and diagonal.

This function determines which poker hand, if any, is represented by the cards

passed to it. It then updates the appropriate score box on the board with the row’s

score, and returns the numeric value to be used by Score(). The AddScore() func-

tion begins by setting up some variables:

function AddScore(c1,c2,c3,c4,c5,scorebox) {
obj=document.getElementById(scorebox);
straight = false;
flush = false;
royal = false;
pairs = 0;
three = false;

// sorted array for convenience
nums = new Array(5);
nums[0] = c1.num;
nums[1] = c2.num;
nums[2] = c3.num;
nums[3] = c4.num;
nums[4] = c5.num;
nums.sort(numsort);

The function first sets up a number of flag variables, such as straight and flush,

to keep track of which poker hand it finds. It then stores the five card values in an

array and sorts it to make it easy to detect straights. The function continues by test-

ing for each hand, one at a time. For example, this if statement tests for a flush by

comparing card suits:

// flush
if (c1.suit == c2.suit && c2.suit == c3.suit

&& c3.suit == c4.suit && c4.suit == c5.suit) {
flush = true;

}

After doing each test, AddScore() updates the board with a description of the poker

hand and score for the row and returns a numeric score:

if (flush) {
obj.innerHTML=”Flush
5”
return 5;

}

368 HOUR 22: Creating a JavaScript Game

Ending the Game
The game ends when all 25 spaces on the board have been filled with cards and the

EndGame() function is called. Because the score is updated in real time and no

moves can be made after all cards are placed, the only thing left for this function to

do is to display a “Game Over” message:

function EndGame() {
stat=document.getElementById(“status”);
stat.innerHTML=”Game Over”;

}

This uses innerHTML to display a message in the status element, which normally

displays “Next Card” to label the draw card.

Adding Style with CSS
The game will also need a small CSS file to define the appearance of some of the

game elements. Listing 22.2 shows the CSS file for the Poker Solitaire game.

LISTING 22.2 The CSS File for the Poker Solitaire Game
h1 {

font-size: 125%;
}
td.score {

font-size: 80%;
border: 1px solid silver;
width: 53px;

}
#total {

border: 1px solid black;
font-size: 105%;
padding: 5px;

}
#totalscore {

text-align: center;
}

The CSS rules set the size of H1 headers, and then define a border, width, and font

size for td elements in the score class, which will display each row’s score. Finally, a

border, font size, and padding are defined for the “Total Score” display, and the

numeric score is centered.

▼

Adding Style with CSS 369

Try It Yourself

Putting It All Together
To get the game working, you’ll need to use the complete JavaScript file that incor-

porates the functions you learned about earlier in this hour. Listing 22.3 shows the

JavaScript file for the game.

LISTING 22.3 The Complete JavaScript File for the Poker Solitaire
Game
// global variables
var tally = new Array(14)
var nextcard = 1;
var nexti = new Image(53,68);
// numeric comparison for sort()
function numsort(a, b) {

return a - b;
}
function InitGame() {

if (!document.getElementById) return;
stat=document.getElementById(“status”);
stat.innerHTML=”Next Card”;
nextcard = 1;

// array for board contents
board = new Array(26);
for (i=1; i<26; i++) {

board[i] = new Card(0,”x”);
obj=document.getElementById(“card”+i);
obj.src = “blank.gif”;
obj.onclick = PlaceCard;

}
// fill the deck (in order, for now)
deck = new Array(53);
for (i=1; i<14; i++) {
deck[i] = new Card(i,”c”);
deck[i+13] = new Card(i,”h”);
deck[i+26] = new Card(i,”s”);
deck[i+39] = new Card(i,”d”);

}
// Clear the scores
Score();
// shuffle the deck
n = Math.floor(100 * Math.random() + 200);
for (i=1; i<n; i++) {

c1 = Math.floor(52*Math.random() + 1);
c2 = Math.floor(52*Math.random() + 1);
temp = deck[c2];
deck[c2] = deck[c1];
deck[c1] = temp;

}
// draw the first card on screen
next=document.getElementById(“dcard”);
next.src = deck[nextcard].fname();
// preload the next image
nexti.src = deck[nextcard+1].fname();

370 HOUR 22: Creating a JavaScript Game

obj=document.getElementById(“newgame”)
obj.onclick=InitGame;

} // end InitGame
// place the draw card on the board where clicked
function PlaceCard(e) {

if (!e) var e = window.event;
// which space on the board was clicked?
thiscard = (e.target) ? e.target: e.srcElement;
pos = thiscard.id.substring(4);
if (board[pos].suit != “x”) {

return;
}
drawcard=document.getElementById(“dcard”);
thiscard.src = deck[nextcard].fname();
drawcard.src = “blank.gif”;
board[pos] = deck[nextcard];
nextcard++;
Score();
// Game over?
if (nextcard > 25) {

EndGame();
}
else {

drawcard.src = deck[nextcard].fname();
// cache next image for draw pile

nexti = new Image(53,68);
nexti.src = deck[nextcard+1].fname();

}
}
// check for completed rows and display row scores
function Score() {

score=document.getElementById(“totalscore”);
totscore = 0;

// rows
for (x=0; x<5; x++) {

r = x * 5 + 1;
a =

AddScore(board[r],board[r+1],board[r+2],board[r+3],board[r+4],”row”+x);
totscore += a;

}
// columns

for (x=0; x<5; x++) {
r = x + 1;
a =

AddScore(board[r],board[r+5],board[r+10],board[r+15],board[r+20],”col”+x);
totscore += a;

}
// diagonals

a = AddScore(board[5],board[9],board[13],board[17],board[21],”diag1”)
totscore += a;
a = AddScore(board[1],board[7],board[13],board[19],board[25],”diag2”)
totscore += a;
score.firstChild.nodeValue = totscore;

}
// check for poker hands
function AddScore(c1,c2,c3,c4,c5,scorebox) {

LISTING 22.3 Continued

Adding Style with CSS 371

obj=document.getElementById(scorebox);
straight = false;
flush = false;
royal = false;
pairs = 0;
three = false;

// sorted array for convenience
nums = new Array(5);
nums[0] = c1.num;
nums[1] = c2.num;
nums[2] = c3.num;
nums[3] = c4.num;
nums[4] = c5.num;
nums.sort(numsort);

// no score if row is not filled
if (c1.num == 0 || c2.num == 0 || c3.num == 0

|| c4.num == 0 || c5.num == 0) {
obj.innerHTML=””;
return 0;

}
// flush

if (c1.suit == c2.suit && c2.suit == c3.suit
&& c3.suit == c4.suit && c4.suit == c5.suit) {
flush = true;

}
// straight

if (nums[4] - nums[3] == 1
&& nums[3] - nums[2] == 1
&& nums[2] - nums[1] == 1
&& nums[1] - nums[0] == 1) {
straight = true;

}
// royal straight (10, J, Q, K, A)

if (nums[1] == 10 && nums[2] == 11 && nums[3] == 12
&& nums[4] == 13 && nums[0] == 1) {
straight = true;
royal = true;

}
// royal flush, straight flush, straight, flush

if (straight && flush && royal) {
obj.innerHTML=”Royal Flush
250”;
return 250;

}
if (straight && flush) {

obj.innerHTML=”Straight Flush
50”;
return 50;

}
if (straight) {

obj.innerHTML=”Straight
4”;
return 4;

}
if (flush) {

obj.innerHTML=”Flush
5”
return 5;

}
// tally array is a count for each card value

LISTING 22.3 Continued

372 HOUR 22: Creating a JavaScript Game

for (i=1; i<14; i++) {
tally[i] = 0;

}
for (i=0; i<5; i++) {

tally[nums[i]] += 1;
}
for (i=1; i<14; i++) {

// four of a kind
if (tally[i] == 4) {

obj.innerHTML=”Four of a Kind
25”;
return 25;

}
if (tally[i] == 3) three = true;
if (tally[i] == 2) pairs += 1;

}
// full house

if (three && pairs == 1) {
obj.innerHTML=”Full House
8”;
return 8;

}
// two pair

if (pairs == 2) {
obj.innerHTML=”Two Pair
2”;
return 2;

}
// three of a kind

if (three) {
obj.innerHTML=”Three of a Kind
3”;
return 3;

}
// just a pair

if (pairs == 1) {
obj.innerHTML=”Pair
1”;
return 1;

}
// nothing

obj.innerHTML=”No Score
0”;
return 0;

// end AddScore()
}
// game over - final score
function EndGame() {

stat=document.getElementById(“status”);
stat.innerHTML=”Game Over”;

}
// make a filename for an image, given Card object
function fname() {

return this.num + this.suit + “.gif”;
}
// constructor for Card objects
function Card(num,suit) {

this.num = num;
this.suit = suit;
this.fname = fname;

}
// event handlers to start game
window.onload=InitGame;

LISTING 22.3 Continued

Summary 373

Because this is the longest code listing in this book, I recommend you download
the files from this book’s website rather than type it all in. You’ll need the card
graphics to make it work anyway.

To try the game, make sure you have everything you need in one folder:

. The HTML document

. The CSS file (pokersol.css)

. The JavaScript file (pokersol.js)

. All 53 graphics (52 cards plus blank.gif)

You can now load the HTML file to test the game. Figure 22.3 shows the Poker

Solitaire game after a complete game—it shouldn’t take you long to beat my score.

Watch
Out!

FIGURE 22.3
The Poker
Solitaire exam-
ple at the end
of a game.

Summary
In this hour, you’ve applied your JavaScript knowledge to create a complete

application—a playable game. Along the way, you’ve used objects to represent

playing cards, used graphics and the W3C DOM to display the game, and learned

some of the issues involved in a complex application.

▲

374 HOUR 22: Creating a JavaScript Game

In the next hour, you’ll return to practical applications of JavaScript with some

advanced examples using the W3C DOM.

Q&A
Q. Because the spaces on the board aren’t links, is there a way to make the

cursor indicate that they can be clicked on?

A. Yes. You can do this with an onMouseOver event handler that changes the

style.cursor property to pointer for the spaces on the board. You could also

use a rollover effect that changes the graphic, as demonstrated in Hour 19,

“Using Graphics and Animation.”

Q. Can I add images or other HTML to the page without messing up the script?

A. Yes. Because the game script works with id attributes rather than making any

assumptions about which image objects to change, it shouldn’t be affected by

anything you add to the page, unless you use a conflicting id value.

Q. What’s a good strategy for playing this game?

A. A simple approach is to dedicate each of the first four rows to a suit, so you

have very good odds of scoring a flush on each row. As you do this, try to

place cards where they’ll form pairs with cards in other columns.

Quiz Questions
Test your knowledge of the JavaScript techniques you used in this hour by answering

the following questions.

1. Which property of an image object do you change to display a different

image?

a. href

b. src

c. fname

2. Which of the following statements converts the text “card21” to the number

21?

a. pos = thiscard.id.substring(4);

b. pos = thiscard.id.numValue;

c. pos = 1 * thiscard.id;

Exercises 375

3. Assuming Card objects have been defined as in this hour, which statement

creates a new Card object?

a. c = Card(12,”s”);

b. c = new Card(12,”s”);

c. var c (Card);

Quiz Answers
1. b. You change the src property to display a different image.

2. a. The substring() method removes the first four letters of the string.

3. b. The new keyword is used to create a new instance of an object.

Exercises
If you want to gain more experience creating games in JavaScript, try the following

exercises:

. Spend some time playing the game and see if you find any bugs in the script.

Notice how difficult it can be to fully test an application like this—you won’t

know for certain that it scores a royal flush correctly until you get one.

. Using the techniques described in Hour 19, try adding a rollover effect that

changes the blank.gif appearance when you move over a square where you

can drop the current card. Make sure the image does not change if there is

already a card placed on the space.

This page intentionally left blank

HOUR 23

Creating JavaScript
Applications

What You’ll Learn in This Hour:
. Using the DOM to create a scrolling window
. Switching between CSS style sheets using JavaScript
. Using the DOM to create dynamic forms

You’ve learned quite a bit about JavaScript in the last 22 hours. In this hour, you’ll apply

this knowledge to create three quick, practical examples of JavaScript applications that

could be useful for just about any website.

Creating a Scrolling Window
One of the most common, and the most unfortunate, early uses of JavaScript was for

scrolling messages, which crept across the browser’s status line giving you information one

letter at a time rather than making use of the whole page.

In this section, you’ll create a different kind of scrolling message. This one scrolls a large

block of text vertically within a window, similar to the credits at the end of a movie. This

type of scrolling message is easier to read, is standards compliant, and can include links

or other HTML features.

This example uses the same techniques as the animated slideshow
in Hour 19, “Using Graphics and Animation.” The only difference is
that the animated text is only visible within a box, making it appear to
scroll.

By the
Way

378 HOUR 23: Creating JavaScript Applications

The HTML Document
The HTML document for this example includes a link to the script, a link to a CSS

style sheet, the text displayed on the page, and the text that will be scrolled within

the box. Listing 23.1 shows the HTML for this example.

LISTING 23.1 The HTML Document for the Scrolling Window
<html>
<head>
<title>A DOM Scrolling Window</title>
<script language=”JavaScript” type=”text/javascript”

src=”scroll.js”>
</script>
<link rel=”stylesheet” type=”text/css” href=”scroll.css”>
</head>
<body>
<h1>Scrolling Window Example</h1>
<p>This example shows a scrolling window created using JavaScript and
the W3C DOM. The red-bordered window below is actually a layer that
shows a clipped portion of a larger layer.</p>
<div id=”thewindow”>
<div id=”thetext”>
<p>This is the first paragraph of the scrolling message. The message
is created with ordinary HTML.</p>
<p>Entries within the scrolling area can use any HTML tags. They can
contain Links.</p>
<p>There’s no limit on the number of paragraphs that you can include
here. They don’t even need to be formatted as paragraphs.</p>

For example, you could format items using a bulleted list.

<p>The scrolling ends when the last part of the scrolling text
is on the screen. You’ve reached the end.</p>
</div>
</div>
</body>
</html>

The <div> tags in this document create two nested layers: One, thewindow, will

form the small window for text to display in. The other, thetext, contains the text

to scroll. You can use any HTML here, although it should be able to wrap to the

small window.

The CSS File
The CSS file for this example, shown in Listing 23.2, sets margins and borders for

the two <div> elements. The box’s position property is set to relative, so it will be

laid out normally within the document, and the position property for the scrolling

text is set to absolute so it can be repositioned by the script.

Creating a Scrolling Window 379

LISTING 23.2 The CSS Style Sheet for the Scrolling Window
#thewindow {

position:relative;
width:180;
height:150;
overflow:hidden;
border: 2px solid red;

}
#thetext {

position: absolute;
width: 170;
left: 5;
top: 100;

}

Because the text doesn’t all fit in the small window, you’ll only see part of it at a

time. The overflow property on the window layer prevents the rest of the content

from showing. Your script will manipulate the scrolling text’s style.top property to

move it relative to the window, creating a scrolling effect.

The text layer is actually 10 pixels narrower than the window layer. This, along with
the left property, creates a small margin of white space on either side of the win-
dow, preventing any of the text from being obstructed.

The JavaScript File
The JavaScript code for this example uses a function, Scroll(), that is called

repeatedly by a timeout. Listing 23.3 shows the JavaScript file for this example.

LISTING 23.3 The JavaScript File for the Scrolling Window
// global variable for position of the scrolling window
var pos=100;
function Scroll() {
if (!document.getElementById) return;
obj=document.getElementById(“thetext”);
pos -=1;
if (pos < 0-obj.offsetHeight+130) return;
obj.style.top=pos;
window.setTimeout(“Scroll();”,30);

}
// Start scrolling when the page loads
window.onload = Scroll;

The first line defines a global variable, pos, to store the current scroll position. The

Scroll() function subtracts 1 from pos and checks its value. If the scrolling has

reached the end, the function exits; otherwise, it sets the object position and calls

the Scroll() function again using a timeout.

By the
Way

380 HOUR 23: Creating JavaScript Applications

Notice the if statement at the beginning of the function. This is a simple exam-
ple of feature sensing, described in Hour 15, “Unobtrusive Scripting”—if the
browser doesn’t support the getElementById() method, the function exits rather
than cause errors.

To try this example, make sure you have all three files in the same folder: the HTML

document, the CSS file (scroll.css), and the JavaScript file (scroll.js) and load

the HTML document into a browser. Figure 23.1 shows this example in action, after

the scrolling text has reached the end.

Did you
Know?

FIGURE 23.1
The scrolling
text box exam-
ple in action.

Style Sheet Switching with JavaScript
Suppose you want to offer your visitors a choice of different ways of viewing your

site—for example, a choice of large or small fonts, or different background colors.

Although you can use the style properties of elements within a page to make these

changes individually, it would take a lot of code to change a page between drastical-

ly different styles.

One alternative is to create two or more completely separate style sheets, and use

JavaScript to switch between them. This allows the user to have a large amount of

control over the site’s appearance without using a large and complex script.

Style Sheet Switching with JavaScript 381

Creating the HTML Document
First, you can create a basic HTML document for the style-switching example. This

document will include a <script> tag for the script you’ll create later, as well as

links to two different style sheets. The HTML document for this example is shown in

Listing 23.4.

LISTING 23.4 The HTML Document for the Style-Switching Example
<html>
<head>
<title>Style Sheet Example</title>
<link rel=”stylesheet” type=”text/css” href=”style1.css”>
<link rel=”stylesheet” type=”text/css” href=”style2.css” disabled>
<script language=”javascript” type=”text/javascript”

src=”styleswitch.js”>
</script>
</head>
<body>
<h1>multiple-choice styles</h1>
<p>This is a standard paragraph of text. Its font, margins,
colors, justification, and other attributes depend on the style
sheet you select. This paragraph includes some text in
bold and <i>italics</i>.
</p>
<p>You can select one of three styles for this document:
</p>

Style sheet # 1
Style sheet # 2
No style sheet

<p>These links call a short JavaScript function that enables one
of this document’s two linked external style sheets. You can edit
the style sheets to style this document in two different ways,
without changing any HTML.</p>
</body>
</html>

Although most of the document is just sample text to show off the styles of the dif-

ferent style sheets, it has several important components to make this technique

work:

. The <script> tag uses the src attribute to include a script, styleswitch.js.

. There are two <link> tags to attach two external style sheets, style1.css and

style2.css. The second tag includes the disabled attribute, so the document

will be styled using only style1.css by default.

. The three links within the list items have event handlers that call the

Style() function to switch styles.

382 HOUR 23: Creating JavaScript Applications

Some browsers don’t correctly support the disabled attribute in HTML. The script
you create later will use JavaScript to disable the second style sheet by default to
ensure that only one style sheet is used, regardless of the browser.

Save the HTML document in a folder. You’ll be adding two style sheets and a script

file to the folder to complete the example. If you load the document into a browser

before creating the style sheets, it will be displayed without styles. Figure 23.2 shows

how the document looks with no styles applied.

By the
Way

FIGURE 23.2
The style-
switching
example dis-
played without
styles.

Creating the First Style Sheet
Next, you can create the first of the two style sheets. Listing 23.5 shows the complete

style sheet style1.css.

LISTING 23.5 The First Style Sheet for the Style-Switching Example
(style1.css)
body {

font-family: Arial, Helvetica, sans-serif;
font-size: 12pt;

}
P {

margin-left: 10%;
margin-right: 10%;
text-align: justify;
text-indent: 3%;

}

Style Sheet Switching with JavaScript 383

B { color: red; }
I { color: DarkViolet; }
H1 {

font-size: 300%;
text-align: center;
text-transform: capitalize;

}
UL {

margin-left: 20%;
margin-right: 20%;

}
LI { margin-top: 10px;}

Save this style sheet as style1.css in the same folder as the HTML document. This

style sheet assigns some basic styles to the body, and to specific tags: <p>, <h1>, and

so on. Because this is the default style sheet, it will be used if you load the HTML

document now. Figure 23.3 shows the document as styled by this style sheet.

LISTING 23.5 Continued

FIGURE 23.3
The style-
switching
example using
the first style
sheet.

Creating the Second Style Sheet
The second style sheet, style2.css, uses some more dramatic styles and is unlikely

to be suited to all viewers. This sheet is disabled by default. Listing 23.6 shows the

second style sheet.

384 HOUR 23: Creating JavaScript Applications

LISTING 23.6 The Second Style Sheet for the Style-Switching Example
(style2.css)
body {

font-family: Times, “Times New Roman”, sans-serif;
font-size: 14pt;

}
P {

margin-left: 20%;
margin-right: 20%;
text-align: left;
text-indent: 0%;

}
B {

color: black;
background-color: aqua;

}
I { color: red;}
H1 {

font-size: 200%;
text-align: right;
text-transform: uppercase;

}
UL {

margin-left: 30%;
margin-right: 30%;
background-color: yellow;

}
LI { margin-top: 20px;}

Save this style sheet as style2.css in the same folder as the HTML document.

Creating the Script
You can use JavaScript to enable or disable style sheets. The <link> elements that

you used to attach the two style sheets to the HTML document are objects in the

DOM, and you can manipulate them using DOM methods. In this example, you

will use the getElementsByTagName() method to find all of the <link> elements,

and then enable one and disable the other. Listing 23.7 shows the complete

JavaScript file.

LISTING 23.7 The JavaScript File for the Style-Switching Example
(styleswitch.js)
function Style(n,enable) {
if (!document.getElementsByTagName) return;
links = document.getElementsByTagName(“link”);
links[n].disabled=!enable;
links[1-n].disabled=true;

}
Style(0,true);

Style Sheet Switching with JavaScript 385

This script defines the Style() function, which accepts two parameters. The first, n,

specifies the style sheet to activate. The second parameter, enable, specifies whether

to enable the new style sheet (true) or to disable all style sheets (false). This fea-

ture is used by the No Style Sheet link.

This example uses getElementsByTagName, but you could also assign an id
attribute to each <link> tag and then use document.getElementById to find the
object for each one individually.

The script enables (or disables, depending on the parameter) the chosen style sheet,

and always disables the other sheet. The last line of the script calls the Style()

function to select the first style sheet, just in case the browser doesn’t support the

disabled attribute.

To try the example, make sure you have all four files in the same folder: The HTML

document, the two style sheets (style1.css and style2.css), and the script file

(styleswitch.js). Load the HTML document into a browser and try clicking the

links to change styles. Figure 23.4 shows the document after the second style sheet

has been selected.

Did you
Know?

FIGURE 23.4
The style-
switching
example with
the second
style sheet
selected.

▼

386 HOUR 23: Creating JavaScript Applications

Try It Yourself

Creating a Dynamic Form
In Hour 11, “Getting Data with Forms,” you learned how JavaScript can work with

data from HTML forms, and change form elements. Using the W3C DOM, you can

take this one step further, creating a script that can add elements to a form or show

or hide sections of a form.

Creating the HTML Document
Listing 23.8 shows the HTML document for this example, which defines an order

form. The form will have two dynamic features: first, the Ship To address fields

aren’t shown unless they’re needed, and second, a button enables you to add addi-

tional item fields to the form.

LISTING 23.8 The HTML Document for the Dynamic Form Example
<html>
<head>
<title>Dynamic Order Form</title>
<script language=”JavaScript” type=”text/javascript”

src=”dform.js”>
</script>
</head>
<body>
<h1>Order Form</h1>
<hr>
<form name=”form1”>
Bill to:

Name: <input type=”text” name=”customer” size=”20”>

Address 1: <input type=”text” name=”addr1” size=”20”>

Address 2: <input type=”text” name=”addr2” size=”20”>

City: <input type=”text” name=”city” size=”15”>
State: <input type=”text” name=”state” size=”4”>
Zip: <input type=”text” name=”zip” size=”9”>
<hr>
Ship to:

<input type=”radio” name=”shipopt” value=”same” checked onClick=”Show(0);”>
Same Address
<input type=”radio” name=”shipopt” value=”other” onClick=”Show(1);”>
Other Address
<div ID=”shipto” style=”display: none;”>

Name: <input type=”text” name=”shipname” size=”20”>

Address 1: <input type=”text” name=”shipaddr1” size=”20”>

Address 2: <input type=”text” name=”shipaddr2” size=”20”>

City: <input type=”text” name=”shipcity” size=”15”>
State: <input type=”text” name=”shipstate” size=”4”>
Zip: <input type=”text” name=”shipzip” size=”9”>
</div>
<hr>
<div ID=”items”>
Qty:

Style Sheet Switching with JavaScript 387

<input type=”text” name=”qty1” size=”3”>
Item:
<input type=”text” name=”item1” size=”45”>

<input type=”button” value=”Add an Item”
onClick=”AddItem();” ID=”add”>
</div>
<hr>
<input type=”submit” value=”Continue...”>
</form>
</body>
</html>

Save this HTML document in a folder. If you load it into a browser, you’ll see the

form’s default appearance, but the dynamic features won’t work yet. Figure 23.5

shows the default look of the form.

LISTING 23.8 Continued

FIGURE 23.5
The dynamic
form before the
script is added.

Adding the Script
The script for this example will include two functions: AddItem(), for adding items

to the form, and Show(), for showing or hiding the ship-to address. Listing 23.9

shows the script file.

388 HOUR 23: Creating JavaScript Applications

LISTING 23.9 The JavaScript File for the Dynamic Form Example
// global variable
var items=1;
function AddItem() {
if (!document.getElementById) return;
// Add an item to the form
div=document.getElementById(“items”);
button=document.getElementById(“add”);
items++;
newitem=”Qty: ”;
newitem+=”<input type=\”text\” name=\”qty” + items;
newitem+=”\” size=\”3\”> “;
newitem+=”Item: ”;
newitem+=”<input type=\”text\” name=\”item” + items;
newitem+=”\” size=\”45\”>
”;
newnode=document.createElement(“span”);
newnode.innerHTML=newitem;
div.insertBefore(newnode,button);

}
function Show(a) {
if (!document.getElementById) return;
//Hide or show ship-to address
obj=document.getElementById(“shipto”);
if (a) obj.style.display=”block”;
else obj.style.display=”none”;

}

Here’s a breakdown of how this script works:

. The first line defines a global variable, items, to keep track of the number of

items. This is used to assign a unique name attribute to each <input> tag as

they are added.

. The AddItem() function adds additional Quantity and Item fields to the form

using the insertBefore() DOM method.

. The Show() function uses the style.display property to either show or hide

the section with the id value shipto.

To try the script, save it as dform.js (or download the files from this book’s website)

and load the HTML document into a browser. Figure 23.6 shows the document with

two additional item fields added and the ship-to address displayed.

Q&A 389

Summary
In this hour, you put your knowledge of JavaScript and the DOM to work with three

examples: a scrolling text box, a page with user-selectable styles, and a dynamic form.

Each of these could serve as the basis for a much more sophisticated feature for a site.

Your 24-hour tour of JavaScript is nearly over. In the final hour of this book, you’ll

learn about the future of JavaScript, learn what other web languages and disciplines

you might want to learn next, and create one final code example.

Q&A
Q. Can I make text scroll horizontally rather than vertically?

A. Yes, the scrolling text example could easily work horizontally by changing the

left property rather than the top property. However, this will be confusing

unless the text is designed for horizontal scrolling—a single line would work fine.

Q. Why don’t more sites use dynamic forms?

A. There are some usability and accessibility issues with a dynamic form—for

starters, if JavaScript is disabled, the form in this hour would be limited to

ordering a single item. You could compensate for this with some server-side

code to allow adding additional items (slowly), but it would be far more com-

plex than a simple form.

FIGURE 23.6
The dynamic
form in action.

▲

390 HOUR 23: Creating JavaScript Applications

Q. Can my script enable more than one style sheet at a time?

A. Yes, you can have any number of <link> tags for style sheets, and any or all

of them can be enabled. One obvious approach is to have one common style

sheet that is always enabled, and use the script to enable or disable additional

style sheets for user preferences.

Quiz Questions
Test your knowledge of the DOM by answering the following questions.

1. In the scrolling-text example, which CSS rule prevents the scrolling text from

being visible outside the box?

a. overflow: hidden;

b. position: relative;

c. position: absolute;

2. Which property of a <link> element determines whether the style sheet affects

the document?

a. enabled

b. disabled

c. active

3. In the dynamic forms example, which DOM method is used to add additional

fields to the form?

a. insertAfter

b. addItem

c. insertBefore

Quiz Answers
1. a. The overflow: hidden; rule prevents the text from being visible outside

the box.

2. b. The disabled property controls whether the style sheet affects the document.

3. c. The insertBefore method is used to add additional items before the Add

an Item button.

Exercises 391

Exercises
If you want to gain more experience working with the techniques you explored in

this hour, try the following exercises:

. Create your own text for the scrolling text box, and try modifying the HTML

document (refer to Listing 23.1) to scroll your text.

. Create a third style sheet for the style-switching example, and modify the

HTML document and the script (refer to Listings 23.4 and 23.7) to allow

switching between three different style sheets.

. Right now, the dynamic forms example in Listings 23.8 and 23.9 will never

display the Ship To address if JavaScript is disabled. To improve the accessibili-

ty of the form, make the script hide the Ship To section rather than having it

hidden by default in the HTML document.

This page intentionally left blank

HOUR 24

Your Future with JavaScript

What You’ll Learn in This Hour:
. Where to go to learn more about JavaScript
. How future versions of JavaScript might affect your scripts
. An introduction to XML (Extensible Markup Language)
. XHTML (Extensible Hypertext Markup Language)
. How to be sure you’re ready for future web technologies
. How to move on to other web languages
. Implementing drag-and-drop using JavaScript

You’ve reached the last hour of this book. In this final hour, you’ll find some ideas of

where to go next—whether you want to learn more about JavaScript or move on to other

languages and technologies. You’ll also learn some tips for future-proofing your scripts,

and you’ll create a drag-and-drop script as a final example.

Learning Advanced JavaScript Techniques
Although you’ve now learned all of the essentials of the JavaScript language, there is still

much to learn. JavaScript can be used to script environments other than the Web, and you

can move beyond simple scripts to develop entire applications that combine JavaScript

with server-side programming.

Here are some ways you can further your JavaScript education:

. See Appendix A, “Other JavaScript Resources,” for a list of JavaScript books and web

pages with further information.

. While the core JavaScript language is in place, be sure to follow the latest develop-

ments. The websites in Appendix A and this book’s site will let you know when

changes are on the way.

394 HOUR 24: Your Future with JavaScript

. Be sure to spend some time practicing the JavaScript techniques you’ve

learned throughout this book. You can use them to create much more com-

plex applications than those you’ve worked with so far.

One advanced technique that is becoming popular is AJAX (Asynchronous JavaScript

and XML), which allows JavaScript to communicate with a server without reloading

pages. You learned the basics of AJAX in Hour 17, “AJAX: Remote Scripting”.

Because this is one of the most exciting features of JavaScript, it’s a good one to learn

more about. Try using the AJAX library you created in Hour 17 to add remote script-

ing to a site, or explore the Web’s AJAX sites to learn more sophisticated techniques.

Future Web Technologies
The Web has changed dramatically in the last 10 years, and is continually chang-

ing. In the following sections, you will explore some of the upcoming—and already

developed—technologies that will affect your pages and scripts.

Future Versions of JavaScript
JavaScript has gone through several versions to reach its current one, 1.6.

Fortunately, the core language hasn’t changed much through these version changes,

and nearly all scripts written for older versions will work on the latest one.

The next version of JavaScript, 2.0, is currently being developed by the Mozilla

Foundation and ECMA. Version 2.0’s main change will be the addition of true

object-oriented features, such as classes and inheritance.

As with previous versions, 2.0 should be backward compatible with older versions.

To be sure your scripts will work under version 2.0, follow the standard language

features and do not rely on any undocumented or browser-specific features.

Future DOM Versions
Currently, the W3C DOM level 1 is an official specification, whereas level 2 is only a

recommendation. Level 2 adds features such as event handling and better style

sheet support, and is already partially supported by the latest browsers.

Hour 15, “Unobtrusive Scripting,” introduces the event-handling features of DOM
level 2, and describes how to implement the same techniques in Internet Explorer,
which does not support them yet.

By the
Way

Future Web Technologies 395

In the future, expect better browser support for the DOM, and less compatibility

issues between browsers.

XML (Extensible Markup Language)
HTML was originally created as a language for the Web, and was based on an older

standard for documentation called SGML (Standard Generalized Markup Language).

HTML is a much-simplified version of SGML, specifically designed for web documents.

A relatively new language on the scene is XML (Extensible Markup Language). XML

is also a simplified version of SGML, but it isn’t nearly as simple as HTML. Although

HTML has a specific purpose, XML can be used for virtually any purpose.

The W3C (World Wide Web Consortium) developed XML, and has published a
specification to standardize the language.

Strictly speaking, XML isn’t a language in itself—there is no concise list of XML tags

because XML has no set list of tags. Instead, XML enables you to create your own

markup languages for whatever purpose you choose.

So what use is a language without any specific commands? Well, XML enables you

to define tags, similar to HTML tags, for any purpose. If you were storing recipes, for

example, you could create tags for ingredients, ingredient quantities, and instruc-

tions.

XML uses a DTD (Document Type Definition) to define the tags used in a particular

document. The DTD can be in a separate file or built into the document, and speci-

fies which tags are allowed, their attributes, and what they can contain.

XML is already in use today. Although it isn’t directly supported by web browsers,

you can use a program on the server to parse XML documents into HTML docu-

ments before sending them to the browser.

To return to the recipe example, an XML processor could convert each recipe into

HTML. The reason for doing this is simple: By changing the rules in the parser, you

could change the entire format of all of the recipes—a difficult task to perform man-

ually if you had thousands of recipes.

XHTML (Extensible Hypertext Markup Language)
The HTML specification, at version 4.01, is still considered valid, but the W3C has

been working on the successor to HTML, XHTML, now at version 1.1. XHTML is a

reformulated version of HTML that fits the strict rules of XML and can be processed

with software designed to work with XML.

By the
Way

396 HOUR 24: Your Future with JavaScript

In practice, XHTML looks very similar to HTML. Here are some of the most obvious

changes you will need to make to adapt a page to XHTML:

. All tags should be lowercase: <p>, <body>, and so forth.

. Most tags require closing tags: </p>, and so forth.

. For standalone tags that don’t enclose other elements, such as and

, a special syntax combines opening and closing tags with a slash before

the closing brace:
.

. The document must follow strict rules of structure and tags must be nested cor-

rectly.

. A <!DOCTYPE> tag is required to specify the XML DTD used for the document.

The following specifies the XHTML Transitional DTD:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

The transitional DTD allows some deprecated HTML tags, such as <center>, for

compatibility. There is also an XHTML Strict DTD that does not allow any deprecat-

ed tags.

Browser support for XHTML isn’t perfect, especially when it comes to the Strict
DTD. It’s also difficult to meet XHTML’s strict validation requirements while dealing
with issues such as user-generated content and scripts. For these reasons, most
webmasters use either XHTML Transitional or the still-valid HTML 4.01.

XSL (Extensible Stylesheet Language)
XML documents focus strictly on the meaning of the tags—content—and ignore

presentation. The presentation of XML can be determined by creating an XSL

(Extensible Stylesheet Language) style sheet.

XSL is based on XML, but specifies presentation—parameters such as font size, mar-

gins, and table formatting—for an XML document. When you use an XML process-

ing program to create HTML output, it uses an XSL style sheet to determine the

HTML formatting of the output.

XSL documents are actually XML documents, using their own DTD that specifies
style sheet tags. XSL is a newer W3C specification.

By the
Way

By the
Way

Planning for the Future 397

Planning for the Future
In the history of JavaScript, there has never been such a major change to the lan-

guage that a great number of scripts written using the older version have stopped

working. Nevertheless, many scripts have been crippled by new browser releases—

chiefly those that used browser-specific features.

The following sections offer some guidelines you can follow in writing scripts to

ensure that the impact of future JavaScript versions and browser releases will be

minimal.

Keeping Scripts Compatible
Years ago, Netscape and Microsoft introduced separate and incompatible versions of

DHTML (Dynamic HTML), which allowed scripts to modify any element of a page

for the first time. Early adopters jumped in to write many scripts, some of which you

can still find online today. These scripts made some serious mistakes:

. Browser detection was used to separately support browsers, or in some cases a

specific browser was required.

. Scripts were written to work around bugs in browsers, or sometimes even take

advantage of them.

. The process of writing scripts often involved trial and error rather than con-

sulting official documentation.

This messy scripting gave DHTML—and JavaScript—a bad name among serious pro-

grammers. Fortunately, the standardized W3C DOM has now replaced the propri-

etary browser DHTML features, and it’s easier than ever to create scripts the right

way—but as time goes by, there will undoubtedly be cutting-edge features that

aren’t quite standard.

One obvious example is AJAX (Asynchronous JavaScript and XML), which is only

now being developed as a standard by the W3C, despite working (in sometimes con-

fusingly different ways) in the major browsers.

There’s nothing wrong with using these cutting-edge features—but if you do, you

should be aware that you’re going to need to test the scripts on several different

browsers. You should use feature sensing rather than detecting (or expecting) partic-

ular browsers. Finally, you should be prepared to do a bit of rewriting when the

standard arrives.

398 HOUR 24: Your Future with JavaScript

Staying HTML Compliant
One trend as browsers advance is that newer browsers tend to do a better job of fol-

lowing the W3C standard for HTML—and, often, relying on it. This means that

although a page that uses completely standard HTML will likely work in future

browsers, one that uses browser-specific features or workarounds is bound to have

problems eventually.

In particular, the first release of Netscape 6.0 received many complaints about
“breaking” previously working pages. In most cases, the page used bad HTML,
and previous browsers happened to handle the error more gracefully.

To avoid these problems, try to use completely valid HTML whenever possible. This

means not only using standard tags and attributes, but following certain formatting

rules: For example, always using both opening and closing <p> tags, and enclosing

numbers for table widths and other parameters in quotation marks.

To be sure your documents follow the HTML standard, see Appendix B, “Tools for

JavaScript Developers,” for suggested HTML validation programs and services. These

will examine your document and point out any areas that do not comply with the

HTML standard.

Document Everything
Last but not least, be sure you understand everything your scripts are doing.

Document your scripts using comments, and particularly document any statements

that might look cryptic or are particularly hard to get working correctly.

If your scripts are properly documented, it will be a much easier process if you have

to modify them to be compatible with a future browser, JavaScript, or DOM version.

See Hour 15 for more tips on future-proofing your scripts by using unobtrusive
scripting techniques.

Moving on to Other Languages
Assuming you’ve spent the last 24 hours learning JavaScript to further your career

(or hobby) as a web developer, where will you go next? As you should know by now,

JavaScript can’t do everything, and there are many other languages that work on

the Web. Here are some you might want to explore:

By the
Way

Did you
Know?

▼

Moving on to Other Languages 399

. Java is useful for more complex client-side programs. Although Java applets

aren’t as integrated with web pages as JavaScript, you can build applications

that go beyond JavaScript’s capabilities. Java’s syntax is similar to JavaScript,

although the language is more complicated. See http://java.sun.com/ for more

information.

. Flash is also a popular choice for more sophisticated client-side programs, and is

an especially good choice if you want to create games or applications that work

with video. Flash’s ActionScript is based on the same ECMAScript standard as

JavaScript, so you have a headstart. See http://www.adobe.com/products/flash/

flashpro/ for more information.

. Ruby is a relatively new server-side language that has taken the web develop-

ment world by storm, particularly thanks to the Ruby on Rails framework. Ruby

on Rails includes features for easily integrating JavaScript and AJAX features

into sites. See http://www.ruby-lang.org/en/ and http://www.rubyonrails.org/ for

details.

. PHP is the workhorse of server-side languages, and a popular choice for back-

end development, whether with basic HTML or JavaScript and AJAX front

ends. See http://www.php.net/ for details.

. Python is another popular server-side language, noted for its simple coding

style and the excellent libraries available for adapting it to various purposes.

See http://www.python.org/ for more information.

There are many other languages on the Web, but these are five popular choices. It’s

worth taking the time to learn a bit about these languages and others even if you

don’t plan on making them your primary development tool.

Try It Yourself

Creating Drag-and-Drop Objects
Just to prove JavaScript can do many things beyond what you’ve learned so far, here

is a final example. Although desktop operating systems support drag-and-drop

actions (for example, moving a file into the trash can), web pages have traditionally

lacked this feature. Using JavaScript and the DOM, you can unobtrusively create

objects that the user can pick up, drag, and drop.

This is a simple implementation of drag-and-drop. Full-featured dragging and drop-
ping leads to a very complex script. Fortunately, you can use JavaScript libraries
such as Script.aculo.us to add drag-and-drop to your pages without any scripting.
See Hour 8, “Using Built-in Functions and Libraries,” for more details.

Did you
Know?

http://www.adobe.com/products/flash/flashpro/
http://www.adobe.com/products/flash/flashpro/
http://java.sun.com/
http://www.ruby-lang.org/en/
http://www.rubyonrails.org/
http://www.php.net/
http://www.python.org/

400 HOUR 24: Your Future with JavaScript

The HTML Document
The HTML document for this example exists mainly to define four draggable objects

with <div> tags. Listing 24.1 shows the complete HTML document.

LISTING 24.1 The HTML Document for the Drag-and-Drop Example
<html>
<head>
<title>Drag and Drop</title>
<link rel=”stylesheet” type=”text/css” href=”dragdrop.css”>
<script language=”javascript” type=”text/javascript”

src=”dragdrop.js”>
</script>
</head>
<body>
<h1>Drag and Drop in JavaScript</h1>
<div class=”drag” id=”drag1”>
<h3>Box #1</h3>
<p>Click one of these boxes and hold the
mouse button down to move it to a new location.</p>
</div>
<div class=”drag” id=”drag2”>
<h3>Box #2</h3>
<p>This is another box you can drag and drop.</p>
</div>
<div class=”drag” id=”drag3”>
<h3>Box #3</h3>
<p>This is yet another box you can drag and drop.</p>
</div>
<div class=”drag” id=”drag4”>
<h3>Box #4</h3>
<p>This is the fourth and final draggable box.</p>
</div>
</body>
</html>

Each of the <div> tags with the class=”drag” attribute will be a draggable object.

The document also includes a <script> tag to attach a script and a <link> tag for

a style sheet.

The CSS Style Sheet
The style sheet sets up the four positionable objects with an initial position as well

as a distinctive border. Listing 24.2 shows the CSS file for this example.

LISTING 24.2 The CSS File for the Drag-and-Drop Example
.drag {

position: absolute;
width: 150px;
border: 2px solid black;
border-top: 20px solid black;

Moving on to Other Languages 401

top: 100px;
padding: 5px;

}
#drag1 { left: 20px; }
#drag2 { left: 190px; }
#drag3 { left: 360px; }
#drag4 { left: 530px; }

The position: absolute rule makes the elements positionable. The top property

sets the vertical position of all four elements, and the left property is set for each

one to space them across the page. The width and border properties make the

<div> elements look like boxes, and the border-top property creates a thick top

border for dragging.

Save this file as dragdrop.css in the same folder as the HTML document. If you

load the HTML document into a browser at this point, you can see the styled boxes,

but they won’t be movable until you add the script. Figure 24.1 shows this example

before adding the script.

LISTING 24.2 Continued

FIGURE 24.1
The initial dis-
play of the drag-
gable objects.

Implementing Drag-and-Drop
Because drag-and-drop isn’t built in to the DOM, your script will have to do it the

hard way. When the user clicks on an element, an onmousedown event handler will

begin dragging the object. After that starts, an onmousemove event handler will

update the object’s position, and onmousedown will “drop” the object.

402 HOUR 24: Your Future with JavaScript

One tricky part is determining the mouse position in the onmousemove event han-

dler. This is stored as a property of the event object, but Netscape and Firefox use

the pageX and pageY properties, whereas Internet Explorer uses the clientX and

clientY properties. A series of if statements finds the x and y values, regardless of

the browser:

if (!e) var e = window.event;
if (e.pageX) {
x = e.pageX;
y = e.pageY;

} else if (e.clientX) {
x = e.clientX;
y = e.clientY;

} else return;

See Hour 9, “Responding to Events,” for more information on event handlers and
the event object.

One more issue: Objects are positioned based on their top-left corner, but you can

click anywhere on the object with the mouse. This will result in a “jump” effect

when you pick up an object. The solution is to calculate an offset between the

mouse position and the object’s position:

dx = x - obj.offsetLeft;
dy = y - obj.offsetTop;

When the object is moved, these offsets will be subtracted from the mouse position.

This way, the object is anchored to the mouse pointer wherever you click it, and does

not jump to a new position.

The JavaScript File
Now all you need is the JavaScript file to add the drag-and-drop feature to the docu-

ment. Listing 24.3 shows the complete script.

LISTING 24.3 The JavaScript File for the Drag-and-Drop Example
// global variables
var obj,x,y,dx,dy;
// set up draggable elements
function Setup() {
// exit if the browser doesn’t support the DOM
if (!document.getElementsByTagName) return;
divs = document.getElementsByTagName(“DIV”);
for (i=0; i<divs.length; i++) {
if (divs[i].className != “drag”) continue;
// set event handler for each div with class=”drag”
divs[i].onmousedown = Drag;

}

By the
Way

Moving on to Other Languages 403

}
function Drag(e) {
// Start dragging an object
if (!e) var e = window.event;
// which object was clicked?
obj = (e.target) ? e.target: e.srcElement;
obj.style.borderColor=”red”;
// calculate object offsets from mouse position
dx = x - obj.offsetLeft;
dy = y - obj.offsetTop;

}
function Move(e) {
// track mouse movements
if (!e) var e = window.event;
if (e.pageX) {
x = e.pageX;
y = e.pageY;

} else if (e.clientX) {
x = e.clientX;
y = e.clientY;

} else return;
if (obj) {
obj.style.left = x - dx;
obj.style.top = y - dy;

}
}
function Drop() {
// let go!
if (!obj) return;
obj.style.borderColor=”black”;
obj = false;

}
// Detect mouse movement
document.onmousemove = Move;
// drop current object on mouse up
document.onmouseup = Drop;
// Set up when the page loads
window.onload = Setup;

Here’s a rundown of how this script works:

. The first line declares five global variables: obj to keep track of the current

object being dragged, x and y for the mouse position, and dx and dy for the

object’s offset from the mouse position.

. The Setup() function runs when the page loads. This function uses

getElementsByTagName to find all of the <div> elements in the page. For

each one with the class=”drag” attribute, it sets up an onmousedown event

handler to call the Drag() function.

. The Drag() function sets obj to the correct object, sets the object’s border color

to red to indicate it’s being dragged, and calculates the dx and dy offsets.

LISTING 24.3 Continued

404 HOUR 24: Your Future with JavaScript

. The Move() function is where the action happens. After calculating the mouse

pointer’s x and y position, it sets the object’s left and top properties to move

it to follow the mouse.

. The Drop() function ends the process by setting the object’s border color back

to black, and then setting obj to false, so mouse movements won’t move any

object.

. The final lines set some global event handlers: onmousemove to call the Move()

function, onmouseup to call the Drop() function, and onload to call Setup().

Save this file as dragdrop.js. To try the example, make sure you have all three files

in the same folder: the HTML document, the CSS file (dragdrop.css), and the

JavaScript file (dragdrop.js). Load the HTML document into a browser. Figure 24.2

shows the example after all four objects have been dragged to new positions.

FIGURE 24.2
The drag-and-
drop example in
action.

Summary
In this hour, you’ve learned how the future of JavaScript and the Web might affect

your web pages and scripts, and learned some of the upcoming technologies that

might change the way you work with the Web. Finally, you learned how to create

drag-and-drop effects using JavaScript.

▲

Quiz Questions 405

Time’s up—you’ve reached the end of this book. I hope you’ve enjoyed spending 24

hours learning JavaScript, and that you’ll continue to learn more about it on your

own. See Appendix A for starting points to further your knowledge.

Q&A
Q. Besides parsing documents into HTML, what other practical uses are there

for XML?

A. XML is a great way to store any type of marked-up text in a standardized way.

Developers of many software applications, including popular word processors,

are considering using XML-based files.

Q. In the drag-and-drop example, the objects overlap each other. Is there a way
to avoid this?

A. Yes, if you set a background-color property for the objects in the style sheet,

they won’t overlap. However, you’ll notice that sometimes you’re dragging the

current object behind the others. To avoid this, you can set the style.zIndex

property for the current object in the script to keep it on top.

Q. What if I have a JavaScript question that isn’t answered in this book?

A. Start with the resources in Appendix A. You should also stop by the author’s

website (www.jsworkshop.com) for a list of updates to the book, frequently

asked questions, and a forum where you can discuss JavaScript with the

author and other users.

Quiz Questions
Test your knowledge of JavaScript’s future by answering the following questions.

1. Which of the following is the latest DOM recommendation from the W3C?

a. DOM 1.5

b. DOM level 1

c. DOM level 2

2. When should you use a new JavaScript feature?

a. Immediately

b. As soon as it’s supported by browsers

c. As soon as it’s part of a standard, and browsers that support it are wide-

ly available

www.jsworkshop.com

406 HOUR 24: Your Future with JavaScript

3. Which of the following is an important way of making sure your scripts will

work with future browsers?

a. Follow HTML, JavaScript, and DOM standards.

b. Spend an hour a day downloading the newest browsers and testing your

scripts.

c. Wait until the very last browsers are released before writing any scripts.

Quiz Answers
1. c. DOM level 2 is the latest W3C recommendation.

2. c. Wait until JavaScript features are standardized and widely available before

implementing them.

3. a. Following HTML, JavaScript, and DOM standards is an important way of

making sure your scripts will work with future browsers.

Exercises
If you want to gain more experience working with JavaScript, try the following exer-

cises:

. Try adding another <div> element to the drag-and-drop example and make

the appropriate changes to the style sheet so it will respond correctly.

. Try changing the drag-and-drop example to move a different type of element,

such as paragraphs of text.

PART VII:

Appendixes

APPENDIX A Other JavaScript Resources 409

APPENDIX B Tools for JavaScript Developers 411

APPENDIX C Glossary 415

APPENDIX D JavaScript Quick Reference 419

APPENDIX E DOM Quick Reference 427

This page intentionally left blank

APPENDIX A

Other JavaScript Resources

Although you’ve learned a lot about JavaScript in 24 hours, there’s still a lot to know. If

you’d like to move on to advanced features of JavaScript or learn more, the resources list-

ed in this appendix will be helpful.

Other Books
The following books, also from Sams.net, discuss JavaScript and DHTML in more detail:

. Sams Teach Yourself JavaScript in 21 Days by Jinjer Simon, Andrew Watt, Jonathan
Watt. ISBN 0672322978.

. JavaScript Unleashed, Fourth Edition by Jason D. Gilliam, R. Allen Wyke ISBN
0672324318.

. JavaScript Developer’s Dictionary by Alexander J. Vincent. ISBN 0672322013.

. Sams Teach Yourself DHTML in 24 Hours by Michael Moncur. ISBN 0672323028.

JavaScript Websites
The following websites will help you learn more about JavaScript:

. The JavaScript Workshop is a weblog about JavaScript written by Michael Moncur,
the author of this book. There you’ll find updates on the JavaScript language and
the DOM, as well as detailed tutorials on beginning and advanced tasks.

http://www.jsworkshop.com/

. The DOM Scripting Task Force, part of the Web Standards Project, works toward bet-
ter use of standards in scripting, and has an informative weblog with the latest on
JavaScript and DOM standards.

http://domscripting.webstandards.org/

. The Mozilla Project’s JavaScript section has information on the latest updates to the
JavaScript language, as well as documentation, links to resources, and information
about JavaScript implementations.

http://www.mozilla.org/js/

http://www.jsworkshop.com/
http://domscripting.webstandards.org/
http://www.mozilla.org/js/

410 APPENDIX A: Other JavaScript Resources

Web Development Sites
The following sites have news and information about web technologies, including

JavaScript, XML, and the DOM, as well as basic HTML:

. The W3C (World Wide Web Consortium) is the definitive source for informa-

tion about the HTML and CSS standards.

http://www.w3.org/

. WebReference.com has information and articles about web technologies

ranging from Java to plug-ins.

http://www.webreference.com/

. Digital Web Magazine features regular online articles on everything from

JavaScript and web design to running a web business.

http://www.digital-web.com/

This Book’s Website
Be sure to register your book at www.samspublishing.com/register by entering this

book’s ISBN number. You’ll find updates to the book, information on new browsers

and new JavaScript features, and other useful resources there, as well as a place to

download all of this book’s examples and the files you will need to try them out.

http://www.w3.org/
http://www.webreference.com/
http://www.digital-web.com/
www.samspublishing.com/register

APPENDIX B

Tools for JavaScript
Developers

One of the best things about JavaScript is that it requires no specialized tools—all you

need to start scripting is a web browser and a simple text editor. Nonetheless, tools are

available that will make scripting easier. Some of these are described in this appendix.

HTML and Text Editors
Although they aren’t specifically intended for scripting, a wide variety of HTML editors are

available. These allow you to easily create web documents, either by automating the

process of entering tags, or by presenting you with an environment for directly creating

styled text.

HomeSite
HomeSite, from Adobe, is a full-featured HTML editor. It is similar to a text editor, but

includes features to automatically add HTML tags, and to easily create complicated HTML

elements such as tables.

HomeSite also includes a number of JavaScript features, such as creating tags automati-

cally and coloring script commands to make them easy to follow.

A demo version of HomeSite is available for download from Macromedia’s site:

http://www.macromedia.com/software/homesite/

TopStyle
TopStyle, from NewsGator Technologies, Inc., is a CSS and HTML editor written by Nick

Bradbury, who originally created HomeSite. It specializes in CSS editing and includes pow-

erful tools for editing style sheets, but it also works as an editor for HTML and JavaScript:

http://www.newsgator.com/

http://www.macromedia.com/software/homesite/
http://www.newsgator.com/

412 APPENDIX B: Tools for JavaScript Developers

FrontPage
Microsoft FrontPage is a popular WYSIWYG (What You See Is What You Get) HTML

editor that allows you to easily create HTML documents. The latest version,

FrontPage 2000, includes a component to create simple scripts automatically.

You can download FrontPage from Microsoft’s site:

http://www.microsoft.com/frontpage/

BBEdit
For Macintosh users, BBEdit is a great HTML editor that also includes JavaScript fea-

tures. You can download it from Bare Bones Software’s website:

http://www.bbedit.com/

Text Editors
Often, a simple text editor is all you need to work on an HTML document or script.

Here are some editors that are available for download:

. TextPad, from Helios Software Solutions, is a Windows text editor intended as

a replacement for the basic Notepad accessory. It’s a fast, useful editor, and

also includes a number of features for working with HTML. TextPad is share-

ware, and a fully working version can be downloaded from its official site:

http://www.textpad.com/

. UltraEdit-32, from IDM Computer Solutions, is another good Windows text

editor, with support for hexadecimal editing for binary files as well as simple

text editing. The shareware version is available for download here:

http://www.ultraedit.com/

. SlickEdit, from MicroEdge, is a sophisticated programmer’s editor for Windows

and UNIX platforms:

http://www.slickedit.com/

. TextWrangler, from Bare Bones Software (the developers of BBEdit) is a text

editor for the Macintosh that works great for general text files, HTML, and

JavaScript:

http://www.barebones.com/products/textwrangler/

http://www.microsoft.com/frontpage/
http://www.bbedit.com/
http://www.textpad.com/
http://www.ultraedit.com/
http://www.slickedit.com/
http://www.barebones.com/products/textwrangler/

Debugging Tools 413

HTML Validators
Writing web pages that comply with the HTML specifications is one way to avoid

JavaScript errors, as well as to ensure that your pages will work with future browser

versions. Here are some automated ways of checking the HTML compliance of your

pages:

. CSE HTML Validator, from AI Internet Solutions, is an excellent standalone

utility for Windows that checks HTML documents against your choice of HTML

versions. It can also be integrated with HomeSite, TextPad, and several other

HTML and text editors. Although the Pro version of this product is commer-

cial, a Lite version is available for free download. Visit their website:

http://www.htmlvalidator.com/

. The W3C’s HTML Validation Service is a web-based HTML validator. Just enter

your URL, and it will be immediately checked for HTML compliance. Access

this service at this URL:

http://validator.w3.org/

. The WDG HTML Validator offers a different perspective, and is also an easy-to-

use web-based service. Access it at this URL:

http://www.htmlhelp.com/tools/validator/

Debugging Tools
You might find the following tools useful in debugging your JavaScript applications:

. The Web Developer Extension for Firefox includes several helpful features for

debugging JavaScript and for analyzing pages. (See Hour 16, “Debugging

JavaScript Applications,” for more information.)

http://chrispederick.com/work/webdeveloper/

. The Mozilla project’s Venkman is a sophisticated debugger for JavaScript in

Mozilla or Firefox. Find out more here:

http://www.mozilla.org/projects/venkman/

. Microsoft Script Debugger works with JavaScript and VBScript in Internet

Explorer:

http://msdn.microsoft.com/library/en-us/sdbug/html/sdbug_1.asp

http://www.htmlvalidator.com/
http://www.htmlhelp.com/tools/validator/
http://www.mozilla.org/projects/venkman/
http://validator.w3.org/
http://chrispederick.com/work/webdeveloper/
http://msdn.microsoft.com/library/en-us/sdbug/html/sdbug_1.asp

This page intentionally left blank

APPENDIX C

Glossary

The following are some terms relating to JavaScript and web development that are used

throughout this book. Although most of them are explained in the text of the book, this

section can serve as a useful quick reference while reading the book, or while reading

other sources of JavaScript information.

ActiveX A technology developed by Microsoft to allow components to be created, prima-

rily for Windows computers. ActiveX components, or controls, can be embedded in web

pages.

AJAX (Asynchronous JavaScript and XML) a combination of technologies that allows

JavaScript to send requests to a server, receive responses, and update sections of a page

without loading a new page.

anchor In HTML, a named location within a document, specified using the <a> tag.

Anchors can also act as links.

applet A Java program that is designed to be embedded in a web page.

argument A parameter that is passed to a function when it is called. Arguments are

specified within parentheses in the function call.

array A set of variables that can be referred to with the same name and a number,

called an index.

attribute A property value that can be defined within an HTML tag. Attributes specify

style, alignment, and other aspects of the element defined by the tag.

Boolean A type of variable that can store only two values: true and false.

browser sensing A scripting technique that detects the specific browser in use by clients

to provide compatibility for multiple browsers.

Cascading Style Sheets (CSS) The W3C’s standard for applying styles to HTML docu-

ments. CSS can control fonts, colors, margins, borders, and positioning.

concatenate The act of combining two strings into a single, longer string.

conditional A JavaScript statement that performs an action if a particular condition is

true, typically using the if statement.

debug The act of finding errors, or bugs, in a program or script.

416 APPENDIX C: Glossary

decrement To decrease the value of a variable by one. In JavaScript, this can be

done with the decrement operator, --.

deprecated A term the W3C applies to HTML tags or other items that are no

longer recommended for use, and may not be supported in the future. For example,

the tag is deprecated in HTML 4.0 because style sheets can provide the same

capability.

Document Object Model (DOM) The set of objects that JavaScript can use to refer

to the browser window and portions of the HTML document. The W3C (World Wide

Web Consortium) DOM is a standardized version supported by the latest browsers,

and allows access to every object within a web page.

Dynamic HTML (DHTML) The combination of HTML, JavaScript, CSS, and the

DOM, which allows dynamic web pages to be created. DHTML is not a W3C stan-

dard or a version of HTML.

element A single member of an array, referred to with an index. In the DOM, an

element is a single node defined by an HTML tag.

event A condition, often the result of a user’s action, that can be detected by a

script.

event handler A JavaScript statement or function that will be executed when an

event occurs.

expression A combination of variables, constants, and operators that can be eval-

uated to a single value.

feature sensing A scripting technique that detects whether a feature, such as a

DOM method, is supported before using it to avoid browser incompatibilities.

function A group of JavaScript statements that can be referred to using a function

name and arguments.

global variable A variable that is available to all JavaScript code in a web page.

It is declared (first used) outside any function.

Greasemonkey An extension for the Firefox browser that allows user scripts to

modify the appearance and behavior of web pages.

Hypertext Markup Language (HTML) The language used in web documents.

JavaScript statements are not HTML, but can be included within an HTML docu-

ment.

increment To increase the value of a variable by one. In JavaScript, this is done

with the increment operator, ++.

scope 417

interpreter The browser component that interprets JavaScript statements and acts

on them.

Java An object-oriented language developed by Sun Microsystems. Java applets

can be embedded within a web page. JavaScript has similar syntax, but is not the

same as Java.

JavaScript A scripting language for web documents, loosely based on Java’s syn-

tax, developed by Netscape. JavaScript is now supported by the most popular

browsers.

layer An area of a web page that can be positioned and can overlap other sec-

tions in defined ways. Layers are also known as positionable elements.

local variable A variable that is available to only one function. It is declared (first

used) within the function.

loop A set of JavaScript statements that are executed a number of times, or until a

certain condition is met.

method A specialized type of function that can be stored in an object, and acts on

the object’s properties.

Navigator A browser developed by Netscape, and the first to support JavaScript.

node In the DOM, an individual container or element within a web document.

Each HTML tag defines a node.

object A type of variable that can store multiple values, called properties, and

functions, called methods.

operator A character used to divide variables or constants used in an expression.

parameter A variable sent to a function when it is called, also known as an argu-

ment.

progressive enhancement The approach of building a basic page that works on

all browsers, and then adding features such as scripting that will work on newer

browsers without compromising the basic functionality of the page.

property A variable that is stored as part of an object. Each object can have any

number of properties.

rule In CSS, an individual element of a style block that specifies the style for an

HTML tag, class, or identifier.

scope The part of a JavaScript program that a variable was declared in and is

available to.

418 APPENDIX C: Glossary

selector In a CSS rule, the first portion of the rule that specifies the HTML tag,

class, or identifier that the rule will affect.

statement A single line of a script or program.

string A group of text characters that can be stored in a variable.

tag In HTML, an individual element within a web document. HTML tags are con-

tained within angle brackets, as in <body> and <p>.

text node In the DOM, a node that stores a text value rather than an HTML ele-

ment. Nodes that contain text, such as paragraphs, have a text node as a child

node.

unobtrusive scripting A set of techniques that make JavaScript accessible and

avoid trouble with browsers by separating content, presentation, and behavior.

variable A container, referred to with a name, that can store a number, a string,

or an object.

VBScript A scripting language developed by Microsoft, with syntax based on

Visual Basic. VBScript is supported only by Microsoft Internet Explorer.

World Wide Web Consortium (W3C) An international organization that develops

and maintains the standards for HTML, CSS, and other key web technologies.

XHTML (Extensible Hypertext Markup Language) A new version of HTML

developed by the W3C. XHTML is similar to HTML, but conforms to the XML specifi-

cation.

XML (Extensible Markup Language) A generic language developed by the W3C

(World Wide Web Consortium) that allows the creation of standardized HTML-like

languages, using a DTD (Document Type Definition) to specify tags and attributes.

APPENDIX D

JavaScript Quick Reference

This appendix is a quick reference for the JavaScript language. It includes the built-in objects
and the objects in the basic object hierarchy, JavaScript statements, and built-in functions.

Built-in Objects
The following objects are built in to JavaScript. Some can be used to create objects of your
own; others can only be used as they are. Each is detailed in the following sections.

Array
You can create a new array object to define an array—a numbered list of variables.
(Unlike other variables, arrays must be declared.) Use the new keyword to define an array,
as in this example:

students = new Array(30)

Items in the array are indexed beginning with 0. Refer to items in the array with brackets:

fifth = students[4];

Arrays have a single property, length, which gives the current number of elements in the
array. They have the following methods:

. join quickly joins all of the array’s elements together, resulting in a string. The ele-
ments are separated by commas, or by the separator you specify.

. reverse returns a reversed version of the array.

. sort returns a sorted version of the array. Normally this is an alphabetical sort;
however, you can use a custom sort method by specifying a comparison routine.

String
Any string of characters in JavaScript is a string object. The following statement assigns a
variable to a string value:

text = “This is a test.”

Because strings are objects, you can also create a new string with the new keyword:

text = new String(“This is a test.”);

420 APPENDIX D: JavaScript Quick Reference

String objects have a single property, length, which reflects the current length of the
string. There are a variety of methods available to work with strings:

. substring returns a portion of the string.

. toUpperCase converts all characters in the string to uppercase.

. toLowerCase converts all characters in the string to lowercase.

. indexOf finds an occurrence of a string within the string.

. lastIndexOf finds an occurrence of a string within the string, starting at the
end of the string.

. link creates an HTML link using the string’s text.

. anchor creates an HTML anchor within the current page.

There are also a few methods that allow you to change a string’s appearance when
it appears in an HTML document:

. string.big displays big text using the <big> tag in HTML 3.0.

. string.blink displays blinking text using the <blink> tag in Netscape.

. string.bold displays bold text using the tag.

. string.fixed displays fixed-font text using the <tt> tag.

. string.fontcolor displays the string in a colored font, equivalent to the
<fontcolor> tag in Netscape.

. string.fontsize changes the font size using the <fontsize> tag in
Netscape.

. string.italics displays the string in italics using the <i> tag.

. string.small displays the string in small letters using the <small> tag in
HTML 3.0.

. string.strike displays the string in a strike-through font using the <strike>
tag.

. string.sub displays subscript text, equivalent to the <sub> tag in HTML 3.0.

. string.sup displays superscript text, equivalent to the <sup> tag in HTML 3.0.

Math
The Math object is not a “real” object because you can’t use it to create your own

objects. A variety of mathematical constants are also available as properties of the

Math object:

Built-in Objects 421

. Math.E is the base of natural logarithms (approximately 2.718).

. Math.LN2 is the natural logarithm of two (approximately 0.693).

. Math.LN10 is the natural logarithm of 10 (approximately 2.302).

. Math.LOG2E is the base 2 logarithm of e (approximately 1.442).

. Math.LOG10E is the base 10 logarithm of e (approximately 0.434).

. Math.PI is the ratio of a circle’s circumference to its diameter (approximately

3.14159).

. Math.SQRT1_2 is the square root of one half (approximately 0.707).

. Math.SQRT2 is the square root of two (approximately 1.4142).

The methods of the Math object allow you to perform mathematical functions. The

methods are listed in the following categories.

Algebraic Functions
. Math.acos calculates the arc cosine of a number in radians.

. Math.asin calculates the arc sine of a number.

. Math.atan calculates the arc tangent of a number.

. Math.cos calculates the cosine of a number.

. Math.sin returns the sine of a number.

. Math.tan calculates the tangent of a number.

Statistical and Logarithmic Functions
. Math.exp returns e (the base of natural logarithms) raised to a power.

. Math.log returns the natural logarithm of a number.

. Math.max accepts two numbers and returns whichever is greater.

. Math.min accepts two numbers and returns the smaller of the two.

Basic Math and Rounding
. Math.abs calculates the absolute value of a number.

. Math.ceil rounds a number up to the nearest integer.

. Math.floor rounds a number down to the nearest integer.

. Math.pow calculates one number to the power of another.

422 APPENDIX D: JavaScript Quick Reference

. Math.round rounds a number to the nearest integer.

. Math.sqrt calculates the square root of a number.

Random Numbers
. Math.random returns a random number between 0 and 1.

Date
The Date object is a built-in JavaScript object that allows you to conveniently work

with dates and times. You can create a Date object any time you need to store a

date, and use the object’s methods to work with the date:

. setDate sets the day of the month.

. setMonth sets the month. JavaScript numbers the months from 0 to 11, start-

ing with January (0).

. setYear sets the year. SetFullYear is a four-digit, Y2K-compliant version.

. setTime sets the time (and the date) by specifying the number of milliseconds

since January 1, 1970.

. setHours, setMinutes, and setSeconds set the time.

. getDate gets the day of the month.

. getMonth gets the month.

. getYear gets the year.

. getTime gets the time (and the date) as the number of milliseconds since

January 1, 1970.

. getHours, getMinutes, and getSeconds get the time.

. getTimeZoneOffset gives you the local time zone’s offset from GMT.

. toGMTString converts the date object’s time value to text using GMT

(Greenwich Mean Time, also known as UTC).

. toLocalString converts the Date object’s time value to text using local time.

. Date.parse converts a date string, such as “June 20, 2003” to a Date object

(number of milliseconds since 1/1/1970).

. Date.UTC converts a Date object value (number of milliseconds) to a UTC

(GMT) time.

Creating and Customizing Objects 423

Creating and Customizing Objects
This is a brief summary of the keywords you can use to create your own objects and

customize existing objects. These are documented in detail in Hour 6, “Using

Functions and Objects.”

Creating Objects
There are three JavaScript keywords used to create and refer to objects:

. new is used to create a new object.

. this is used to refer to the current object. This can be used in an object’s con-

structor function or in an event handler.

. with makes an object the default for a group of statements. Properties without

complete object references will refer to this object.

To create a new object, you need an object constructor function. This simply assigns

values to the object’s properties using this:

function Name(first,last) {
this.first = first;
this.last = last;

}

You can then create a new object using new:

Fred = new Name(“Fred”,”Smith”);

Customizing Objects
You can add additional properties to an object you have created just by assigning

them:

Fred.middle = “Clarence”;

Properties you add this way apply only to that instance of the object, not to all

objects of the type. A more permanent approach is to use the prototype keyword,

which adds a property to an object’s prototype (definition). This means that any

future object of the type will include this property. You can include a default value:

Name.prototype.title = “Citizen”;

You can use this technique to add properties to the definitions of built-in objects as

well. For example, this statement adds a property called num to all existing and

future string objects, with a default value of 10:

string.prototype.num = 10;

424 APPENDIX D: JavaScript Quick Reference

JavaScript Statements
This is an alphabetical listing of the statements available in JavaScript and their syntax.

Comments
Comments are used to include a note within a JavaScript program, and are ignored

by the interpreter. There are two different types of comment syntax:

//this is a comment
/* this is also a comment */

Only the second syntax can be used for multiple-line comments; the first must be

repeated on each line.

break
This statement is used to break out of the current for or while loop. Control resumes

after the loop, as if it had finished.

continue
This statement continues a for or while loop without executing the rest of the loop.

Control resumes at the next iteration of the loop.

for
This statement defines a loop, usually to count from one number to another using

an index variable. In this example, the variable i counts from 1 to 9:

for (i=1;i<10;i++;) { statements }

for...in
This is a different type of loop, used to iterate through the properties of an object, or

the elements of an array. This statement loops through the properties of the Scores

object, using the variable x to hold each property in turn:

for (x in Scores) { statements }

function
This statement defines a JavaScript function that can be used anywhere within the

current document. Functions can optionally return a value with the return state-

ment. This example defines a function to add two numbers and return the result:

JavaScript Statements 425

function add(n1,n2) {
result = n1 + n2;
return result;

}

if...else
This is a conditional statement. If the condition is true, the statements after the if

statement are executed; otherwise, the statements after the else statement (if pres-

ent) are executed. This example prints a message stating whether a number is less

than or greater than 10:

if (a > 10) {
document.write(“Greater than 10”);

}
else {

document.write(“10 or less”);
}

A shorthand method, known as the “hook and colon” conditional, can also be used

for these types of statements, where ? indicates the if portion and : indicates the

else portion. This statement is equivalent to the previous example:

document.write((a > 10) ? “Greater than 10” : “10 or less”);

Conditional statements are explained further in Hour 7, “Controlling Flow with

Conditions and Loops.”

return
This statement ends a function, and optionally returns a value. The return state-

ment is necessary only if a value is returned.

var
This statement is used to declare a variable. If you use it within a function, the vari-

able is guaranteed to be local to that function. If you use it outside the function, the

variable is considered global. Here’s an example:

var students = 30;

Because JavaScript is a loosely typed language, you do not need to specify the type

when you declare the variable. A variable is also automatically declared the first

time you assign it a value:

students = 30;

426 APPENDIX D: JavaScript Quick Reference

Using var will help avoid conflicts between local and global variables. Note that

arrays are not considered ordinary JavaScript variables; they are objects. See Hour 5,

“Using Variables, Strings, and Arrays,” for details.

while
The while statement defines a loop that iterates as long as a condition remains

true. This example waits until the value of a text field is “go”:

while (document.form1.text1.value != “go”) {statements }

JavaScript Built-in Functions
The functions in the following sections are built in to JavaScript, rather than being

methods of a particular object.

eval
This function evaluates a string as a JavaScript statement or expression, and either

executes it or returns the resulting value. In the following example, a function is

called using variables as an argument:

a = eval(“add(x,y);”);

eval is typically used to evaluate an expression or a statement entered by the user.

parseInt
This function finds an integer value at the beginning of a string and returns it. If

there is no number at the beginning of the string, “NaN” (not a number) is returned.

parseFloat
Finds a floating-point value at the beginning of a string and returns it. If there is no

number at the beginning of the string, “NaN” (not a number) is returned.

APPENDIX E

DOM Quick Reference

This appendix presents a quick overview of the DOM objects available, including the basic

level 0 DOM and the W3C level 1 DOM.

DOM Level 0
The level 0 DOM includes objects that represent the browser window, the current docu-

ment, and its contents. The following is a basic summary of level 0 DOM objects.

The level 0 DOM was an informal standard developed by Netscape
when JavaScript was introduced. Its objects and properties are now
formalized in the W3C DOM level 1 recommendation.

window
The window object represents the current browser window. If multiple windows are open or

frames are used, there might be more than one window object. These are given aliases to

distinguish them:

. self represents the current window, as does window. This is the window containing

the current JavaScript document.

. top is the window currently on top (active) on the screen.

. parent is the window that contains the current frame.

. The frames array contains the window object for each frame in a framed document.

The window object has three child objects:

. location stores the location (URL) of the document displayed in the window.

. document stores information about the current web page.

. history contains a list of sites visited before or after the current site in the window.

By the
Way

428 APPENDIX E: DOM Quick Reference

location
The location object contains information about the current URL being displayed by

the window. It has a set of properties to hold the different components of the URL:

. location.hash is the name of an anchor within the document, if specified.

. location.host is a combination of the host name and port.

. location.hostname specifies the host name.

. location.href is the entire URL.

. location.pathname is the directory to find the document on the host, and the

name of the file.

. location.port specifies the communication port.

. location.protocol is the protocol (or method) of the URL.

. location.query specifies a query string.

. location.target specifies the TARGET attribute of the link that was used to

reach the current location.

history
The history object holds information about the URLs that have been visited before

and after the current one in the window, and includes methods to go to previous or

next locations:

. history.back goes back to the previous location.

. history.forward goes forward to the next location.

. history.go goes to a specified offset in the history list.

document
The document object represents the current document in the window. It includes the

following child objects:

. document.forms is a collection with an element for each form in the document.

. document.links is a collection containing elements for each of the links in

the document.

. document.anchors is a collection with elements for each of the anchors in the

document.

DOM Level 1 429

. document.images contains an element for each of the images in the current

document.

. document.applets is a collection with references to each embedded Java

applet in the document.

navigator
The navigator object includes information about the current browser version:

. appCodeName is the browser’s code name, usually “Mozilla.”

. appName is the browser’s full name.

. appVersion is the version number of the browser. (Example: “4.0(Win95;I).”)

. userAgent is the user-agent header, which is sent to the host when requesting
a web page. It includes the entire version information, such as
“Mozilla/4.5(Win95;I).”

. plugIns is a collection, which contains information about each currently
available plug-in (Netscape and Firefox only).

. mimeTypes is a collection containing an element for each of the available
MIME types (Netscape and Firefox only).

DOM Level 1
The level 1 DOM is the first cross-browser DOM standardized by the W3C. Its objects

are stored under the document object of the level 0 DOM.

Basic Node Properties
Each object has certain common properties:

. nodeName is the name of the node (not the ID). The name is the tag name for
HTML tag nodes, #document for the document node, and #text for text nodes.

. nodeType is a number describing the node’s type: 1 for HTML tags, 3 for text
nodes, and 9 for the document.

. nodeValue is the text contained within a text node.

. innerHTML is the HTML contents of a container node.

. id is the value of the ID attribute for the node.

. classname is the value of the class attribute for the node.

430 APPENDIX E: DOM Quick Reference

Relationship Properties
The following properties describe an object’s relationship with others in the

hierarchy:

. firstChild is the first child node for the current node.

. lastChild is the last child object for the current node.

. childNodes is an array of all the child nodes under a node.

. previousSibling is the sibling before the current node.

. nextSibling is the sibling after the current node.

. parentNode is the object that contains the current node.

Offset Properties
Although not part of the W3C DOM, both Netscape and Internet Explorer support

the following properties that provide information about a node’s position:

. offsetLeft is the distance from the left side of the browser window or con-

taining object to the left edge of the node object.

. offsetTop is the distance from the top of the browser window or containing

object to the top of the node object.

. offsetHeight is the height of the node object.

. offsetWidth is the width of the node object.

Style Properties
The style child object under each DOM object includes its style sheet properties.

These are based on attributes of a style attribute, <style> tag, or external style

sheet. See Hour 12, “Working with Style Sheets,” for details on these properties.

Node Methods
The following methods are available for all DOM nodes:

. appendChild(node) adds a new child node to the node after all its existing

children.

. insertBefore(node,oldnode) inserts a new node before the specified existing

child node.

DOM Level 1 431

. replaceChild(node,oldnode) replaces the specified old child node with a

new node.

. removeChild(node) removes an existing child node.

. hasChildNodes() returns a Boolean value of true if the node has one or

more children, or false if it has none.

. cloneNode() returns a copy of the current node.

. getAttribute(attribute_name) gets the value of the attribute you specify

and stores it in a variable.

. setAttribute(attribute_name, value) sets the value of an attribute.

. removeAttribute(attribute_name) removes the attribute you specify.

. hasAttributes() simply returns true if the node has attributes, and false if

it has none.

Document Object Methods and Properties
The following are methods and properties of the document object:

. document.getElementById(ID) returns the element with the specified ID

attribute.

. document.getElementsByTagName(tag) returns an array of the elements

with the specified tag name. You can use the asterisk (*) as a wildcard to

return an array containing all of the nodes in the document.

. document.createElement(tag) creates a new element with the specified tag

name.

. document.createTextNode(text) creates a new text node containing the

specified text.

. document.documentElement is an object that represents the document itself,

and can be used to find information about the document.

This page intentionally left blank

Symbols
&& (and operator), 103
= (assignment operator), 103
{} (braces), for loop syntax, 110
== (equality operator), 103, 256
++ (increment operator), 66, 115
! (not operator), 104
+= operator, 66
— operator, 66
|| (or operator), 103
+ (plus sign), 28
; (semicolon), 27, 38
.au files, 333
.css external files, creating, 201
.is extension, 11
.mid files, 333
.mp3 files, 333
.wav files, 333

A
abbreviating statements with

shorthand expressions, 105
accessibility, 241
accessing

array elements, 77
JavaScript console

(FireFox), 258
ActionScript, 332
ActiveX, 18
addEventListener() function, 142
addEventListener() method, W3C

event model, 238-239
adding

comments to scripts, 43-44,
240, 259

event handlers to HTML tags,
237-238

cross-browser method, 239
items to navigation trees, 228
Script.aculo.us library to

HTML document, 132
scripts to HTML documents, 28
temporary statements to

scripts, 259
text to pages, 225-228

AddItem() function, 387
AddScore() functions, 367
AddText() function, 226

Adobe Dreamweaver, 25
Adobe GoLive, 25
AJAX (Asynchronous JavaScript and

XML), 17, 273
applications, debugging, 285
back end, 274
client operation, requests, 274
client/server processing,

XMLHttpRequest object,
277-278

examples of, 275-276
frameworks, 276
libraries, 130, 276

ajaxRequest function, 279
ajaxResponse

function, 280
creating, 279-280

limitations of, 276-277
live searches, 285

back end, 287-288
front end, 288-289
HTML file example, 286-287
requirements for, 289

quiz
creating, 280, 282-284
testing, 284

ajaxRequest() function, 279
ajaxResponse() function, 280
alert messages, 259
alert() function, 45
anchor objects, 54
And operator (&&), 103
animated slideshows, creating,

322-326
AnimateSlide() function, 326
APIs (application programming

interfaces), Greasemonkey
support for, 302

appendChild() method, 221
applets, 17
applications for JavaScript

improving navigation, 16
remote scripting, 17
special effects, 17
validating forms, 16

applying
classes to elements, 195
styles to specific elements, 194

arguments, 86

Index
arrays, 76. See also string arrays

assigning values to, 76
creating, 76
declaring, 76
elements, accessing, 77
frame, 167-168
length property, 77
sorting, 79-81

ASCII (American Standard
Code for Information
Interchange), 149

assigning values
to arrays, 76
to strings, 71-72
to variables, 65-66

assignment and equality, 256
assignment operator (=), 256
attributes of form tag, 173
audio file formats, 333
avoiding

browser-specific scripting, 239
common scripting

mistakes, 256
HTML errors, 257
assignment and

equality, 256
confusing local and global

variables, 257
improper object usage, 257
syntax errors, 256

errors, 249-252

B
back button, creating, 56-57
back end, 274

of AJAX live search
example, 287-288

background images, CSS
properties, 196-197

background property (CSS), 196
background-attachment property

(CSS), 196
background-color property

(CSS), 196, 213
background-image property

(CSS), 196, 213
background-position property

(CSS), 196

background-repeat property
(CSS), 196

behavior, separating from content
and presentation, 236

best practices, 44
for unobtrusive scripting, 235

bookmarklets, 265
JavaScript Shell, 265

Boolean operators, See logical
operators

Boolean values, 69
Boodman, Aaron, 294
border-color property (CSS), 213
border-style property (CSS), 213
border-width property (CSS), 213
borders, CSS properties, 197-198
break statement, escaping from

infinite loops, 113
browser sensing, 245-246
browser-specific scripting,

avoiding, 239
browsers

dialog boxes, displaying,
164-165

graceful degradation, 237
information about, displaying,

242-243
for Internet Explorer 6.0,

243, 245
non-JavaScript, 247

detecting, 248
progressive enhancement, 237
script compability, 397
timeouts

enabling, 162
repeating, 163

user script support, 296
windows

closing, 159-160
creating, 158-159
resizing, 160

built-in objects, 39
definitions, extending, 94-96
Math object, 121-122

buttons, 178-179

C
calculating

length of arrays, 77
length of strings, 72

calling functions, 87-88
case sensitivity, 42

of event handlers, 140
catch keyword, error handling, 262
CGI (Common Gateway

Interface), 19
Champeon, Steve, 237
changebody() function, 204
changehead() function, 204
charAT() method, 75
check boxes, 179
child objects, 91, 209
childNodes property, 220
classes, 195

applying to elements, 195
clear property (CSS), 197
cleardesc function, 153
clearing timeouts, 162
clearTimeout() method, 162
client/server processing (AJAX),

XMLHttpRequest object,
277-278

clip property (CSS), 212
cloneNode() method, 221
closing windows, 159-160
CLR (Common Language

Runtime), 16
color property (CSS), 196
colors

CSS properties, 196-197
selecting from forms, 202

combining
conditions, 103-104
values of strings, 71

comments, 43-44
adding to code, 240, 259

common scripting mistakes
confusing local and global

variables, 257
HTML errors, 257
improper object usage, 257

communication between
JavaScript and Flash, 332

compatibility issues
of browsers and scripts, 397
of drop-down menus, 346

conditional expressions, 102, 223
conditional operators, 103
conditional statements, 40
conditions, combining, 103-104

constructor functions, 92
containers, 208
content, 236

separating from behavior and
presentation, 236

continue statement, 113
controlling

operator precedence, 68
sounds, 334
styles, 201-204

controls, 18
converting

ASCII code to string charac-
ter, 149

case of strings, 73
data types, 69-70
date formats, 128

createElement() method, 221
createTextNode() method, 221
creating

AJAX libraries, 279-280
ajaxResponse function,

280
ajaxRequest function, 279

AJAX quiz, 280, 282-284
arrays, 76
back/forward buttons, 56-57
Date objects, 126
drag-and-drop objects, 399

CSS style sheet, 400-401
HTML document, 400
JavaScript file, 402-404

drop-down menus, 345
CSS, fine-tuning, 354, 356
example JavaScript file,

352-353
dynamic forms, 385-388
dynamic styles, 202-204
error handlers, 260
event handlers, 140
external .css files, 201
global variables, 65
layers, 210-211
local variables, 65
loops

for, in loops, 115-116
with do statement, 112
with for statement, 109
with while statement,

110-111
movable layers, 214-215

434

background-repeat property (CSS)

navigation trees, 226-228
objects, 90
poker solitaire game script,

363-368
rollovers, 315-316

without JavaScript, 316-317
rules, 193
scripts, required tools

browsers, 25
text editors, 23-25

scrolling windows, 377-380
separate JavaScript and HTML

files, 33-34
site-specific user scripts,

302-304
slideshows, 319-323, 325-326
string arrays, 78
string objects, 71
stylesheets, 198-200
user scripts, 299, 305-306
windows, 158-159

cross-browser scripting, feature
sensing, 245-246

cross-platform compatibility, of
drop-down menu support, 346

CSS (Cascading Style Sheets), 192
adding styles to poker

solitaire game, 368-372
drop-down menu links,

formatting, 347-350
fine-tuning for drop-down

menus, 354-356
for drag-and-drop objects, 400-

401
for scrolling window, 378-379
graphic rollovers, 317-319
hover directive, creating

rollovers, 316-317
movable layers, creating,

214-215
properties

background-color=, 213
background-image, 213
background images, 196-197
border- color, 213
border-style, 213
border-width, 213
borders, 197-198
clip, 212
colors, 196-197

display, 212
fonts, 197
hyphenating, 213
margins, 197-198
overflow, 212
text alignment, 195
units of measurement, 198
visibility, 212

rules, 194
custom objects, 40

D
data types, 68-69

converting between, 69-70
date and time, displaying, 25-30

with large clock display,
30-31

date formats, converting, 128
Date objects, 27

creating, 126
get methods, 127
reading values, 127
setting values, 126

Date.parse() method, 128
Date.UTC() method, 128
debugging

AJAX applications, 285
user scripts, 266-267, 304

debugging tools, 259-260
Firefox’s JavaScript Console,

258
decimal numbers, rounding, 121
declaring

arrays, 76
variables, 64

decrementing variables, 66
defining

event handlers, 140-142
forms, 173-174
functions, 86-87
multiple classes for

elements, 195
objects, 92

describing user scripts with meta-
data, 299-300

design patterns, 241
detecting

browser features, 245-246
non-JavaScript browsers, 248
sound support, 335

Developer Toolbar (Internet
Explorer), 263-264

DHTML (dynamic HTML), 51, 207
dialog boxes, displaying, 164-165
display property (CSS), 212
displaying

browser information, 242-243
for Internet Explorer 6.0,

243-245
date and time, 25-30

with large clock display,
30-31

dialog boxes, 164-165
error messages, 31, 259-261
form data, 182-183
generated source, 265
link descriptions, 151-154
submenus within drop-down

menus, 351
typed characters, 150

do…while loops, creating, 112
document node methods, 221
document object, 52-53

methods, 53
properties, 52

document.getElementById()
method, 213

document.write statement, 10, 27
documenting scripts, 398
DoIt function, 161
Dojo library, 130
DOM (Document Object Model),

12, 49
children, 209
history of, 50
layers, creating, 210
level standards, 51
methods, 50
nodes

document node, methods,
221

properties, 220
relationship properties, 220

objects, 39
document, 52-53
hierarchy, 50
positioning, 211
window, 51

parents, 209

How can we make this index more useful? Email us at indexes@samspublishing.com

DOM (Document Object Model)

435

properties, 50
siblings, 210
structure, 208

DOM Inspector, 264
DoPlay() method, 334
downloading Script.aculo.us

library, 131
Drag() function, 403
drag-and-drop objects

creating, 399
CSS style sheet, 400-401
HTML document, 400
JavaScript file, 402-404

Drop() function, 404
drop-down lists, 181-182
drop-down menus

compatibility issues, 346
creating, 345, 352-353
CSS, fine-tuning, 354, 356
FindChild() function, 350
links, formatting in CSS,

347-350
SetupMenu() function, 350
submenus

displaying, 351
hiding, 351-352
positioning, 349

DTD (Document Type Definition),
395

Dunck, Jeremy, 294
dynamic forms, creating, 385-388
dynamic HTML, 150
dynamic images, 313
dynamic styles, creating, 202-204

E
ECMA (European Computer

Manufacturing Association), 15
elements, 76

buttons, 178-179
check boxes, 179
drop-down lists, 181-182
radio buttons, 180
referring to as arrays, 176
text areas, supported

methods, 176-178
else keyword, 104

testing multiple conditions,
105-107

em property (CSS), 198

emailing form results, 184-186
embedding Flash with JavaScript,

332
embedding sounds, 334
enabling timeouts on browsers,

162
EndGame() function, 368
equality operator (==), 256
error handlers

adding to HTML tags,
237-239

catch keyword, 262
creating, 260
try keyword, 262

error messages
displaying, 259
handling, 31

errors
avoiding, 249-252
displaying information

about, 261
fixing, 267

escaping from infinite loops, 113
event handlers, 11, 41, 139.
See also timeouts

case sensitivity, 140
creating, 140
defining, 140-142
example of, 45
for image object, 314
multiple, executing, 142
onClick, 146-148
onLoad, 151
onMouseDown, 146
onMouseMove, 145
onMouseOver, 145
onMouseUp, 146
parentheses, use of, 278
syntax, 140
W3C event model, 238-239

event object, 142-143
properties, 143-144

events, 12
onMouseOver, 140

evolution of JavaScript, 14
ex property (CSS), 198
examples

of AJAX, 275-276
of for loops, 110

executing multiple event
handlers, 142

expressions, 67
operators, precedence rules,

67-68
extending built-in object

definitions, 94-96
external .css files, creating, 201
external scripts, 11

F
feature sensing, 153, 239,

245-246, 331
findChild() function, configuring

drop-down menus, 350
fine-tuning CSS for drop-down

menus, 354-356
Firefox, 13

DOM Inspector, 264
Greasemonkey extension.

See Greasemonkey
JavaScript console,

accessing, 258
Web Developer Extension, 263

firstChild property, 220
fixing errors in scripts, 267
Flash, 399
Flash/JavaScript Integration

Kit, 332
float property (CSS), 197
flow control, 101

if statement, 102
conditional expressions,

102
logical operators, 103-104

font property (CSS), 197
font-family property (CSS), 197
font-size property (CSS), 197
font-style property (CSS), 197
font-variant property (CSS), 197
font-weight property (CSS), 197
for loops, parameters, 109
for statement, 40, 109

example of, 110
for…in loops, 114

creating, 115-116
form object

onReset event, 175
onSubmit event, 175

formats of audio files, 333
formatting drop-down menu link

in CSS, 347-350

436

DOM (Document Object Model)

forms
colors, selecting, 202
data, displaying, 182-183
defining, 173-174
elements

buttons, 178-179
check boxes, 179
drop-down lists, 181-182
radio buttons, 180
text areas, 177-178
text fields, 176-178

referring to as arrays, 176
results, emailing, 184-186
submitting, 175
validating, 16, 185-186

Forth programming language, 110
forward button, creating, 56-57
frame object, 166
frames array, 167-168
front end of AJAX live search

example, 288-289
Fuchs, Thomas, 129
functions, 11, 38, 85

addEventListener, 142
AddItem(), 387
AddScore(), 367
AddText(), 226
Alert(), 45
AnimateSlide(), 326
arguments, 86
assigning as event handler, 141
calling, 38, 87-88
Changebody(), 204
Changehead(), 204
Cleardesc, 153
constructor, 92
defining, 86-87
DisplayKey, 150
Drag(), 403
Drop(), 404
EndGame(), 368
GraphicBox, 252
HideMenu(), 351
HideSquare(), 216
Hover(), 153
local variables, creating, 65
MakeSlideShow(), 320
Move(), 404
naming conventions, 43
NextSlide(), 320

ParseFloat, 70
PartInt(), 70
Setup(), 340
Show(), 387
ShowHide(), 223
ShowMenu(), 351
showSquare(), 216
Style(), 385
Toggle(), 228, 252
Update(), 163
Validate(), 186
values, returning, 88-89
with multiple parameters,

defining, 87

G
Garret, Jesse James, 274
generated source, viewing, 265
generating random numbers,

122-123
example script, 123-125

get methods for dates, 127
getElementById() method, 202,

216, 221
getElementsByTagName() method,

221
getTimeZoneOffset() function, 127
getUTCDate() function, 128
getUTCDay() function, 128
getUTCFullYear() function, 128
getUTCMonth() function, 128
global variables, 64

confusing with local variables,
257

Gmail, 249
GMT (Greenwich Mean Time), 26
Google Gmail, 249
graceful degradation, 237
graphic check box as unobtrusive

scripting technique, 250-252
graphic rollovers, 317-319
graphicBox() function, 252
graphics, creating for poker

solitaire game, 361
Greasemonkey

activating/deactivating, 298
API functions, 302
installing, 294
metadata, 299-300

security issues, 296
user scripts

installing, 297
managing, 297-298
creating, 299, 305-306
debugging, 304
locating, 296
site-specific, creating,

302-304
testing, 300-301
text area macro user

script, 306-307

H
handling JavaScript errors, 31
hasChildNodes() method, 221
headings, modifying, 223
height property (CSS), 197
HideMenu() function, 351
hiding

objects, 222
submenus within drop-down

menus, 351-352
HideSquare() function, 216
history.back() method, 55
history.forward() method, 55
history.go() method, 55
history.length property, 55
history object, 55
history

of DOM, 50
of JavaScript, 8

HomeSite, 24
hover function, 153
href property (window object), 55
HTML

application compliance, 398
documents for drag-and-drop

objects, 400
editors, 24-25
errors, avoiding, 257
inline styles, 194
layers, creating, 210-211
tags

adding, 237-239
event handlers, 41
id attribute, 194

hyphenated CSS property
names, 213

How can we make this index more useful? Email us at indexes@samspublishing.com

hyphenated CSS property names

437

I
id attribute of HTML tags, 194
IE (Internet Explorer), 13

browser information,
displaying, 243-245

Developer Toolbar, 263-264
error messages, displaying,

259
security settings, 29
Turnabout, 295

if statement, 102
conditional expressions,

102, 223
logical operators, 103

And, 103
else keyword, 104
Not, 104
Or, 103

testing multiple conditions,
105

time and greeting
example, 106-107

image object
event handlers, 314
properties, 314

images
preloading, 314
rollovers, creating, 315-317
slideshows, transitioning

between, 322-326
implementing drag-and-drop, 402
incompatibility with web browsers,

12
Increment operator (++), 115
incrementing variables, 66
IndexOf() method, 75-76
infinite loops, 112

escaping from, 113
initial expression, 109
inline styles, 194
innerHTML property, 220
insertBefore() method, 221
installing

Greasemonkey, 294
user scripts, 297

instances, creating, 93
Internet Explorer. See IE
interpreted languages, 8

J-K
Java, 399
JavaScript Shell, 265
JavaScript-free rollovers, creating,

316-317
join() method, 81
JScript, 15
JSON (JavaScript Object

Notation), 275

keyboard events, 149
ASCII code, converting to

string character, 149
DisplayKey function, 150

Koch, Peter-Paul, 247

L
large clock display, adding to

time and date script, 30-31
lastChild property, 220
lastIndexOf() method, 75
layers, 51, 207

creating, 210-211
positioning, 213

length of arrays, calculating, 77
length property, 72

of arrays, 77
letter-spacing property (CSS), 195
levels (DOM), 51
libraries. See also third-party

libraries
AJAX, creating, 279-280
Script.aculo.us, library effects

example, 132-133
Yahoo! UI Library, 131

limitations of AJAX, 276-277
line-height property (CSS), 196
link descriptions, displaying,

151-154
link objects, 54
linking to external stylesheets,

201
live searches

performing, 285-289
requirements for, 289

local variables, 64-65
confusing with global

variables, 257
localtime variable, 27
locating

strings within strings, 75-76
user scripts, 296

location object, 55-56
location.reload() method, 56
location.replace() method, 56
logical operators, 103

And, 103
Not, 104
Or, 103

loops, 40
continue statement, 113
creating

with for statement, 109-110
with while statement, 111

for…in, 114
creating, 115-116

infinite, 112
escaping from, 113

M
Macintosh-based systems, HTML

editors, 25
Macromedia Dreamweaver, 16
maintaining optional JavaScript

code, 248-249
MakeSlideShow() function, 320
managing user scripts, 297-298
margin property (CSS), 197-198
Math object, 121-122
Math.random method, 123-125
messages

displaying in dialog boxes,
164-165

scrolling, 377-380
metadata, 299-300
methods, 39, 91

CharAT(), 75
ClearTimeout(), 162
document.getElementById(),

213
DoPlay(), 334
GetElementById(), 202
history.back(), 55
history.forward(), 55
history.go(), 55
indexOf(), 75-76
join(), 81
LastIndexOf(), 75
location.reload, 56
location.replace(), 56

438

id attribute of HTML tags

Math.random, 123-125
Play(), 334
Reset(), 175
Rewind(), 335
SetTimeout, 162
SetTimeout(), 163
Sort(), 79-81
Split(), 78-79
Stop(), 335
Submit(), 175
Substring(), 74
window.open(), 159

Microsoft Frontpage 2003, 24
MIME (Multipurpose Internet Mail

Extensions), 330-331
MochiKit library, 131
modifying text, 223
mouse

events
onClick, 146-148
onMouseDown, 146
onMouseMove, 145
onMouseOver, 145
onMouseUp, 146

rollovers, creating, 315-317
mousestatus function, 147
movable layers, creating,

214-215
Move() function, 404
Mozilla Foundation, 13, 15
multiple conditions, testing,

105-107
multiple event handlers,

executing, 142
multiple scripts, order of

operation, 42

N
naming conventions, 43
NaN (non a number), 70
navigation, improving, 16
navigation tools, creating

back/forward buttons, 56-57
navigation trees, adding, 226-228
navigator object, 242

properties, 242-243
nested framesets, 167
Netscape 4.0, event object

properties, 144

Netscape Communications
Corporation, 8

NextSibling property, 220
NextSlide() function, 320
NodeName property, 220
nodes, 209
NodeType property, 220
NodeValue property, 220
non-JavaScript browsers, 247

detecting, 248
Not operator, 104
null value, 69
number-guesser script,

debugging, 266-270
numeric arrays, sorting, 79-81

O
object hierarchy (DOM), 50
objects, 39, 90

built-in, 39
definitions, extending, 94-96

child objects, 91
creating, 90, 93
defining, 92
document, 52-53

methods, 53
properties, 52

DOM, 39, 49
event, 142-143

properties, 143-144
for Netscape 4.0, 144
forms, properties, 174-175
frame, 166
hiding/showing, 222
improper usage, avoiding, 257
instances, creating, 93
location, 55-56
methods, 39
naming conventions, 43
navigator, 242

properties, 242-243
positioning, 211
properties, 39, 91
resizing, 211
siblings, 210
visibility property, 222
window, 51

onClick event handler, 146-148
onLoad event handler, 151

onMouseDown event handler, 146
onMouseMove event handler, 145
onMouseOver event handler, 140
onMouseOver event handler, 145
onMouseUp event handler, 146
onReset event, 175
onSubmit event, 175
Opera, 14
operators, 67

precedence rules, 67-68
Or operator, 103
overflow property (CSS), 212

P
pages, updating, 163
parameters, 38
parent objects, 209
parentheses, event handler

syntax, 278
parseFloat() function, 70
parseInt() function, 70
Pederick, Chris, 263
performing live searches, 285

front end, 288-289
back end, 287-288
HTML file example, 286-287

PHP, 399
piano keyboard script, 337-340
Play() method, 334
plug-ins, 329

feature sensing, 331
sound, detecting, 335
sound-playing, 334

plus sign (+), 28
poker solitaire game, 369

CSS style, adding, 368-372
graphics, creating, 361
HTML document, creating,

361-363
scoring, 360
script, creating, 363-368

pop-up windows, displaying form
data in, 182

pos() function, 216
positioning

objects, 211
submenus in drop-down

menus, 349
preloading images, 314

How can we make this index more useful? Email us at indexes@samspublishing.com

preloading images

439

presentation, separating from
content and behavior, 236

PreviousSibling property, 220
programming languages, Java, 17
progressive enhancement, 237
properties, 39, 91

of CSS
clip, 212
for background images,

196-197, 213
for borders, 197-198, 213
for colors, 196-197
for fonts, 197
for margins, 197-198
for text alignment, 195
for units of measurement,

198
hyphenating, 213
overflow, 212
visibility, 212

of document object, 52
of DOM nodes, 220
of event object, 143-144
of form object, 174-175
of image object, 314
of navigator object, 242-243
of window object, 158
of window.screen object, 158
values, reading, 91

prototype keyword, 94
Prototype third-party library, 129
pt property (CSS), 198
px property (CSS), 198
Python, 399

Q
QuirksMode, 247
quiz questions

creating in AJAX, 280, 282-284
testing, 284

quotation marks, event handler
syntax, 140

R
radio buttons, 180
random numbers, generating,

122-125
recommended web browsers, 25
relationship properties of DOM

nodes, 220

remote scripting, 17, 130, 274
RemoveChild() method, 221
repeating timeouts, 163
ReplaceChild() method, 221
requests, AJAX, 274
required JavaScript, avoiding,

248-249
requirements for AJAX live search

example, 289
reserved words, 43
Reset() method, 175
resetting forms, 175
resizing

objects, 211
windows, 160

return keyword, 89
returning

single character from
strings, 75

UTC time, 128
reusable AJAX libraries

ajaxResponse function, 280
ajaxRequest function, 279
creating, 279-280

Rewind() method, 335
rollovers, 145

creating, 315-316
without JavaScript,

316-317
CSS graphic rollovers,

creating, 317-319
rounding decimal numbers, 121
Ruby, 399
rules, creating, 193

S
Safari, 14
scope of variables, 64
scoring for poker solitaire

game, 360
Script.aculo.us library, 129-130

adding to HTML document,
132

downloading, 131
library effects example,

132-133
scripting languages, 8

VBScript, 18

scripts, 8
adding to HTML

documents, 28
assignment and equality, 256
commenting out, 43-44, 259
common mistakes, avoiding,

256-257
compatibility with browsers,

397
creating, required tools,

23-25
debugging, 266-267
documenting, 398
errors, fixing, 267
event handlers, 41
for displaying date and time,

creating, 26-31
generating random numbers,

123-125
incompatibility with web

browsers, 12
order of operation, 42
separating from HTML files,

33-34
syntax errors, avoiding, 256
testing, 267-269

scrolling window
creating, 377-378
CSS style sheet, 378-379
JavaScript file, 379-380

security issues with user
scripts, 296

security settings (IE 6.0), 29
selecting

colors from forms, 202
names for variables, 64

self keyword, 157
separating

content, presentation, and
behavior, 236

JavaScript and HTML files,
33-34

server-side scripting, 19
SetTimeout() method, 162-163
Setup() function, 340
SetupMenu() function, configuring

drop-down menus, 350
SGML (Standard Generalized

Markup Language), 395

440

presentation, separating from content and behavior

shorthand conditional
expressions, 105

Show() function, 387
ShowHide() function, 223
showing objects, 222
ShowMenu() function, 351
ShowSquare() function, 216
siblings, 210
site-specific user scripts, creating,

302-304
sizing objects, 211
slideshows, creating, 319-326
sort() method, 79-81
sorting

numeric arrays, 79-81
string arrays, 79

sound file formats, 333
sound-playing plug-ins, 334
SoundManager, 335
sounds

controlling, 334
embedding, 334
piano keyboard script,

337-340
testing, 336

special effects, 17
specifying versions of JavaScript,

15
Split() method, 78-79
splitting strings, 78-79
statements, 38

conditional, 40
function calls, 38

Stephenson, Sam, 129
Stop() method, 335
string arrays, 77

creating, 78
sorting, 79

strings, 27, 69-70
assiging values to, 71-72
case, converting, 73
length of, calculating, 72
length property, 72
objects, creating, 71
returning single character

from, 75
splitting, 78-79
substrings, locating, 75-76

structure of DOM, 208

style sheets
classes, 195
CSS. See CSS
switching between, 380-388

Style() function, 385
styles

applying to specific
elements, 194

controlling, 201-204
style sheets

controlling styles, 201-204
creating, 198-200
CSS

adding styles to poker
solitaire game, 368-372

graphic rollovers, 317-319
dynamic styles, creating,

202-204
inline styles, 194
linking to external, 201
rules, 194

submenus
displaying in drop-down

menus, 351
hiding in drop-down menus,

351-352
positioning in drop-down

menus, 349
Submit() method, 175
submitting forms, 175
Substring() method, 74
substrings, 74

index values, 74
locating, 75-76

supported sound plug-ins,
detecting, 335

switch statement, 108
switching between style sheets,

380-388
syntax

case sensitivity, 42
comments, 43-44
errors, avoiding, 256
for event handlers, quotation

marks, 140
for switch statement, 108
naming conventions, 43
reserved words, 43

T
tags

id attribute, 194
script, specifying versions of

JavaScript, 15
temporary statements, adding to

scripts, 259
testing

AJAX quiz, 284
date and time script, 29
multiple conditions, 105

time and greeting
example, 106-107

scripts, 267-269
sounds, 336
user scripts, 298-301

text
adding to pages, 225-228
alignment, CSS properties,

195
modifying, 223
scrolling, 377-380

text area macro user script,
305-307

text areas, supported methods,
177-178

text fields, 176-178
text-align property (CSS), 196
text-decoration property

(CSS), 195
text-indent property (CSS), 196
text-transform property

(CSS), 196
TextPad, 24
third-party libraries

AJAX frameworks, 130
Prototype, 129
Script.aculo.us, 129-130

time, displaying, 25-31
time and greeting example,

106-107
time zones, 127
timeouts

clearing, 162
enabling on browsers, 162
repeating, 163

Toggle() function, 228, 252
ToLocalString() function, 127

How can we make this index more useful? Email us at indexes@samspublishing.com

ToLocalString() function

441

ToLowerCase() method, 73
ToUpperCase() method, 73
ToUTCString() function, 127
transitioning between slideshow

images, 322-326
tree structure of DOM, 209
try keyword, error handling, 262
Turnabout, 295

activating/deactivating, 298
API functions, 302
Options dialog,

accessing, 298
typed characters, displaying, 150

U
units of measurement, CSS prop-

erties, 198
unobtrusive scripting, 235, 320

best practices, 235
errors, avoiding, 249-252
feature sensing, 245-246
maintaining optional

JavaScript code, 248-249
Update() function, 163
updating pages in browsers, 163
usability, 240

accessibility, 241
design patterns, 241

user scripts, 293
creating, 299, 305-306
debugging, 304
describing, 299-300
installing, 297
locating, 296
managing, 297-298
security, 296
site-specific scripts, creating,

302-304
testing, 298-301
text area macro user script,

306-307
UTC (Universal Time

Coordinated), 26
time values, returning, 128

utctime variable, 27

V
validate() function, 186
validating forms, 185-186
variables, 26, 39

arguments, 86
assigning values to, 65-66
declaring, 64
decrementing, 66
expressions, 67
global, creating, 65
incrementing, 66
local, 65
naming conventions, 43
operators, 67

precedence rules, 67-68
scope of, 64
selecting names for, 64

VBScript, 18
verifying date and time script, 29
versions of JavaScript, 14-15
vertical-align property (CSS), 195
viewing

browser information, 242-243
for Internet Explorer 6.0,

243-245
error information, 261
form data, 182-183
generated source, 265

virtual machines, 18
visibility property (CSS), 212, 222

W
W3C (World Wide Web

Consortium), 13, 51
DOM. See DOM
event model, 238-239

web browsers
compatibility with

Javascript, 12
Firefox, 13
IE, 13
Mozilla, 13
Opera, 14
Safari, 14
user script support, 296

web design
design patterns, 241
graceful degradation, 237
progressive enhancement, 237

Web Developer Extension, 263
web pages

text, adding, 225-228
text, modifying, 223

while loops, example of, 111
whitespace, 43
width property (CSS), 197
window objects, 51, 157-158
window.close() method, 159-160
window.moveBy() method, 161
window.moveTo() method, 161
window.open() method, 159
window.resizeBy() method, 161
window.resizeTo() method, 161
window.screen object,

properties, 158
window.setTimeout method, 162
windows

closing, 159-160
creating, 158-159
resizing, 160

Windows-based systems, HTML
editors, 24-25

with keyword, 125
WSH (Windows Scripting

Host), 16

X–Z
XHTML (Extensible Hypertext

Markup Language), 395-396
XML (Extensible Markup
Language), 395

AJAX. See AJAX
XMLHttpRequest object, 277-278
XSL (Extensible Stylesheet

Language), 396

Yahoo Developer Network, 241
Yahoo! UI Library, 131, 239

442

ToLowerCase() method

in
fo

rm
it

.c
o
m

/
o
n
li

n
e
b
o
o
k
s

Get your first 14 days FREE!
InformIT Online Books is offering its members a 10-book subscription risk free

for 14 days. Visit http://www.informit.com/onlinebooks for details.

Wouldn’t it be great
if the world’s leading technical

publishers joined forces to deliver
their best tech books in a common

digital reference platform?

They have. Introducing
InformIT Online Books

powered by Safari.

■ Specific answers to specific questions.
InformIT Online Books’ powerful search engine gives you

relevance-ranked results in a matter of seconds.

■ Immediate results.
With InformIt Online Books, you can select the book you

want and view the chapter or section you need immediately.

■ Cut, paste, and annotate.
Paste code to save time and eliminate typographical errors.

Make notes on the material you find useful and choose
whether or not to share them with your workgroup.

■ Customized for your enterprise.
Customize a library for you, your department, or your entire

organization. You pay only for what you need.

http://www.informit.com/onlinebooks

XML

in10 Minutes

Teach YourselfTeach Yourself

Andrew H. Watt

800 East 96th St., Indianapolis, Indiana, 46240 USA

00 0672324717 fm 3/3/05 12:05 PM Page i

Sams Teach Yourself XML in 10
Minutes
Copyright © 2003 by Sams Publishing
All rights reserved. No part of this book shall be reproduced,
stored in a retrieval system, or transmitted by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liabil-
ity is assumed with respect to the use of the information con-
tained herein. Although every precaution has been taken in the
preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability
assumed for damages resulting from the use of the information
contained herein.

International Standard Book Number: 0-672-32471-7

Library of Congress Catalog Card Number: 2002110227

Printed in the United States of America

First Printing: October 2002

05 04 4 3

Trademarks
All terms mentioned in this book that are known to be trade-
marks or service marks have been appropriately capitalized.
Sams Publishing cannot attest to the accuracy of this informa-
tion. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and
as accurate as possible, but no warranty or fitness is implied.
The information provided is on an “as is” basis. The author and
the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising
from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when
ordered in quantity for bulk purchases or special sales. For
more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

EXECUTIVE EDITOR

Michael Stephens

ACQUISITIONS EDITOR

Todd Green

DEVELOPMENT EDITOR

Kevin Howard

MANAGING EDITOR

Charlotte Clapp

PROJECT EDITOR

George E. Nedeff

COPY EDITOR

Krista Hansing

INDEXER

Sandra Henselmeier

TECHNICAL EDITORS

Steve Heckler

Mary C. Ecsedy

TEAM COORDINATOR

Lynne Williams

MULTIMEDIA
DEVELOPER

Dan Scherf

INTERIOR DESIGNER

Gary Adair

COVER DESIGNER

Aren Howell

00 0672324717 fm 3/3/05 12:05 PM Page ii

Table of Contents

Introduction..1

PART 1 XML Documents

1 What Is XML? 5
What Is XML For? ..5
XML Is a Markup Language ..9
XML Is a Meta Language..10
How Does XML Relate to HTML? ..12
Separating Content from Presentation ..13
How Is XML Written? ..14
Summary ..16

2 The Structure of an XML Document 17
An XML Document ..17
Prolog ..18
Document Type Declaration ..22
Document Element ..24
CDATA Sections ..25
Content After the Document Element End Tag28
Summary ..28

3 XML Must Be Well-Formed 29
Well-Formed XML Documents ..29
XML Names ..30
Elements ..32
Attributes..33
Other Characteristics of Well-Formedness ..35
Well-Formedness and XML Processor Type39
Summary ..40

00 0672324717 fm 3/3/05 12:05 PM Page iii

iv Sams Teach Yourself XML in 10 Minutes

4 Valid XML—Document Type Definitions 41
Shared Documents: Why We Need DTDs ..41
What Is a Valid XML Document? ..43
What a DTD Is ..43
Declaring Elements in DTDs ..46
Declaring Attributes in DTDs..50
Declaring Entities in the DTD ..52
Summary ..52

5 XML Entities 53
What Is an Entity? ..53
Parsed Entities..58
Unparsed Entities ..61
Summary ..64

6 Characters in XML 65
Internationalization ..65
XML and Internationalization ..69
Unicode ..72
Fonts, Characters, and Glyphs ..74
Summary ..76

7 The Logic Hidden in XML 77
Modeling Data As XML..77
W3C XML Data Models ..85
XPath..86
The XML Information Set ..87
Summary ..88

8 Namespaces in XML 89
What Is a Namespace, and Why Do You Need Them?89
Using Namespaces in XML ..93
Using Multiple Namespaces in a Document99
Summary ..101

00 0672324717 fm 3/3/05 12:05 PM Page iv

vContents

PART 2 Manipulating XML

9 The XML Path Language—XPath 102
How XPath Is Used ..102
Accessing Elements ..109
Accessing Attributes ..111
XPath Functions ..112
Summary ..114

10 XSLT—Creating HTML from XML 115
XSLT Basics ..115
Creating a Simple HTML Page ..118
Creating an HTML List ..122
Creating an HTML Table ..126
Summary ..128

11 XSLT—Transforming XML Structure 129
Why Change Structure? ..129
Copying Elements..131
Creating New Elements ..135
Creating New Attributes ..140
Summary ..142

12 XSLT—Sorting XML 143
Conditional Processing and Sorting Data..143
Conditional Processing ..144
The xsl:choose Element ..149
Sorting Output..152
Multiple Sorts ..155
Summary ..158

13 Styling XML with CSS 159
Cascading Style Sheets and XML ..159
Associating a Stylesheet ..161
Using CSS Rules with XML ..161
Some Examples Using CSS Styling ..164
Using CSS with XSLT ..167
Summary ..171

00 0672324717 fm 3/3/05 12:05 PM Page v

vi Sams Teach Yourself XML in 10 Minutes

14 Linking in XML—XLink 172
The XML Linking Language ..172
XLink Attributes ..175
XLink Examples ..175
Document Fragments and XPointer ..178
XPointer and XPath ..180
Summary ..187

PART 3 Programming XML

15 Presenting XML Graphically—SVG 188
What Is SVG? ..188
Advantages of SVG ..190
Creating SVG ..191
Some SVG Examples ..193
Summary ..198

16 The Document Object Model 199
The Document Object Model ..199
DOM Interfaces ..201
DOM Interfaces Properties and Methods ..205
Summary ..209

17 The Document Object Model—2 210
Creating a New Element..210
Retrieving Information from the DOM ..215
Summary ..220

PART 4 Where XML is Going

18 SAX—The Simple API for XML 221
What SAX Is and How It Differs from DOM221
Basics of SAX Programming ..222
Installing a SAX Parser ..224
Simple SAX Example..226
Summary ..230

00 0672324717 fm 3/3/05 12:05 PM Page vi

viiContents

19 Beyond DTDs—W3C XML Schema 231
W3C XML Schema Basics..231
Declaring Elements..233
Defining Complex and Simple Types..238
Summary ..240

PART 5 Appendices

A XML Online Resources 241
Web Sites ..241
Mailing Lists ..243

B XML Tools 246
XML Editors ..246
XSLT Tools ..247
XLink and XPointer Tools ..251

C XML Glossary 252

Index 263

00 0672324717 fm 3/3/05 12:05 PM Page vii

About the Author
Andrew Watt is an independent consultant and author with knowledge
and interest in XML and graphics topics. He is the author of Designing
SVG Web Graphics (New Riders, 2001) and XPath Essentials (John Wiley
& Sons, 2002). He is a co-author of XML Schema Essentials (John Wiley
& Sons, 2002), Sams Teach Yourself JavaScript in 21 Days (Sams, 2002),
and SVG Unleashed (Sams, 2002). He is also a contributing author to
Platinum Edition Using XHTML, XML, and Java 2 (Que, 2000),
Professional XML, Second Edition (Wrox Press, 2001), Professional XSL
(Wrox Press, 2001), Professional XML Meta Data (Wrox Press, 2001),
and Special Edition Using XML, Second Edition (Que, 2002).

00 0672324717 fm 3/3/05 12:05 PM Page viii

Dedication
I would like to dedicate this book to the memory of my late father, George
Alec Watt, a very special human being.

Acknowledgments
I would like to thank all the people at Sams Publishing who have made
this book possible. Any book is the work of a team, not simply of a single
person.

I would like to thank Todd Green and George Nedeff for keeping progress
from idea to completion on course. I am grateful to Kevin Howard for
careful developing, and Krista Hansing for concise editing.

I am also grateful to Steve Heckler for all his sensible suggestions. I
couldn’t take them all on board in a book of this size, but they were
appreciated.

00 0672324717 fm 3/3/05 12:05 PM Page ix

We Want to Hear from You!
As the reader of this book, you are our most important critic and commen-
tator. We value your opinion and want to know what we’re doing right,
what we could do better, what areas you’d like to see us publish in, and
any other words of wisdom you’re willing to pass our way.

As an executive editor for Sams Publishing, I welcome your comments.
You can email or write me directly to let me know what you did or didn’t
like about this book—as well as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the
topic of this book. We do have a User Services group, however, where I
will forward specific technical questions related to the book.

When you write, please be sure to include this book’s title and author as
well as your name, email address, and phone number. I will carefully
review your comments and share them with the author and editors who
worked on the book.

Email: feedback@samspublishing.com

Mail: Michael Stephens
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

For more information about this book or another Sams Publishing title,
visit our Web site at www.samspublishing.com. Type the ISBN (excluding
hyphens) or the title of a book in the Search field to find the page you’re
looking for.

00 0672324717 fm 3/3/05 12:05 PM Page x

Introduction

XML, the Extensible Markup Language, is the basis of many key tech-
nologies on the Web and many growing areas of software development.
An understanding of at least the basics of XML is essential for an increas-
ing number of Web developers and software developers.

XML bears many similarities to HTML, but it is sufficiently different to
cause problems for many newcomers to XML. To write XML code that
won’t cause an XML parser to choke, you need to get many things right.
Some are simple—for example, XML is case sensitive. Others are more
subtle. It’s important that you get on top of these issues right at the begin-
ning of using XML.

This book teaches you how an XML document is correctly formed—
”well-formed,” in XML jargon—and how to make use of several of the
key XML-related technologies, including XPath, XSLT, the Document
Object Model, SAX, and the W3C XML Schema. By the time you finish
reading this book, you will understand what these XML-related technolo-
gies do and will have grasped many key facts about each of these impor-
tant technologies so that you can begin to use them for yourself.

Who Is Sams Teach Yourself XML in
10 Minutes For?
This book is for you if

• You are new to XML and you want to get a handle on what
XML is really about.

• You want to quickly learn the key facts about using XML and its
important associated technologies.

• You want to know how to create well-formed XML.

• You want to get a handle on Document Type Definitions
(DTDs).

01 0672324717 intro 3/3/05 12:05 PM Page 1

2 Sams Teach XML in Ten Minutes

• You want to understand how you can create HTML from XML
using XSLT.

• You want to be able to change the structure of an XML docu-
ment using XSLT.

• You want to learn the basics of programming XML using the
Document Object Model and the Simple API for XML (SAX).

• You want to understand the basics of how W3C XML Schema
works.

What This Book Covers
This book shows you how an XML document is correctly structured. It
also explains and demonstrates how to write XML so that it is well-
formed and, therefore, acceptable to an XML parser.

XML is full of jargon, so new terms are explained as they are introduced.
The book also has a glossary that explains or reminds you of what many
terms mean and when they are used.

You’ll be introduced to Document Type Definitions (DTD), which are
used to define the allowed structure of a class of XML documents. You’ll
also learn about using entities in XML, to allow reuse of XML content.

In addition, the book discusses and demonstrates the use of Cascading
Style Sheets (CSS) and Extensible Stylesheet Language Transformations
(XSLT). You’ll also be introduced to linking in XML using the XML
Linking Language (XLink) and the XML Pointer Language (XPointer).

The book goes on to cover Scalable Vector Graphics (SVG), and it
demonstrates programming XML using the Document Object Model and
the Simple API for XML. The final chapter of the book introduces W3C
XML Schema, a schema technology that goes beyond the capabilities of
the DTD.

Of course, a book of this length can’t tell you everything about XML and
its associated family of technologies. You’re pointed to sources of further
information on XML in Appendix A, “XML Online Resources.”

01 0672324717 intro 3/3/05 12:05 PM Page 2

3Introduction

What You Need to Use This Book
You don’t need expensive tools to create XML code similar to the code
you see in this book. If you want, you can use a plain text editor such as
Windows Notepad. However, an XML-aware editor such as XML Writer
(a 30-day free trial download is available at www.xmlwriter.net) is better.

You will need XSLT software to run some of the code. Three free suitable
downloads of XSLT software are listed in Appendix B, “XML Tools.”

To view SVG, you will need an SVG viewer, such as the Adobe SVG
Viewer; it can be downloaded free from www.adobe.com/svg/.

To run the code for the DOM and SAX chapters, you will need a
JavaScript interpreter (present in almost all Web browsers) and a Java
Virtual Machine (already installed on most operating systems).

Source Code and Updates
For updates to this book and to download the source code and examples
presented in this book, visit www.samspublishing.com. From the home
page, type this book’s ISBN (0672324717) into the search window and
click Search to access information about the book and for a direct link to
the source code.

01 0672324717 intro 3/3/05 12:05 PM Page 3

01 0672324717 intro 3/3/05 12:05 PM Page 4

LESSON 1
What Is
XML?

In this lesson, you will learn what XML is and the basics of how it is
written.

What Is XML For?
Many newcomers to XML, the Extensible Markup Language, find it diffi-
cult to grasp what XML is and what XML is for. Part of the difficulty
arises from the fact that XML is pretty abstract, and part is because XML
can do many things, not just one. Only after you have explored XML for
some time do the parts begin to come together to make sense. In addition,
the number of XML language standards, such as XSLT, XPath, SVG, and
XML Schema, is potentially intimidating.

XML documents are intended for the storage or exchange of data or infor-
mation. XML “documents” can be used to store data that you would tradi-
tionally store as documents—letters, reports, manuals and so on—or data
that you might associate with databases.

Note In XML, a document can be what you would
normally think of as a document, but it also might be
a complex, highly structured hierarchical data store.

02 0672324717 CH01 3/3/05 12:05 PM Page 5

6 Lesson 1

A simple XML document could express a letter with a structure similar to
the following code:

<?xml version=”1.0” ?>
<letter>
<salutation>Dear John</salutation>
<paragraph>
I look forward to meeting you on Saturday morning at the
agreed location.

</paragraph>
<paragraph>
It will be great to see you again after so many years.
</paragraph>
<ending>
Yours sincerely,
</ending>
<signature>
Janet
</signature>

</letter>

Note Element type names are case sensitive in XML,
unlike the situation that arises using HTML. This
means that an element type named myOrder is a dif-
ferent element from MyOrder or myorder.

Equally, an XML “document” can store data that you might associate as
being appropriate for storage in a database-management system. For
example, you could use XML to store information for a human resources
department using a structure similar to the following:

<Employees>
<Employee>
<Name>
<FirstName>John</FirstName>
<MiddleInitials>Q</MiddleInitials>
<LastName>Campbell</LastName>

</Name>
<EmployeeID>12345</EmployeeID>

02 0672324717 CH01 3/3/05 12:05 PM Page 6

7What Is XML?

</Employee>
<Employee>
<Name>
<FirstName>Joan</FirstName>
<MiddleInitials>D</MiddleInitials>
<LastName>Dupois</LastName>

</Name>
<EmployeeID>01234</EmployeeID>

</Employee>
</Employees>

In addition to being suitable for storing many types of data, XML docu-
ments can be used to transmit messages, such as those sent across the
Internet. If a single character is corrupted in an XML message, the mes-
sage remains largely intact because each character is no more than that—a
single character. Binary formats might be impossible to interpret if one
byte is corrupted.

XML Is Human-Readable
XML is, at least for developers, human-readable. Typically, an XML
developer uses element type names (informally called tag names) that are
meaningful.

The readability of a data store expressed in a format such as this

DE239, 0123, 01/12/24, 200.87, 02/01/03

is much improved by expressing it like this:

<order>
<OrderNumber>DE239</OrderNumber>
<CustomerID>0123</CustomerID>
<OrderDate>01/12/24</OrderDate>
<OrderAmount>200.87</OrderAmount>
<DespatchDate>02/01/03</DespatchDate>

</order>

This is because someone looking at the information for the first time can
quickly gather what the document is about.

02 0672324717 CH01 3/3/05 12:05 PM Page 7

8 Lesson 1

The improvement in readability is bought at the price of increasing file
size and, if included in a message, increasing transmission time.

Is XML Usable on the Web?
When XML 1.0 was first finalized in 1998, there was a lot of expecta-
tion—at least some of it hype—that XML would be transmitted on the
Web as XML. At the time of this writing, this hasn’t happened, partly
because conventional (HTML) Web browsers have added only limited
XML capabilities to the existing HTML functionality. Another factor has
been the prolonged delays in completing the W3C recommendations for
the XML Linking Language (XLink, completed in mid-2001) and the
XML Pointer Language (XPointer, not yet a recommendation at the time
of this writing). Using XML as XML on the Web has been unrealistic
without functional XML linking (XLink) to link to external documents
and fragment identifier (XPointer) technologies to link to specified parts
of documents.

In addition, XML has lacked forms capabilities for data collection. At the
time of this writing, the W3C XForms specification is two steps from
being finalized and will likely be finalized soon after the time this book is
published.

After XLink, XPointer, and XForms are finalized, using XML application
languages on the Web—including the XML-based Scalable Vector
Graphics (SVG) specification for vector graphics—becomes more realis-
tic. New XML-dedicated browsers, such as the X-Smiles browser (see
http://www.x-smiles.org), are appearing, making all-XML Web sites

Tip Be sure to use meaningful names for elements in
your XML documents. XML doesn’t make you use
meaningful element type names for elements that you
invent, but using meaningful names makes it easier
for you to maintain the code and for newcomers to
the code to understand the meaning of the docu-
ments that you create.

02 0672324717 CH01 3/3/05 12:05 PM Page 8

9What Is XML?

and browsers potentially viable. Users will decide whether the functional-
ity offered is sufficiently improved to displace HTML’s current dominant
position.

In the meantime, the practical solution that many have chosen is to store
information as XML (or in a relational database-management system that
can export XML) and present that XML content after transformation to
HTML, which is displayed in the conventional way in a Web browser.
XSLT transformations are described in Chapter 10, “XSLT—Creating
HTML from XML”; Chapter 11, “XSLT—Transforming XML Structure”;
and Chapter 12, “XSLT—Sorting XML.”

Note Transformation is the process of selecting
desired data in an XML document or data store and
either restructuring it as another XML document or
producing a non-XML document, such as HTML.

XML Is a Markup Language
As its name suggests, XML is a markup language. Markup is used to con-
vey some information about text or other data. XML has similarities to
other markup languages.

Markup may be used to indicate how text is to be presented. In a word-
processing program, for example, hidden codes communicate to the word-
processor software various settings that are applied to a document but that
are not visible. Typically, the codes used in word-processing programs are
not easy for a typical user to read or decipher.

The Hypertext Markup Language (HTML) uses angled brackets and tags
to convey something about the structure of a document to be presented on
the World Wide Web. An h1 tag, for example, indicates a top-level head-
ing. HTML markup typically merges information about the presentation
of text content with its meaning. The h1 tag, for example, indicates not
only a top-level heading but likely also specifies, according to browser
settings, a particular font size, and so on.

02 0672324717 CH01 3/3/05 12:05 PM Page 9

10 Lesson 1

Markup may also be used to indicate something about the meaning of the
text content. For example, if you wanted to express some information
about this book using XML syntax, you could write this:

<?xml version=”1.0” ?>
<book>
<title>Sams Teach Yourself XML in 10 Minutes</title>
<author>Andrew Watt</author>
<publisher>Sams Publishing</publisher>

</book>

The use of meaningful element type names results in a logical structure
that is better expressed than when using HTML tags. Notice that the pre-
ceding code says nothing about how the information is to be presented.

XML Is a Meta Language
XML differs from markup languages such as HTML because XML can
have any number of element type names that often are informally called
tag names. This gives application languages that use XML syntax the
functionality to represent data from any subject domain. Because all these
XML application languages use the same syntax rules, those languages
can be processed using a set of common core software tools that under-
stand XML syntax rules, with custom tools being necessary for fewer
aspects of processing. This makes possible efficiencies that facilitate data
exchange between users and between applications.

A meta language can be thought of as a set of grammar rules. The appli-
cation languages that follow the specified set of rules can be thought of as
a vocabulary. Broadly, in the natural language domain there are sets of
rules that specify how words are used with punctuation and so on. Many
Western languages broadly follow similar sets of rules at that level, with
uppercase initial letters to start a sentence, periods to complete a sentence,
and so on. But the words used in each language, such as in English and
French, are very different.

Of course, the syntax rules that apply to XML-based application lan-
guages are much more tightly defined and consistent than the situation in
the natural language realm, but the principles are similar. Using this single

02 0672324717 CH01 3/3/05 12:05 PM Page 10

11What Is XML?

set of XML syntax rules, you—or, often more importantly, the World
Wide Web Consortium (W3C)—can define multiple languages that follow
XML syntax rules precisely. This facilitates processing of code written in
those languages because a generic XML processor (also called an XML
parser) can parse the characters of files written in that language and can
extract its logical structure and pass that logical information to another
application more specific to the needs of the application language.

You Can Create Your Own Vocabulary
XML 1.0 is a set of syntax rules. You can create your own set of element
type names, as you learned in the short examples earlier in this chapter.

Already the W3C has published specifications for many application lan-
guages of XML, including languages to describe the transformation of
XML (XSLT, the Extensible Stylesheet Language Transformations,
described in Chapters 10–12), to create links among XML documents (the
XML Linking Language, XLink, described in Chapter 14, “Linking in
XML—XLink”), and to describe vector graphics (SVG, Scalable Vector
Graphics).

The syntax rules of XML can also be used by corporations or business
consortia to create XML application languages in various business or
technical domains. Many business and technical domains have already
created common vocabularies to assist data exchange. Common vocabu-
laries use schemas to define the allowed content and structure of a class of
XML documents. Schemas can be written using non-XML syntax—
Document Type Definitions, described in Chapter 4, “Valid XML—
Document Type Definitions”—or using XML syntax, the W3C XML
Schema language described in Chapter 19, “Beyond DTDs—W3C XML
Schema.”

This enormous flexibility of XML needs some order applied to it—after
all, if everyone used element type names just as they personally wanted,
individuals or companies would use different element type names to
describe the same thing or would use the same element type names to
describe different concepts. In fact, these problems are pretty much
impossible to avoid; this potential for element name clashes led to the

02 0672324717 CH01 3/3/05 12:05 PM Page 11

12 Lesson 1

development of namespaces in the XML specification. Namespaces are
described in Chapter 8, “Namespaces in XML.”

How Does XML Relate to HTML?
XML is a meta language, a set of syntax rules. HTML is an application
language, a predefined vocabulary that uses the rules of another meta lan-
guage, Standard Generalized Markup Language (SGML).

Both XML and HTML derive from SGML, but in different ways. XML
uses a subset of the syntax rules allowed in SGML documents. In princi-
ple, HTML can use all the syntax rules of SGML, but only as a defined
vocabulary that makes use of the SGML syntax rules.

HTML has a defined number of tags defined by specification documents
produced by W3C. An HTML processor—a Web browser—should
process only those tags that are officially approved. With the exception of
some legacy or unofficial tags, such as the embed tag, this is what an
HTML processor does. XML documents, by contrast, can contain any ele-
ment names that you choose (subject to the rules for legal characters in
XML names, described in Chapter 3, “XML Must Be Well-Formed”).

HTML element names are not case sensitive. A Web browser processes a
paragraph identically whether it is written as

<p>This is a test paragraph</p>

or as

<P>This is a test paragraph</P>

XML, by contrast, is case sensitive. For the names of two elements to be
treated as identical, each character must match exactly. The Title and
title elements in the following code snippet are treated as different ele-
ments by an XML processor:

<book>
<Title>Sams Teach Yourself XML in 10 Minutes</Title>
<author>
<title>Mr.</title>
<Name>Andrew Watt</Name>

</author>
</book>

02 0672324717 CH01 3/3/05 12:05 PM Page 12

13What Is XML?

Because the Title and title elements contain different types of informa-
tion, it might be desirable to distinguish them. But it is less confusing to
choose element type names such as BookTitle and PersonalTitle.

Separating Content from
Presentation
When most Web programming was done on a small scale by individuals,
the problems arising from mixing content and presentation existed but
weren’t a major problem for small-scale HTML users. If you had to make
many individual changes, the total number was unlikely to be enormous.

One of the disadvantages of HTML for large projects is that content and
presentation are entangled. An h1 tag indicates that the contained text is a
heading, but, depending on the way the browser is configured, it also indi-
cates something about how the text is to be displayed. Increasingly,
HTML documents separate presentation from content by using Cascading
Style Sheets (CSS).

In XML, by contrast, typically a document describes only the logical
structure of the data:

<book>
<title>The Bible</title>
<TestamentTitle>The Old Testament</TestamentTitle>
<TestamentTitle>The New Testament</TestamentTitle>
</book>

You might expect the text content of the title and TestamentTitle ele-
ments in the preceding code to be displayed as headings, but the XML
document contains no information about exactly how they should be pre-
sented. Typically, an XML document is styled using CSS style sheets or
using XSLT.

Note For historical reasons, a CSS style sheet is two
words and an XSLT stylesheet is one word.

02 0672324717 CH01 3/3/05 12:05 PM Page 13

14 Lesson 1

How Is XML Written?
XML is written using tags. An XML element has a start tag that is delim-
ited by angled brackets—written as <myStartTagName>—and an end tag—
written as </myStartTagName>—which is also delimited by angled
brackets. For example, to create a title element in XML, you could write
this:

<title>Some book title</title>

Unlike in some parts of HTML, tags in XML must be used in pairs.
Omitting an end tag causes the XML processor to generate an error. Each
start tag in XML must have a matching end tag.

Note An XML processor is a piece of software that
processes the characters of an XML document and
makes available to another piece of software—often
called the application—the logical structure of the
XML document.

In HTML, you could write this

<p>This is a paragraph
<p>This is another paragraph

and the Web browser would figure out that the first p tag ends at the end
of the first line of code. In HTML, you could also write this to close the
tags explicitly:

<p>This is a paragraph</p>
<p>This is another paragraph</p>

Allowing syntax options in this way makes an HTML processor more
complex than if a rule existed that all tags had to be closed.

XML uses that principle to simplify the writing of XML processors. All
XML elements must have a matching end tag for each start tag. This
means that you must write XML documents correctly or the XML proces-
sor will signal an error and stop processing.

02 0672324717 CH01 3/3/05 12:05 PM Page 14

15What Is XML?

If you needed an XML element to describe the title of a book, you could
write the title element as follows:

<title>Sams Teach Yourself XML in 10 Minutes</title>
<author>Andrew Watt</author>

An error would result if you completed the document and did not provide
an end tag, </title>, to balance the <title> start tag.

Adding Attributes to Elements
XML elements often contain qualifying information contained in attrib-
utes. XML attributes are written inside the start tag of an element, after
the element type name and separated from it and any other attributes by
whitespace. Finally, optionally, the attribute name/value pair is separated
from the closing angled bracket of the start tag by a space character.

Attribute values in XML must be surrounded by paired quotation marks,
either a pair of double quotes or apostrophes.

An XML element with one or more attributes could be written like the
following code:

<Invoice date=”2002/12/23”>
<InvoiceNumber Dept=’ID4’>DA890</InvoiceNumber>
<BillTo>John Smith</BillTo>
<!-- And so on -->
</Invoice>

The value of the date attribute on the Invoice element uses paired double
quotes, and the value of the Dept attribute is delimited by paired apostro-
phes. Either paired character is acceptable to an XML processor.

It is an error to omit the paired quotation marks. The following is not
legal XML:

<Invoice date=2002/12/23>
<!-- And so on -->
</Invoice>

02 0672324717 CH01 3/3/05 12:05 PM Page 15

16 Lesson 1

Try It Yourself
You have seen how to create simple XML documents that contain ele-
ments and attributes. Many XML editors, such as those described in
Appendix B, “XML Tools,” check that you have written XML documents
correctly and help you find errors. Some XML editors with that capability,
such as XML Writer (see Appendix B), have a free download that you can
try if you want.

Summary
In this lesson, you learned what XML is, what XML can be used for, and
how to correctly write XML elements and attributes.

02 0672324717 CH01 3/3/05 12:05 PM Page 16

LESSON 2
The Structure
of an XML
Document

In this lesson you will learn the permitted structure of an XML document
and see examples of allowed variations on the basic structure.

An XML Document
An XML document has the following general structure but some parts are
optional:

• A prolog, which may optionally be empty

• At least one element, the document element, although a typical
XML document has a nested structure of elements

• Optional content following the end tag of the document element

Each of these permitted parts of an XML document is described in the
remaining sections of this chapter.

A minimal XML document can consist of a single document element,
such as this:

<someElementTypeName>The content</someElementTypeName>

03 0672324717 CH02 3/3/05 12:05 PM Page 17

18 Lesson 2

Typically, XML documents are much more complex and have a nested
structure of elements. An XML document that uses more of the allowed
structures might look like this:

<?xml version=”1.0” ?>
<!-- This is an example XML document. -->
<!DOCTYPE book >
<book>
<title>Sams Teach Yourself XML in 10 Minutes</title>
<author>Andrew Watt</author>
</book>

First let’s look at what can go in the prolog.

Prolog
The prolog of an XML document, when present, precedes the document
element.

The prolog may, but need not, contain the following:

• An XML declaration

• Miscellaneous content—processing instructions or comments

• A Document Type Declaration, also called a DOCTYPE declaration

Let’s look at each of these in turn.

The XML Declaration
The XML declaration can be as simple as this:

<?xml version=”1.0” ?>

This declaration is an optional part of all XML documents. However,
when an XML declaration is present in an XML document, it must occur
in the first line of the XML document and must have no characters—not
even a single space character—before it.

An XML declaration, if present, must have a version attribute. For XML
documents that correspond to version 1.0 of XML, the only permitted

03 0672324717 CH02 3/3/05 12:05 PM Page 18

19The Structure of an XML Document

value for the version attribute is 1.0. Future versions of XML might use
different version numbers, allowing XML processors to process only ver-
sions of XML that they recognize.

Note At the time of this writing, only a value of 1.0
is meaningful. However, version 1.1 of XML is cur-
rently in draft at the W3C.

Optionally, an XML declaration may include an encoding attribute. When
present, this attribute indicates the character encoding being used in the
document. All XML processors must be capable of processing XML doc-
uments encoded in the UTF-8 and UTF-16 character encodings. So, if an
XML document is encoded in UTF-8 or UTF-16, no encoding attribute is
needed because all conforming XML processors will be capable of pro-
cessing the document. Optionally, XML processors may choose to support
additional character encodings. When using other encodings, it is advis-
able to specify an encoding attribute and the appropriate value. Character
encoding is discussed further in Chapter 6, “Characters in XML.”

Note Strictly speaking, an XML declaration is not a
processing instruction, although the initial delimiter,
<?, and the closing delimiter, ?>, are the same as those
used by processing instructions. These are described in
the following section.

The XML declaration may also include a standalone attribute. The
standalone attribute takes the values of yes or no. If external markup
declarations supply default values for attributes or if entities (other than
built-in entities—see Chapter 5, “XML Entities”) are declared, the stand-
alone attribute must have the value of no.

03 0672324717 CH02 3/3/05 12:05 PM Page 19

20 Lesson 2

Comments and Processing Instructions
XML documents may contain comments, which contain information
intended for human consumption or processing instructions.

Note A markup declaration declares the existence
of, for example, an element or attribute in the rele-
vant class of XML documents. It defines permitted or
default values in some circumstances.

Note XML comments and processing instructions
described in the following sections may occur in the
prolog, within the document element, and after the
end tag of the document element.

XML Comments
XML comments may occur anywhere outside other markup. In other
words, comments cannot be used within the start or end tags of elements,
within processing instructions, or within entity references, empty element
tags, character references, CDATA section delimiters, Document Type
Declarations, XML declarations or text declarations. Any unfamiliar terms
are explained in more detail later.

XML comments use the same syntax as HTML comments:

<!-- This is an XML comment -->

The character sequence <!-- is the starting delimiter of an XML comment,
and the character sequence --> is the ending delimiter. The text contained
between these delimiters can contain any characters (with exceptions
described in the next paragraph), including those that must be escaped
when present within element or attribute values (such as the left angle
bracket or right angle bracket). Implicitly, the text content of an XML
comment is marked as unparsed information and, therefore, need not sat-
isfy the requirements for other parsed content.

03 0672324717 CH02 3/3/05 12:05 PM Page 20

21The Structure of an XML Document

For compatibility with SGML, the character string -- must not occur
within an XML comment. Also, it is illegal to end an XML comment with
the character sequence --->, which has three consecutive dashes.

XML Processing Instructions
An XML document is viewed in the XML 1.0 Recommendation as being
parsed by an XML parser that then passes the results of that parsing to an
application. Sometimes it might be appropriate to pass to the application
instructions intended for the use of the application rather than the results
of parsing human-readable markup. Because processing instructions are
intended for use outside the XML processor, they are not considered part
of the character content of the XML document.

An XML processing instruction is delimited by the starting character
sequence <? and by the ending character sequence ?>.

An XML processing instruction takes the following general form:

<? target characterSequence ?>

Here, target is any XML name, excluding the character sequence xml or
XML, in any combination of upper- or lowercase. The target identifies the
application to which the characterSequence should be passed. The
characterSequence that constitutes the message to the application must
not include the character sequence ?>, otherwise, an XML processor
would assume that the processing instruction had been completed.

One common example of the use of a processing instruction is the
xml-stylesheet processing instruction used to associate a stylesheet—
either XSLT (Extensible Stylesheet Language Transformations) or CSS
(Cascading Style Sheet)—with an XML document.

For example, to associate a stylesheet stored in a file called
myStylesheet.xsl, you might use the following processing instruction to
associate the XSLT stylesheet (introduced in Chapter 10, “XSLT—
Creating HTML from XML”) with the XML document, assuming that the
stylesheet is stored in the same directory as the XML document:

<?xml-stylesheet href=”myStylesheet.xsl” type=”text/xsl”?>

03 0672324717 CH02 3/3/05 12:05 PM Page 21

22 Lesson 2

Document Type Declaration
The Document Type Declaration, also called the DOCTYPE declaration, is
optional. If present, it must occur before the document element. The DOC-
TYPE declaration specifies the element type name of the document element
and, optionally, references external markup declarations or may include
markup declarations.

The simplest form of the Document Type Declaration may be written as
follows:

<!DOCTYPE theDocumentElement >
<theDocumentElement>
<!-- The content of the document element would go here -->
</theDocumentElement>

As written, the preceding DOCTYPE declaration simply indicates that the
document element of the XML document has the element type name of
theDocumentElement.

In addition to indicating the element type name of the document element,
the DOCTYPE declaration contains or points to the markup declarations that
optionally define the permitted structure of an XML document. The
markup declarations provide a grammar for a class of XML documents.

A DOCTYPE Declaration, when present, may have two additional optional
parts:

• An indication of the location of the external subset of the
Document Type Definition, DTD (see Chapter 4, “Valid XML—
Document Type Definitions,” for further explanation)

• A set of markup declarations that constitute the internal subset
of the DTD (also discussed in Chapter 4)

When an external subset of the DTD exists, it may be expressed as a rela-
tive URI, as follows:

<!DOCTYPE documentElementName SYSTEM “myDTD.dtd” >

Here, SYSTEM is a keyword indicating that the location of the external sub-
set of the DTD is specified relative to the current system. The system

03 0672324717 CH02 3/3/05 12:05 PM Page 22

23The Structure of an XML Document

identifier—myDTD.dtd, in this case—is a uniform resource identifier
(URI) that indicates the location of the external subset.

A system identifier may be identified by a relative URI, as in the preced-
ing example, or a full URI reference, as follows:

<!DOCTYPE myElement SYSTEM “http://www.XMML.com/myDTD.dtd”>

An alternate syntax is to specify a public identifier, using the keyword
PUBLIC, together with a system identifier:

<!DOCTYPE documentElementName PUBLIC publicidentifier SYSTEM
myDTD.dtd >

This form is used when a public identifier is appropriate—for example, in
the DOCTYPE declaration of the XML application language Extensible
Hypertext Markup Language (XHTML) documents. For XHTML version
1.0, the DOCTYPE declaration is as follows:

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
SYSTEM “http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd” >

The public identifier indicates an organization—in this case, the W3C—
and also includes an indication of the language—in this case, English,
indicated by EN.

The syntax for defining the internal subset of the DTD is described in
Chapter 4.

Caution The Document Type Declaration and the
Document Type Definition (DTD) are not identical,
although they are closely related. The Document Type
Declaration defines the location of the external subset
of the DTD and optionally may contain the internal
subset of the DTD.

03 0672324717 CH02 3/3/05 12:05 PM Page 23

24 Lesson 2

Document Element
Each XML document must have one—and only one—document element,
which is sometimes referred to as the root element.

Caution Be careful if you use or read the term root
without any further clarification. The XML 1.0 specifi-
cation uses the term apparently as a synonym for the
document entity (Chapter 2 of the XML 1.0
Recommendation) and also as a synonym for the doc-
ument element (Chapter 2.1).

Elements Nested Inside the Document Element
Typically, nested within the document element is a hierarchy of other ele-
ments, represented as start tag/end tag pairs or as empty element tags.

Elements must be nested correctly. The following code shows a correctly
nested pair of elements:

<chapter>
<section number=”1”>Some content
</section>

</chapter>

The start tag of the section element follows the start tag of the chapter
element, so the end tag of the section element must come before the end
tag of the chapter element.

When correctly nested as shown in the preceding code, the chapter ele-
ment is termed the parent element of the section element. The section
element is termed the child element of the chapter element. An element
may have zero, one, or more child elements. An element may have zero or
one parent elements. All elements except the document element have one
parent element. The document element does not have a parent element.

03 0672324717 CH02 3/3/05 12:05 PM Page 24

25The Structure of an XML Document

The following is not legal XML because the elements are not nested cor-
rectly:

<chapter>
<section number=”1”>Some content
</chapter>
</section>

Attributes
An element may be qualified by adding attribute name/value pairs to its
start tag. An attribute is indicated by an XML name, followed by the
equal sign and a pair of either quotation marks or apostrophes. The value
of the attribute is contained within those quotation marks or apostrophes.

So, if you want to indicate that this is the first edition of this book and
that it is published in English, you could add edition and language
attributes to the start tag of the book element:

<book edition=”1” language=’English’>
<title>Sams Teach Yourself XML in 10 Minutes</title>
<author>Andrew Watt</author>
<publisher>Sams Publishing</publisher>
</book>

The value of the edition attribute is contained in a pair of quotation
marks. The value of the language attribute is contained in a pair of apos-
trophes.

It is an error to mix double quotes and single quotes as the delimiters of
an attribute. In the following code, both the edition and language attrib-
utes would generate an error from the XML processor because the
attribute value delimiters are not correctly paired.

<book edition=”1’ language=’English” >

CDATA Sections
An XML document may contain information expressed in a non-XML
syntax. The XML mechanism for indicating that such content is not to be
parsed as XML is the CDATA section.

03 0672324717 CH02 3/3/05 12:05 PM Page 25

26 Lesson 2

The starting delimiter of a CDATA section is the character sequence
<![CDATA[. The ending delimiter is the character sequence]]>. The char-
acter sequence]]> cannot be used as the content of a CDATA section.

CDATA sections can be used to store XML code, such as code snippets
used in this book, without having to escape all characters that an XML
processor would recognize as markup. For example, if the text of this
chapter were written and stored in XML, you would not want example
code to be parsed. Thus, if you wanted to create in XML the text for a
section of this book that referred to example text expressed as XML, you
could write something like this:

<example>
<![CDATA[
<book>
<title>Sams Teach Yourself XML in 10 Minutes</title>
<author>Andrew Watt</author>
</book>
]]>
</example>

If you didn’t use a CDATA section, you would have to write this:

<example>
<book>
<title>Sams Teach Yourself XML in 10

Minutes</title>
<author>Andrew Watt</author>
</book>
</example>

It very quickly becomes tedious having to write < for each < character
and > for each > character in a section of example code. The CDATA
section is more convenient.

One common use of CDATA sections appears in Scalable Vector Graphics
(SVG) documents (SVG is an XML application language for two-dimen-
sional graphics), which can contain scripting code written, for example, in
JavaScript. The general structure using the SVG script element would
look as follows:

03 0672324717 CH02 3/3/05 12:05 PM Page 26

27The Structure of an XML Document

<script type=”text/javascript” >
<![CDATA[

//JavaScript code goes here
]]>
</script>

CDATA sections cannot be nested within each other because the starting
delimiter <![CDATA[is recognized only as a sequence of characters, not as
a starting delimiter of a nested CDATA section. Only the ending delimiter
character sequence,]]>, is recognized as markup within a CDATA section.

Text Content
Text, which is basically a sequence of characters, may occur between the
start tag and end tag of an element; it is said to be (or to form part of) the
element’s content.

Most English alphabetic or numeric characters can simply be typed as
normal. Certain characters must not be used in text content, however. The
following simple description of an arithmetic axiom in XML generates an
error in an XML processor:

<axiom> 1 < 2 </axiom>

An XML processor recognizes the less than sign between 1 and 2 as the
starting angle bracket of a new tag. An error results upon finding a space
and then a number (which is not allowed to start an XML name). The fol-
lowing characters must be escaped to use them in text content:

• < (The less than symbol)—Must be written as <

• > (The greater than symbol)—Must be written as >

• ‘ (The single quotation mark)—Must be written as '

• “ (The double quotation mark)—Must be written as "

• & (The ampersand)— Must be written as &

The alternative is to use these characters written literally (that is, not
escaped) within a CDATA section. The choice of whether to escape charac-
ters or to enclose them inside a CDATA section often depends on how many

03 0672324717 CH02 3/3/05 12:05 PM Page 27

28 Lesson 2

characters in a particular section of text require escaping. The more char-
acters need escaping, the more likely it is that using a CDATA section offers
the most convenient solution.

Content After the Document
Element End Tag
The XML 1.0 specification allows content to follow the end tag of the
document element. However, permitted content is restricted to only com-
ments, processing instructions, and whitespace. In practice, this means
that all document content must be nested within the document element.
Markup after the end tag of the document element can contain only infor-
mation intended for a human reader, given in comments, or one or more
processing instructions for the XML processor or the application. No con-
straint affects the ordering of comments or processing instructions.

Summary
In this lesson, you learned about the structure of an XML document and
saw examples of how to write the most common parts of that structure.

03 0672324717 CH02 3/3/05 12:05 PM Page 28

LESSON 3
XML Must Be
Well-Formed

In this chapter you will learn the rules that an XML document must sat-
isfy to be considered well-formed.

Well-Formed XML Documents
If XML is to be used as a format for data interchange, it must adhere to a
consistent syntax so that programs can reliably produce and parse XML
documents. An XML document that adheres to proper XML syntax is said
to be well-formed.

If the results of parsing are to be presented by an XML processor (also
known as an XML parser) to its associated application, the XML docu-
ment must be well-formed. If the document is not well-formed, the XML
processor should report one or more errors encountered, and normal pro-
cessing, including the passing of parsed data to the application, should
stop. Ensuring that the XML documents that you write are well-formed is
crucial to achieving the desired processing of the data that they contain.

Some of the rules for well-formedness are straightforward. Some can
seem pretty obscure the first time you read them, so if some of the rules
in this chapter don’t make too much sense the first time through, don’t
worry too much. As you learn more about other aspects of XML in later
chapters, the pieces of the syntax jigsaw will fit together more clearly.

In Chapter 2, “The Structure of an XML Document,” you learned about
the structure that an XML document must conform to. All well-formed
XML documents must follow the permitted options of that structure. In
addition to those rules, an XML document must satisfy several other rules
to be considered well-formed.

04 0672324717 CH03 3/3/05 12:05 PM Page 29

30 Lesson 3

The term well-formed is used to describe the rules that all XML docu-
ments must satisfy. If an XML document is not well-formed, an XML
processor signals an error and stops normal processing. It is crucial that
you understand the well-formedness constraints in XML 1.0, to ensure
that the XML documents that you create will be processed correctly and
without errors.

To be well-formed, an XML document must satisfy each of three broad
rules or sets of rules:

• The structure of the document must follow that described in
Chapter 2—an optional prolog, followed by a required document
element (and any content that it has) and, finally, an optional
miscellaneous section.

• The document must satisfy the well-formedness constraints
described in the following sections of this chapter.

• Any parsed entities referenced from the document, whether
directly or indirectly, must themselves be well-formed.

The following several sections consider each of the XML 1.0 well-
formedness constraints.

XML Names
The XML 1.0 Recommendation places restrictions on the characters that
may be used in legal XML names and imposes tighter restrictions on the
characters that may be used as the first character in an XML name.

Note This chapter gives a complete description of
well-formedness constraints. To do so, it is necessary
to refer to concepts described more fully in later chap-
ters. You might find it helpful to reread parts of this
chapter after reading Chapter 4, “Valid XML—
Document Type Definitions,” and Chapter 5, “XML
Entities.”

04 0672324717 CH03 3/3/05 12:05 PM Page 30

31XML Must Be Well-Formed

Initial Characters of XML Names
In English, the initial character of an XML name must be either a letter
(from A to Z—both upper- and lowercase are legal), the colon character
(:), or the underscore character (_).

Tip Avoid the colon character as the first character in
an XML name. Using that character is legal but could
cause confusion when you create XML documents
using elements from several XML namespaces
(described in Chapter 8, “Namespaces in XML”).

XML is case sensitive, so the following two elements are considered in
XML to be different elements because of the difference in case:

<p></p>

<P></P>

In some other languages, ideographic characters may also be used as the
initial character of an XML name.

It is illegal to start an XML name with a numeric character. The following
code generates an error because 2d is not a legal XML name:

<?xml version=’1.0’?>
<myElement>
<2d>
Some content.

</2d>
</myElement>

Caution Names in XML 1.0 must not begin with the
character sequence xml or XML, in any combination of
upper- or lowercase.

All characters that are legal as the first character of an XML name can be
used in later positions within an XML name as well.

04 0672324717 CH03 3/3/05 12:05 PM Page 31

32 Lesson 3

Non-Initial Characters of XML Names
The non-initial characters of an XML name are allowed to include charac-
ters not permitted as the first character of an XML name. The additional
allowed characters are numeric characters from 0 to 9 inclusive, the
hyphen character, and the period character.

Tip Again, avoid using the colon character later in
XML names. Later you will want to mix XML docu-
ments from different namespaces (discussed in
Chapter 8), and the colon character has special mean-
ing in those circumstances. Avoiding the colon charac-
ter except in namespace-aware documents means that
you won’t have to change your documents if you
want to use multiple namespaces later.

Elements
XML elements must have as their element type name a legal XML name
as defined in the preceding section.

Additionally, the element type name in the start tag must match the ele-
ment type name in the end tag. It is important to remember that XML is
case sensitive. Any of the following tag pairs will generate well-formed-
ness errors because of case differences:

<title></TITLE>

<title></Title>

<title></Title>

Balanced Start and End Tags
Each start tag must have a corresponding end tag, properly nested. The
following example is correctly nested:

04 0672324717 CH03 3/3/05 12:05 PM Page 32

33XML Must Be Well-Formed

<oneElement>Some text
<anotherElement>Some other text
</anotherElement>

<oneElement>

The end tag of the anotherElement element must appear before the end
tag of the oneElement element.

If an element is empty (that is, it has no content, not even a single white-
space character), the start tag/end tag pair can be written as an empty ele-
ment tag. The following

<someElement myAttribute=”someInformation”></someElement>

is equivalent to writing this:

<someElement myAttribute=“someInformation”/>

Attributes
An attribute is the association of an attribute name with an attribute value.
For example, the markup describing this book might be represented as
follows:

<book edition=”1”>
<title>Sams Teach Yourself XML in 10 Minutes</title>
</book>

The book element has an edition attribute, which has the value of 1.

An attribute is allowed only in the start tag of an element. The value of an
attribute must be enclosed between paired double quotation marks, such as

<book edition=”1”>

or between paired apostrophes:

<book edition=’1’>

It is an error to mix these two types of delimiters. The next two line of
code would cause a well-formedness error because the delimiters of the
attribute value are not paired.

04 0672324717 CH03 3/3/05 12:05 PM Page 33

34 Lesson 3

In the following line, the quotation mark before the attribute value is not
paired with a matching quotation mark:

<book edition=”1’>

Here, the apostrophe before the attribute value does not have a matching
apostrophe to delimit the end of the attribute value:

<book edition=’1”>

Attributes Must Be Unique
The start tag of any XML element must not contain duplicate attribute
names.

For example, the following code will generate an error because there are
two number attributes in the start tag of the chapter element.

<chapter number=”1” author=”DPT” number=’1’>
<!-- Some text would go here -->
</chapter>

No External Entity References
Attribute values are not allowed to contain external entity references.

For example, imagine that you had declared an external entity called
copyright:

<!ENTITY copyright SYSTEM “copyright.xml”>

You could not use it in an attribute value, such as in the following code:

<book status=”©right;”>
<!-- Content goes here -->
</book>

However, attribute values are allowed to contain references to internal
parsed entities.

For example, imagine that the internal subset of the DTD included an
entity declaration as follows:

<!ENTITY BigText “font-size:72”>

04 0672324717 CH03 3/3/05 12:05 PM Page 34

35XML Must Be Well-Formed

It could be used to define the style of text nested in an SVG text element,
as follows:

<text style=”&BigText;”>This text is big!!</text>

No < in Attribute Values
The value of an XML attribute is not allowed to include the < character,
either directly or indirectly.

It is not legal to write this:

<math comparison=”3<4”></math>

It is also an error to include an internal entity reference to an entity, such as

<!ENTITY lessthan “3<4”>

which is referenced like this:

$$

After the entity reference was replaced by its replacement text, it would
result in the same illegal code:

<math comparison=”3<4”></math>

Following the well-formedness constraints described for elements and
attributes in the preceding sections will help you avoid many of the com-
mon well-formedness errors. As your documents become more complex,
other well-formedness constraints might become important.

Other Characteristics of
Well-Formedness
This section covers the well-formedness constraints as they apply to areas
other than elements and attributes. Several of the well-formedness rules
will make more sense after you have read Chapters 4 and 5.

04 0672324717 CH03 3/3/05 12:05 PM Page 35

36 Lesson 3

Comments
To be well formed, XML comments must not end with the character
sequence --->. A legal XML comment ends with -->— that is, two
dashes and a greater than character.

Entities Must Be Declared
If a reference to an entity is present in an XML document and any of the
following are true, any entity referenced must be declared:

• There is no Document Type Definition (DTD).

• A document has only an internal DTD subset with no parameter
entity references.

• The value of the standalone attribute in the XML declaration is
yes.

The exception to this rule is that the built-in entities amp, apos, gt, lt, and
quot need not be declared.

External Parsed Entities
External parsed entities must be well-formed. They optionally begin with
a text declaration (described more fully in Chapter 5). A text declaration
is similar to an XML declaration but may have only version and
encoding attributes. A text declaration does not have a standalone
attribute. Following the text declaration, the structure need not all be con-
tained in a single element—the document element is contained in the
XML document entity that references the external parsed entity.

The allowed content is any combination of the following:

• Character data

• Elements

• Entity references

• Character references

• CDATA sections

04 0672324717 CH03 3/3/05 12:05 PM Page 36

37XML Must Be Well-Formed

• Processing instructions

• Comments

The content following the text declaration is essentially the same as the
permitted content of an element anywhere in the document entity. That is
not surprising because an external parsed entity can have replacement text
that constitutes the content of an element in the document entity.

An internal parsed entity is well-formed if the replacement text matches
the content that was listed in the preceding list.

No element or other markup may begin in one external entity and end in
another.

Parsed Entities: No Recursion
Entities are discussed in more detail in Chapter 5. A parsed entity is not
permitted to directly or indirectly reference itself.

Parameter Entity References in the DTD
Parameter entity references may appear only in the DTD.

Parameter Entity References in Internal Subset
Parameter entity references in the internal subset of the DTD, which is
described more fully in Chapter 4, can occur only where markup declara-
tions can occur and not within other markup declarations.

External Subset of the DTD
The external subset of the DTD may have the following structure. It may
optionally begin with a text declaration (described in Chapter 5) and may
also contain markup declarations or conditional sections (both described
in Chapter 4).

Two separators are allowed between markup declarations, parameter enti-
ties and whitespace.

04 0672324717 CH03 3/3/05 12:05 PM Page 37

38 Lesson 3

Parameter Entities in Markup Declarations
A parameter entity has replacement text. The replacement text of a para-
meter entity must satisfy the constraints on declarations, as described in
the preceding section, so that the replacement text nests properly.

Replacement Text
When an entity reference appears in an attribute value or a parameter
entity appears in an entity declaration, the replacement text might contain
either a double quotation mark or an apostrophe. In this situation, when
the double quotation mark or the apostrophe is applied as replacement
text, it is treated as a literal character of the relevant type, not the closing
delimiter of the attribute value.

For example, with the entity declaration

<!ENTITY myEntity “something with an apostrophe’”>

this entity reference is well-formed:

<someElement someAttribute=’&myEntity’ />

The same is true with a parameter entity such as this one:

<!ENTITY % hisStatement ‘“I agree.”’>
<!ENTITY aSentence “He said, &hisStatement;”>

The replacement text for the hisStatement parameter entity contains two
double quotation marks, the first of which would normally be the closing
delimiter of the replacement text of the aSentence entity. However, both
double quotation marks contained in the parameter reference are treated
literally, not as the closing delimiter.

Character References
In XML documents, a character may be referenced using a character ref-
erence. You might want to use a character reference when, for example, a
character cannot be typed from the keyboard. A character reference begin-
ning with &x# indicates a hexadecimal reference to a character’s code
point. For example, the uppercase A may be written as the character refer-
ence, &x#0041;.

04 0672324717 CH03 3/3/05 12:05 PM Page 38

39XML Must Be Well-Formed

<?xml version=’1.0’?>
<capitalA>A</capitalA>

Character references can also be expressed using the &# syntax, indicating
a decimal reference to a character’s code point. Using this syntax, you can
represent the uppercase A as A, as shown here:

<capitalA>A</capitalA>

Declaring Predefined Entities
If compatibility with SGML is not an issue in your use of XML, this well-
formedness constraint can perhaps be ignored. However, it might help you
understand what at first sight could appear to be strange entity declara-
tions in XML documents created by others.

All XML processors must recognize the entities amp, apos, gt, lt, and
quot, whether they are explicitly declared or not. However, if compatibil-
ity with SGML is a relevant issue, these predefined entities must be
explicitly declared in the internal subset of the DTD.

You might recall that you cannot use the literal characters &, ‘, >, <, and “
in well-formed character data without causing a well-formedness error.
Therefore, you cannot use any of these characters literally as the replace-
ment text of an entity declaration. The solution is to use character refer-
ences for each of the characters.

Therefore, entity declarations used for compatibility with SGML can be
written as follows:

<!ENTITY amp “& &”>
<!ENTITY apos “' '”>
<!ENTITY gt “> >”>
<!ENTITY lt “< <”>
<!ENTITY quot “" "”>

Well-Formedness and XML
Processor Type
XML processors can be viewed as being of two types, validating proces-
sors and nonvalidating processors. Validation is discussed further in
Chapter 4.

04 0672324717 CH03 3/3/05 12:05 PM Page 39

40 Lesson 3

Both validating processors and nonvalidating processors detect any well-
formedness errors in the document entity, including the internal subset of
the DTD. However, their behavior might differ with external entities and
the external subset of the DTD.

A validating processor must process the XML document entity, any exter-
nal entities, and the DTD (both internal subset and external subset). It
must access those fully to validate the XML document. In doing so, it
detects any well-formedness errors in any physical part of an XML docu-
ment.

Nonvalidating processors, on the other hand, need not access an external
subset of the DTD (if it exists) or external entities. So, well-formedness
errors might not be detected by nonvalidating processors if the well-
formedness errors occur outside the document entity itself.

Another potential source of confusion with nonvalidating processors is
that although they are not obliged to access parts of the document other
than the document entity, nothing in the XML specification prevents them
doing so. Therefore, one nonvalidating processor might detect errors that
another nonvalidating processor misses because the former processor
accessed external entities that the latter ignored. This could be confusing
if you find no errors in your code but a recipient of a document that you
have written finds errors. The recipient might simply be using a nonvali-
dating processor that checks more parts of the document than the nonvali-
dating processor that you used to run the code.

Summary
In this lesson, you learned all the XML 1.0 well-formedness constraints.
Those relating to elements and attributes likely will be most directly rele-
vant to straightforward XML documents. Other well-formedness con-
straints less likely will be directly useful to simple code. However, you
might find that knowing these constraints helps you write code that runs
correctly.

04 0672324717 CH03 3/3/05 12:05 PM Page 40

LESSON 4
Valid XML—
Document
Type
Definitions

In this lesson, you will learn what valid XML documents are, why docu-
ment type definitions for XML documents are needed, and how to write a
DTD for XML documents.

Shared Documents: Why We Need
DTDs
The well-formedness rules examined in Chapter 2, “The Structure of an
XML Document,” and Chapter 3, “XML Must Be Well-Formed,” either
ensure that XML processors handle XML documents that satisfy XML’s
syntax rules or signal an error indicating that the document isn’t suitable
for further processing. For some purposes, that is sufficient.

For many purposes, particularly when documents are being shared among
business partners, for example, it is useful for XML documents also to
conform to a known, predictable structure. Of course, it is possible to
write custom code in Java or some other programming language to make
appropriate checks of a received document’s structure. However, it is
potentially more convenient to check structure using the validation tools
that form part of a validating XML processor.

05 0672324717 CH04 3/3/05 12:06 PM Page 41

42 Lesson 4

In XML, a document type definition (DTD) defines the allowed structure
of a class of XML documents. A validating XML processor can use the
DTD to confirm that a document conforms to the relevant DTD. Using
XML-based validation cuts down on the need to write custom code.

Note Two broad types of XML processor exist. A
nonvalidating XML processor checks that documents
conform to the rules of XML syntax, but it doesn’t
check for any specific structure of elements or attrib-
utes. A validating XML processor checks for well-
formedness and also checks that the document
conforms to a defined structure.

XML documents are ideal for sharing information using a standard syn-
tax. The recipient of information expressed in XML might want to check
that the structure of the information received corresponds to what he
expects. If the structure of the received information can be checked auto-
matically rather than by writing customized code, this is significantly
more efficient.

Document Structure Is Defined in a DTD
The only schema mechanism provided in the XML 1.0 Recommendation
is the document type definition (DTD).

Note A schema is a document that defines the
allowed structure, or its variants, of a class of XML
documents. Schemas for XML 1.0 documents may be
written in non-XML syntax, a DTD, or, more recently in
XML syntax, using a variety of schema languages. For
example, the W3C XML Schema is described in
Chapter 19, “Beyond DTDs—W3C XML Schema.”

05 0672324717 CH04 3/3/05 12:06 PM Page 42

43Valid XML—Document Type Definitions

A DTD contains markup declarations in two subsets, the internal subset
and the external subset. Taken together, these define the allowed structure
of a class of XML documents.

Typically, a group of companies or other organizations with a common
interest in a particular type of information will agree (after sometimes
lengthy discussion) to automate important processes. That will generate a
list of documents that they want to exchange and, in turn, agree on a com-
mon structure to be used for the exchange of certain types of business or
technical information. The formal expression of the agreed-upon structure
is a DTD or other type of schema.

What Is a Valid XML Document?
An XML document that contains a DOCTYPE declaration and that complies
with the constraints for that class of XML document expressed in the doc-
ument type declaration is said to be valid. In other words, a valid XML
document must comply with a defined logical structure.

All valid XML documents must be well-formed and must satisfy the well-
formedness constraints described in Chapter 3. Some well-formed XML
documents lack a DOCTYPE declaration and cannot be valid; others might
have a DOCTYPE declaration but not comply fully with its constraints.
Those documents are not valid XML, either.

What a DTD Is
A DTD is a description of the allowed structure of a class of XML docu-
ments.

In a DTD, you declare elements, attributes, and so on that are allowed in
the structure of a corresponding class of XML documents. Elements and
other parts of an XML document are declared in markup declarations.

The following are the types of markup declaration in XML 1.0:

• Element declarations

• Attribute list declarations

05 0672324717 CH04 3/3/05 12:06 PM Page 43

44 Lesson 4

• Entity declarations

• Notation declarations

Markup declarations may be contained in part or entirely within parame-
ter entities.

The DTD Is Not the DOCTYPE Declaration
Earlier, when defining a valid document, this chapter indicated that a valid
document complies with the constraints expressed in the DOCTYPE declara-
tion.

It is important to be clear about the differences between the document
type definition, the DTD, and the document type declaration (also called
the DOCTYPE declaration). They are not the same, although they are closely
related.

The document type declaration contains or refers to information about the
permitted structure of an XML document. In other words, the document
type declaration may contain part of the DTD, refer to the location of part
of the DTD, or do both. The DTD can be spread across two subsets: the
external subset and the internal subset. Either subset may be empty in any
particular situation, or both subsets may contain markup declarations. If
markup declarations are present in the external subset and include default
values for attributes, the standalone attribute in the XML declaration of
an instance XML document must have the value no.

Note An instance document is a document that con-
forms to the defined structure for the class of XML
documents to which it belongs.

The External Subset
The external subset of the DTD typically exists as a separate file with a
file extension of .dtd.

05 0672324717 CH04 3/3/05 12:06 PM Page 44

45Valid XML—Document Type Definitions

For example, this short XML document

<?xml version=”1.0” ?>
<!DOCTYPE book SYSTEM “book.dtd”>
<book>
<title>1984</title>
<author>George Orwell</author>
</book>

would have a DTD contained in a file, book.dtd, with the following struc-
ture:

<!ELEMENT book (title,author) >
<!ELEMENT title (#PCDATA) >
<!ELEMENT author (#PCDATA) >

That would be contained in the same directory as the XML document.

Note The character content of elements is termed
PCDATA, meaning parsed character data. The character
content of attributes is termed CDATA, meaning
character data.

The Internal Subset
The internal subset of the DTD is contained within the DOCTYPE declara-
tion. The opening delimiter of the internal subset is the [character, and
the closing delimiter is the] character.

To incorporate the markup declarations in an internal subset, the XML
document would be rewritten as this:

<?xml version=”1.0” ?>
<!DOCTYPE book [
<!ELEMENT book (title,author) >
<!ELEMENT title (#PCDATA) >
<!ELEMENT author (#PCDATA) >
]>
<book>
<title>1984</title>
<author>George Orwell</author>
</book>

05 0672324717 CH04 3/3/05 12:06 PM Page 45

46 Lesson 4

The internal subset, if it exists for a particular document, is contained
within the DOCTYPE declaration. The start of the internal subset is indicated
by a square bracket character, [, and the end of the internal subset is indi-
cated by the corresponding square bracket character,]. The DOCTYPE dec-
laration is then closed by a right angle bracket, >.

Conditional Sections
A DTD may contain conditional sections. Conditional sections can be
used to control when to use or ignore single markup declarations or a list
of markup declarations.

Two options exist: INCLUDE (the default) and IGNORE:

<!INCLUDE[
oneOrMoreMarkupDeclarations
]>

or

<!IGNORE[
oneOrMoreMarkupDeclarations
]>

Conditional sections can be used with parameter entities, which are
described more fully in Chapter 5, “XML Entities.”

Declaring Elements in DTDs
Defining the structure of an XML document must always involve the dec-
laration of elements because all XML documents contain at least one ele-
ment: the document element.

An element declaration takes this general form:

<!ELEMENT elementTypeName contentModel >

The allowed content models are listed here:

• Text only—Indicated by (#PCDATA). No element content is
allowed.

• Empty element—Indicated by EMPTY. Not even whitespace is
allowed as content.

05 0672324717 CH04 3/3/05 12:06 PM Page 46

47Valid XML—Document Type Definitions

• Any content—Indicated by ANY. Any well-formed content is
allowed.

• Mixed content—Indicated by MIXED. This allows text content to
be mixed with element content declared in the element declara-
tion.

• Child elements—Indicated by one or more element names con-
tained in parentheses, with any appropriate cardinality
indicators.

Consider a simple XML document, such as the following:

<simpleMessage>
Here is a simple message.
</simpleMessage>

The following element declaration could be used to indicate that the
simpleMessage element may contain only parsed character data, indicated
by #PCDATA in the element declaration.

<!ELEMENT simpleMessage (#PCDATA) >

The simpleMessage element is constrained to contain parsed character
data only. The presence of any elements in the content of the
simpleMessage element would render that instance document invalid.

Typically, you would want to allow element content within a document
element. To do so, you must declare the allowed elements. Consider an
instance document with the following structure:

<book>
<title>Sams Teach Yourself XML in 10 Minutes</title>
<author>Andrew Watt</author>
<publisher>Sams Publishing</publisher>
</book>

You could indicate that a book element is allowed to contain a title ele-
ment, an author element, and a publisher element, in that order, as fol-
lows:

<!ELEMENT book (title, author, publisher) >

05 0672324717 CH04 3/3/05 12:06 PM Page 47

48 Lesson 4

You have not yet defined the allowed content of the title, author, and
publisher elements—in this case, each has parsed character data. You
would do so by completing the DTD as follows:

<!ELEMENT book (title, author, publisher) >
<!ELEMENT title (#PCDATA) >
<!ELEMENT author (#PCDATA) >
<!ELEMENT publisher (#PCDATA) >

The preceding DTD indicates that the book element is the document ele-
ment. It may contain one and exactly one title element, followed by a
single author element, then followed by a single publisher element.

In many settings, an element has more than one child element of a partic-
ular element type. Thus, you need ways to express the allowed frequency
of occurrence—the cardinality—of child elements.

Cardinality
In XML 1.0, the default cardinality is exactly one occurrence of, for
example, an element. Therefore, the absence of any of the cardinality
operators in the following list indicates that an element is allowed to
occur exactly once.

In addition, the DTD can express three choices of cardinality that must be
explicitly expressed within markup declarations:

• Optional, but may only occur once at most—Zero or one occur-
rences. This is indicated by the ? character.

• Optional, but may occur many times—A minimum of zero
occurrences and an unlimited maximum. This is indicated by the
* character.

• Required, but may occur many times—A minimum of one
occurrence and an unlimited maximum. This is indicated by the
+ character.

Note A DTD cannot express the notion that an ele-
ment must occur, say, a minimum of 3 times and a
maximum of 20 times.

05 0672324717 CH04 3/3/05 12:06 PM Page 48

49Valid XML—Document Type Definitions

For example, consider a customer order with a structure similar to the fol-
lowing:

<order>
<date>
2003/04/01
</date>
<customerID>
AB987
</customerID>
<items>
<item productID=”1234” quantity=”10”>
3.5” floppy disks
</item>
<item productID=”2345” quantity=”20”>
Write once CDROMs
</item>
</items>
<customerComment>I need the floppy disks as soon as possible.
</customerComment>
<customerComment>
Don’t attempt delivery on a Friday.
</customerComment>
</order>

You could express that using the following markup declarations:

<!ELEMENT order (date, customerID, items, customerComment*) >
<!ELEMENT date (#PCDATA)>
<!ELEMENT customerID (#PCDATA) >
<!ELEMENT items (item)+ >
<!ELEMENT customerComment (#PCDATA) >
<!ELEMENT item (#PCDATA) >
<!ATTLIST item
productID CDATA #REQUIRED
quantity CDATA #REQUIRED>

In the first line of the code, the date, customerID, and items elements are
declared without any cardinality operator. They are required and can occur
only once. The customerComment element is declared with a * cardinality
operator, indicating that it is optional but can occur more than once.

The declaration of the items element specifies that there must be at least
one item element as its child, but that the item element may occur more
than once.

05 0672324717 CH04 3/3/05 12:06 PM Page 49

50 Lesson 4

Declaring Attributes in DTDs
An XML element in a well-formed document may not have two attributes
of the same name. Therefore, cardinality operators are not required when
attributes are declared.

The declaration of attributes takes the following general form:

<!ATTLIST
attributeName attributeType defaultDeclaration

>

The attributeType is any of the values in the following list:

• CDATA—Any legal XML string.

• ENTITY—Value that must match the name of an external
unparsed entity.

• ENTITIES—An ENTITY, except that more than one whitespace-
separated name may occur.

• ID—Value that must begin with a letter and then must consist of
letters, numeric characters, hyphens, underscores, and period
characters. At most, one attribute on any element can be of type
ID. An ID attribute value must be unique in the XML document.

• IDREF—The value of the attribute must match the value of an ID
attribute elsewhere in the same XML document.

• IDREFS—An IDREF, except that it may match more than one ID
attribute value elsewhere in an XML document.

• NMTOKEN—The attribute value may contain only letters, numeric
characters, and colons. No whitespace is allowed.

• NMTOKENS—An NMTOKEN, except that multiple values that do not
contain whitespace are separated by whitespace characters.

The defaultDeclaration indicates whether a value is required, is
optional, is fixed, or has a default value:

05 0672324717 CH04 3/3/05 12:06 PM Page 50

51Valid XML—Document Type Definitions

• #FIXED “someValueInQuotes”—The value of the attribute is
fixed to the value given inside the quotation marks.

• #IMPLIED—A value for the attribute is optional.

• #REQUIRED—A value for the attribute is required.

• “someValueInQuotes”—A value for the attribute is optional. If
no value is specified for the attribute in the XML document, the
value “someValueInQuotes” is applied as a default.

For example, suppose that you have a very short XML document, as fol-
lows:

<order date=”2002/11/30” orderNumber=”NOV123”
customerID=”DB998”>
<items>
<!-- And so on -->
</items>
<order>

This example shows three attributes of the order element; for business
purposes, each of these is essential. These are declared as a list of attrib-
utes associated with the order element. The ATTLIST keyword implies an
attribute list, but you can define as few as one attribute.

<!ELEMENT order (items)>
<!-- An element declaration for the items element would go

here -->
<!ATTLIST order
customerID CDATA #REQUIRED
date CDATA #REQUIRED
orderNumber CDATA #REQUIRED
>

Types of Attributes
XML 1.0 DTDs provide very limited typing of attribute values, as dis-
cussed in the preceding section. For data-centric XML documents, this
might be insufficient. This is one of the reasons behind the development
of W3C XML Schema, described in Chapter 19.

05 0672324717 CH04 3/3/05 12:06 PM Page 51

52 Lesson 4

Specifying Default Attribute Values
You can specify default values for attributes when no value is given. For
example, consider a business document structured as follows:

<Report>
<Paragraph status=”public”>Some text.</Paragraph>
<Paragraph status=”confidential”>Some confidential

text</Paragraph>
<Paragraph>Some text.</Paragraph>
</Report>

To preserve confidentiality, you can make it essential that a human actu-
ally decide to make any information public by having the following
attribute declaration:

<!ATTLIST Paragraph status “confidential” #REQUIRED>

If an author specifies status=”public”, the default value is not applied.
However, if the author overlooks the need to assign a status attribute to a
Paragraph element, the Paragraph element’s content is confidential until
a human author overrides the default.

Declaring Entities in the DTD
Entities may also be declared in a DTD. This is described in Chapter 5,
where entities are discussed in more detail.

Summary
The benefits of sharing XML documents with a predictable structure were
discussed in this chapter. You also learned about the concept of a valid
XML document and gained insight into the use of a Document Type
Definition, internal subsets and external subsets, and the correct way to
express markup declarations for the declaration of elements and attribute
lists.

05 0672324717 CH04 3/3/05 12:06 PM Page 52

LESSON 5
XML Entities

In this chapter, you will learn about XML entities, what they are, and how
you can use them.

What Is an Entity?
An entity is an expression of the physical, rather than logical, structure of
an XML document. An entity is a physical data object. When your XML
documents are short and simple, you likely will seldom use entities other
than the built-in entities. As you begin to create XML documents of
greater length and complexity, the usefulness of entities will become more
apparent.

One situation in which entities are sometimes used in relatively short doc-
uments is in Scalable Vector Graphics (SVG), an XML application lan-
guage that you will meet in Chapter 15, “Presenting XML
Graphically—SVG.” In SVG, for example, an entity can be used to define
a particular style. If you had an entity called BlackAndRed, you could
declare it like this:

<!ENTITY BlackAndRed “fill:black;stroke:red”>

Then you could reuse the entity many times in attribute values in the doc-
ument, like this:

<rect style=”&BlackAndRed;” />

Even when creating the simplest XML documents, you are using at least
one entity, although you might not be aware of it. Each XML document
has at least one physical entity: the document entity.

06 0672324717 CH05 3/3/05 12:06 PM Page 53

54 Lesson 5

An XML document can be viewed as being contained within the docu-
ment entity. The document entity is not expressed within the syntax of an
XML document; instead, it is the container for the syntax that makes up
the document.

Note Most XML entities have a name, which is used
to reference the entity. The exceptions are the docu-
ment entity and the external subset of the DTD; these
have no name, although both have filenames.

For example, the description of this book used in earlier examples has one
logical structure but could be expressed by either of the physical struc-
tures shown in the following examples. The simplest expression of the
logical structure exists in a single document entity with the description
contained in one XML file with the following content, as shown in
Listing 5.1.

LISTING 5.1 SingleEntity.xml: A Description of This Book in
a Single Document Entity
<?xml version=”1.0” ?>
<book>
<title>Sams Teach Yourself XML in 10 Minutes</title>
<author>Andrew Watt </author>
<publisher>Sams Publishing</publisher>
</book>

Alternatively, the same logical structure could be expressed in several dif-
ferent physical structures. One possibility is to use an external parsed
entity to express title information, as in Listing 5.2. For a document as
simple as this, there is little practical point in splitting it this way, but the
example serves to illustrate the principle.

06 0672324717 CH05 3/3/05 12:06 PM Page 54

55XML Entities

LISTING 5.2 SplitEntities.xml: A Description of the Book
with an External Parsed Entity
<?xml version=”1.0” ?>
<!DOCTYPE book [
<!ENTITY bookTitle SYSTEM “title.xml”>
]>
<book>
<title>&bookTitle;</title>
<author>Andrew Watt</author>
<publisher>Sams Publishing</publisher>
</book>

The file title.xml specified in the entity declaration is shown in Listing
5.3. In a typical external parsed entity in real-life use, the content would
be much more extensive.

LISTING 5.3 Title.xml: A Brief External Entity Referenced in
Listing 5.2
Sams Teach Yourself XML in 10 Minutes

In Listing 5.2 the entity reference &bookTitle; is used by the XML
processor together with the corresponding entity declaration to find the
file Title.xml and to insert the content of that file between the start tag and
end tag of the title element in Listing 5.2:

<!ENTITY bookTitle SYSTEM “title.xml”>

So, after the external parsed entity has been retrieved, the title element is
processed as if it read as follows:

<title>Sams Teach Yourself XML in 10 Minutes</title>

Caution If the parsed entity is defined in the exter-
nal subset of the DTD, some nonvalidating XML
parsers might not retrieve external entity declarations.

06 0672324717 CH05 3/3/05 12:06 PM Page 55

56 Lesson 5

One use of external entities is to centralize frequently referenced informa-
tion used by multiple files. In lengthy, complex XML documents, it can
be very useful to split documents into entities. For example, a change
made in an external parsed entity can be reflected at each place where the
entity reference occurs in the XML document and other documents that
reference the same external parsed entity.

You might structure financial results using separate XML files for each
quarter’s figures. For example, the sales figures for Quarter 1 2003 might
be represented as follows:

<Q12003>
<Total Sales>$74,300,000</TotalSales>
<GrossProfit>$2,900,000</GrossProfit>
<NetProfit>$1,500,000</NetProfit>

</Q12003>

If you stored that content in a file named Q12003.xml, you could refer-
ence that data in several places after declaring an entity:

<!ENTITY Q12003Sales system “Q12003.xml”>

It makes sense to store the data once rather than risk it being stored in
several places with inconsistent data. If that data was referenced several
times, such as in department reports and company reports, it would make
sense to store it once and then reference it each time it is used.

Entities and Entity References
An entity is a data object. An entity reference refers to a parsed entity or
parameter entity. The entity referenced may be either a parsed entity or a
parameter entity. The syntax for referencing these two types of entities
differs.

Note A parsed entity can be internal—declared in
the document entity—or external—contained in a file
(entity) physically separate from the document entity.
A parameter entity is declared and referenced within
the DTD, in either the internal or the external subset.

06 0672324717 CH05 3/3/05 12:06 PM Page 56

57XML Entities

Parsed entities are referenced by an initial & character followed immedi-
ately by the entity’s name and a semicolon. If you had declared an inter-
nal parsed entity called myEntity

<!ENTITY myEntity “This is my own entity”>

you would reference it as follows:

&myEntity;

You can, of course, choose any name that makes sense in your context.

Parameter entities, which are used only in the DTD, use a different syn-
tax, both in declaration

<!ENTITY % myParameterEntity “Class”>

and in references to them:

%myParameterEntity;

Unparsed entities are referenced by names contained in attribute values
declared to be of type ENTITY or ENTITIES.

Predefined Entities
XML processors recognize a number of entity references as referring to
five characters that have special meaning when used in XML documents.
This means that a character being used literally in content can be distin-
guished from its use as part of markup. The five entity references and the
characters that they represent are listed here:

• amp—Represents the ampersand character (&) in parsed character
data

• apos—Represents the apostrophe (‘) in parsed character data

• gt—Represents the right angle bracket (>) in parsed character data

• lt—Represents the left angle bracket (<) in parsed character data

• quot—Represents a single double quotation mark (“) in parsed
character data

Let’s consider parsed entities and parameter entities in more detail.

06 0672324717 CH05 3/3/05 12:06 PM Page 57

58 Lesson 5

Parsed Entities
In XML, an entity may contain parsed data or unparsed data. The term
parsed data refers to data in XML syntax that is to be parsed—it doesn’t
mean that it has already been parsed. Similarly, the term unparsed data
refers to data that is not intended to be parsed by an XML processor.

Note Parsed entities are also general entities
because they are used within the XML document
rather than in the DTD. An internal parsed entity and
an internal general entity are the same thing.

Parsed data consists of characters, which may represent either character
data or markup.

<name>John Smith</name>

The preceding line of code consists of characters. The characters John
Smith are character data, and the start tag <name> and the end tag </name>
make up the markup.

You can represent the preceding code in an entity declaration for either an
internal parsed entity or an external parsed entity. An internal parsed
entity would have an entity declaration that declares a value:

<!ENTITY myNameInfo “<name>John Smith</name>” >

Notice that it is permissible to used tags with literal < and > characters
within the quotation marks that contain the replacement text for the
parsed entity.

An external parsed entity would provide an external reference using an
appropriate combination of the SYSTEM and PUBLIC keywords. For exam-
ple, if the replacement text for the entity was contained in a file
myNameInfo.xml in the same directory as the document entity, you could
declare the external parsed entity as follows:

<!ENTITY myNameInfo SYSTEM “myNameInfo.xml”>

06 0672324717 CH05 3/3/05 12:06 PM Page 58

59XML Entities

The external file would contain the replacement text:

<name>John Smith</name>

Internal Parsed Entities
Internal entities are defined in the same XML document (the same docu-
ment entity) as they are used in.

For example, in a document about XML 1.0, you might have the follow-
ing structure:

<?xml version=”1.0” ?>
<!DOCTYPE document [
<!ENTITY xml1.0 “Extensible Markup Language 1.0”>
]>
<document>
<description>
In February 1998 &xml1.0; was finalized by the World Wide Web
Consortium and released as a W3C Recommendation.

</description>
</document>

The following entity declaration associates the entity name xml1.0 with
the text Extensible Markup Language 1.0 as the replacement text:

<!ENTITY xml1.0 “Extensible Markup Language 1.0”>

Note You may use the character sequence XML or xml
to begin the name of an entity. You cannot use that
character sequence to begin an element type name.

Then, in the content of the description element, the xml1.0 entity is ref-
erenced.

06 0672324717 CH05 3/3/05 12:06 PM Page 59

60 Lesson 5

The XML processor processes the description element as if it reads as
follows:

<description>
In February 1998 Extensible Markup Language 1.0 was finalized
by the World Wide Web Consortium and released as a W3C
Recommendation.

</description>

One example of entities’ use in short documents is in SVG documents to
define style information for several elements. For example, you could use
an entity to define a red stroke on text and a rectangle shape:

<?xml version=”1.0” ?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.0//EN”
http://www.w3.org/Graphics/SVG/1.0/DTD/svg10.dtd[
<!ENTITY myRedStroke “fill:red”>
]>
<svg>
<rect x=”20” y=”20” width=”100” height=”100”
style=”&myRedStroke” />

<text x=”140” y=”20” style=”&myRedStroke”>
This text is red
</text>
</svg>

Of course, typically, the style information in an SVG document is signifi-
cantly longer to justify use of an entity in this way.

External Parsed Entities
External parsed entities are contained in a file external to the document
entity.

The simplest situation is one in which an external parsed entity is refer-
enced using an entity reference in the document entity, as shown earlier.

However, an external parsed entity may contain any arbitrary well-formed
XML, including entity references. That means that an external parsed
entity may itself contain an entity reference to yet another external parsed
entity. Of course, in principle, that external parsed entity could contain yet
further entity references to more external parsed entities.

06 0672324717 CH05 3/3/05 12:06 PM Page 60

61XML Entities

It is in situations such as the one just described that an entity may indi-
rectly refer back to itself. If that occurs, the XML document, taken as a
whole, is not well formed. Remember that recursion is not allowed (refer
back to Chapter 3, “XML Must Be Well-Formed”), so an error is signaled.

Text Declaration
An external parsed entity may optionally begin with a text declaration.

A full XML document can contain an XML declaration to indicate that
the document is XML, to indicate the version of XML being used, and,
optionally, to indicate whether the XML document is standalone and
which character encoding is being used. In an external parsed entity, there
is, by definition, no possibility that it is standalone. A text declaration,
therefore, cannot have a standalone attribute.

A text declaration takes two forms. This first is this:

<?xml version=”1.0” ?>

Here, the only attribute is the compulsory version attribute. An encoding
attribute also is possible, as in this example:

<?xml version=”1.0” encoding=”UTF-8” ?>

Unparsed Entities
Unparsed entities are used in attribute values and are referenced by name.
If the name of an unparsed entity appears in an attribute value declared as
being of type ENTITY or ENTITIES, a validating XML processor must pass
both the system identifier and the public identifier for the unparsed entity
to the application.

The content of an unparsed entity may be text or other types of data. If it
is text, then it can be XML or some other format.

An unparsed entity is declared using the following format:

<!ENTITY entityName SYSTEM “myPicture.gif” NDATA gif>

06 0672324717 CH05 3/3/05 12:06 PM Page 61

62 Lesson 5

The entityName is used in attribute values to reference the unparsed
entity. The filename of the entity is given in quotation marks following the
SYSTEM keyword. The keyword NDATA indicates that the data is non-XML
data. In this example, the unparsed entity is identified as being in GIF for-
mat, by means of a gif notation declared elsewhere in the DTD.

Note A notation identifies by name the format of
unparsed entities.

Declaring Notations
Notations are declared using the following general format:

<!NOTATION notationName locationOfInformation >

The notationName specifies the name of the notation. The
locationOfInformation variable uses the SYSTEM and/or PUBLIC key-
words to identify a resource where the application can access further
information about the non-XML data indicated by the notation. This
enables the application to further process the non-XML data, either using
its own facilities or by accessing a helper application.

Types of Unparsed Data
Unparsed data might be an image, text, or binary data. The only responsi-
bility of the XML processor is to pass to the application the name of the
unparsed entity and the notation associated with it.

Parameter Entities
Parameter entities are used only in DTDs. They allow reuse of informa-
tion within the DTD.

06 0672324717 CH05 3/3/05 12:06 PM Page 62

63XML Entities

Suppose that you had a document of the following structure:

<Reports>
<Report>
<Introduction>
<!-- Introductory text goes here. -->
</Introduction>
<!-- Main report information goes here. -->
<Comment>
This contains a comment about an individual report
</Comment>
</Report>
</Reports>

If you were declaring a single introduction element, you might write the
declaration as follows:

<!ELEMENT introduction (#PCDATA)>

Similarly, if you were declaring the comment element, you might write
this:

<!ELEMENT comment (#PCDATA)>

The literal text (#PCDATA) is being used more than once, so you could use
a parameter entity to replace it.

Remember that parameter entities are not permitted in the internal subset
of a DTD; you need two separate documents.

The modified XML document would look like this:

<?xml version=’1.0’?>
<!DOCTYPE Names SYSTEM “myDTD.dtd”>
<Reports>
<Report>
<Introduction>
<!-- Introductory text goes here. -->
</Introduction>
<!-- Main report information goes here. -->
<Comment>
This contains comment about an individual report
</Comment>
</Report>
</Reports>

06 0672324717 CH05 3/3/05 12:06 PM Page 63

64 Lesson 5

The external subset of the DTD could look like this:

<!ENTITY % myPC “(#PCDATA)” >
<!ELEMENT Reports (Report)+ >
<!ELEMENT Report (Introduction, Comment)>
<!ELEMENT Introduction %myPC; >
<!ELEMENT Comment %myPC; >

The literal text (#PCDATA) has been defined as the replacement text for the
myPC parameter entity, declared as follows:

<!ENTITY % myPC “(#PCDATA)” >

You can then use the myPC parameter entity in the entity declarations for
the Introduction and Comment elements:

<!ELEMENT Introduction %myPC; >
<!ELEMENT Comment %myPC; >

This example is very simple, but it indicates how a parameter entity can
be used.

Summary
In this lesson, you learned what an entity is and what types of entities are
defined for XML 1.0. You also learned how to declare parsed entities,
unparsed entities, and parameter entities. In addition, you saw examples
of how entities can be used.

06 0672324717 CH05 3/3/05 12:06 PM Page 64

LESSON 6
Characters in
XML

In this lesson, you will learn about character sets and encodings and how
they can be used with XML documents.

Internationalization
Only a few years ago, the World Wide Web was primarily an English-lan-
guage medium, at least in the eyes of people from the United States and
the United Kingdom. Of course, English is the native language of perhaps
10% of the world’s population and is used in economically influential
countries, with international trade, and particularly in countries where
English is spoken natively. Support for English on the Web was obviously
essential, but over several years it became increasingly obvious that sup-
port for many other languages was essential, too, if the Web is to be truly
worldwide.

Note In this lesson, you will learn many terms relat-
ing to characters that have very specific meanings. If
you are unfamiliar with this material, you might find
the new terminology a little confusing. It will make
sense if you work through it slowly.

Support for multiple languages raises many issues for people who think
primarily or exclusively in English. For example, how do you express
characters that cannot simply be typed using an English-language key-
board? For example, how do you express characters in German that use

07 0672324717 CH06 3/3/05 12:06 PM Page 65

66 Lesson 6

the umlaut, such as ü, or letters in French that have an acute accent above
a vowel, such as é?

Note The idea of internationalization is an impor-
tant one in the XML world. Because internationaliza-
tion is a long word, you will often see it abbreviated
as i18n.

To understand how to solve this general problem, you need to consider
how characters are encoded.

Character Encodings
This section looks at how individual characters and sets of characters are
encoded on a computer.

As mentioned earlier, English characters can be entered into computer
memory most simply from the keyboard. However, at a fundamental level,
computers understand only numbers. A character must be represented in
some way as a number so that you can use text in a computer. A mapping
from a set of numbers to a set of characters is stored internally.

English-language characters (plus some other characters) can be repre-
sented using the American Standard Coding for Information Interchange
(ASCII) coding. This is an 8-bit coding system. All English characters can
be represented using the 256 characters (28) characters of ASCII. The
hexadecimal number 21, for example, corresponds to the exclamation
mark character (!).

Note The characters up to hexadecimal 0020 don’t
display a visible character onscreen, but they might
affect screen appearance. Character 0020 (decimal 32),
for example, is the space character.

07 0672324717 CH06 3/3/05 12:06 PM Page 66

67Characters in XML

Let’s look at ASCII characters in a little more detail. If you are using a
computer that is running a recent version of Microsoft Windows, you will
have access to the Character Map, which allows you to express the ASCII
character set as well as many non-English characters. You will use that to
begin to explore some issues related to characters, their representation,
and their display.

In Windows 2000, to access the Character Map, choose the Start button,
Programs, System Tools, Character Map. When you run the Character
Map utility, you will see the window shown in Figure 6.1.

FIGURE 6.1 The Character Map utility in Windows 2000.

In this figure, the font applied initially is the Arial font. So, all characters
displayed use the Arial font unless the user chooses an alternative font.
We will return to the discussion of fonts a little later.

First, hover the mouse over the exclamation mark (!) in the top-left cor-
ner of the Character Map program. You will see a ToolTip:

U+0021 - Exclamation Mark

The meaning of the final part of the ToolTip is obvious: It is simply the
natural English term for the character indicated by the mouse.

07 0672324717 CH06 3/3/05 12:06 PM Page 67

68 Lesson 6

The U+0021 corresponds to the hexadecimal number 21, (decimal 33)
mentioned earlier. However, it is an abbreviation indicating that the
Unicode system (explained in greater detail later in the chapter) is in use
and that the particular character is 0021. The 0021 is expressed in hexa-
decimal notation and would be expressed as 0033 in decimal notation.

Listing 6.1 shows an XML representation of the exclamation mark in
hexadecimal and decimal notation, as well the literal exclamation mark
character.

LISTING 6.1 Exclamations.xml: Expressing Characters in
Hexadecimal and Decimal
<?xml version=’1.0’?>
<exclamations>
<exc>!</exc>
<exc>!</exc>
<exc>!</exc>
</exclamations>

If you run the code and display it in the Internet Explorer 5.5 browser,
you will see something similar to Figure 6.2. Any other XML-compatible
browser should give a similar appearance. Both character references dis-
play as an exclamation mark contained within the exc element, just like
the literal exclamation mark in the third exc element.

Of course, what you have done so far you could have done more easily
using an English-language keyboard. When you need to include characters
that either are not available from an English language keyboard or can be
achieved only using obscure key combinations, the Character Map utility
becomes more helpful.

Suppose that you want to express the simple idea in German, “Übung
macht den Meister” (meaning, “Practice makes perfect”). You need the u
with the umlaut (also called a diaeresis). This can be copied from the
Character Map by clicking the desired character and clicking the Copy
button.

This enables you to include foreign-language characters that use the
Roman alphabet in English-language documents. If you scroll down in the
Character Map utility, you will see characters used in such languages as
Russian, Hebrew, and Arabic.

07 0672324717 CH06 3/3/05 12:06 PM Page 68

69Characters in XML

FIGURE 6.2 Character references.

So, the type of facility supplied by the Character Map provides an answer
sufficient for expressing many European and some Middle East lan-
guages. Of course, many languages cannot be expressed using the
Character Map. For example, some Asian languages, such as Chinese,
Japanese, and Korean, use many thousands of ideographic characters. An
ideographic character represents a word or idea rather than an individual
letter. A more general solution to supplying a desired character is needed
to accommodate any written language.

XML and Internationalization
From the beginning, XML was intended to be used internationally. To
support authentic international use, XML must be capable of expressing
character sets used in all (or at least the most widely used) world lan-
guages. To achieve this international usage and express the ideas and
words of many languages, XML has built on several other agreed
approaches for expressing characters.

07 0672324717 CH06 3/3/05 12:06 PM Page 69

70 Lesson 6

The 1-byte (8-bit) approach of the ASCII code is insufficient for express-
ing more than a few languages. Increasing the encoding to 2 bytes enables
users to express far more characters (65,536 instead of 256).

Having 2-byte character codes opens up the possibility for many more
codes than necessary to encode the characters of English and other lan-
guages that use the Roman alphabet. At the present time, the most widely
used internationally accepted standard uses 16-bit encoding. It doesn’t
achieve representation of every single character that might be needed, but
it does go further toward a truly global solution for character encoding.

All XML processors are required to support two particular character
forms: UTF-8 and UTF-16. These are 8-bit and 16-bit forms of character
encoding, respectively. In hexadecimal terms, these are numeric values
from 0000 to FFFF inclusive, with minor gaps because some codes are
used for other purposes.

The section “Unicode” looks a little more closely at these international
codes. First, the next section looks again at how the encodings for individ-
ual characters can be expressed in a way that an XML processor will
understand.

Character References
Character references are the XML technique for directly expressing the
numeric character encoding of a character.

Note Many of the issues discussed in this chapter are
important if you plan to use more than one language
in your XML documents.

Note A character reference is a technique for using a
numerical value, which can be expressed in hexadeci-
mal or decimal notation, to refer to an individual
character.

07 0672324717 CH06 3/3/05 12:06 PM Page 70

71Characters in XML

In XML, character references are used. To express a character reference
using hexadecimal notation, use the character sequence &#x followed by
four numeric characters or the characters A (decimal 10) to F (decimal 15)
inclusive to express any character that can be expressed using 16-bit
encoding. The end of the character reference is signaled by the semicolon
(;).

Decimal numbers are expressed as &# followed by numbers up to 65,535
that are followed by a closing semicolon character.

An example using both hexadecimal and decimal notations is shown in
Listing 6.2.

LISTING 6.2 Good.xml: A Statement in English and German
<?xml version=’1.0’?>
<Good>
<InEnglish>That is good.</InEnglish>
<Deutsch>Das ist güt.</Deutsch>
<Deutsch>Das ist güt.</Deutsch>

</Good>

The desired character in German is represented numerically as hexadeci-
mal 00FC.

If the code is displayed in the Internet Explorer browser, the desired char-
acter appears similar to Figure 6.3.

The character code 00FC is a 2-byte code.

Note Strictly, a byte need not be 8 bits in size.
Because many familiar computer systems use an 8-bit
byte, this code is referred to as 2-byte code. An alter-
native description is a 16-bit character code.

If you open the document shown in Listing 6.3 in your browser, you can
explore the onscreen appearance of the full number of 16-bit characters
by replacing the 16-bit number. Unfortunately, your computer probably
will not have the necessary information to display many of the possible
characters.

07 0672324717 CH06 3/3/05 12:06 PM Page 71

72 Lesson 6

FIGURE 6.3 Displaying a foreign-language character using a char-
acter reference.

LISTING 6.3 Explore.xml: Explore the 16-Bit Character
Encoding
<?xml version=’1.0’?>
<Explore>
<aCharacter>﫼</aCharacter>

</Explore>

For many of the characters, you will find that a browser simply displays a
square or other placeholder because your computer does not have a font to
display the needed character.

Unicode
This section looks a little more closely at the character set that XML uses:
Unicode.

07 0672324717 CH06 3/3/05 12:06 PM Page 72

73Characters in XML

The Unicode organization created a character encoding that has global
acceptance. Before the emergence of Unicode, many encoding schemes
existed that, for many practical purposes, were incompatible. There is, of
course, no intrinsic reason why a particular character—the exclamation
mark, for example—should be represented by a particular number.
Therefore, the encoding is arbitrary, to a degree. The important thing is
that everybody agrees to use the same encoding.

Of course, it made sense for the English encoding to be compatible with
the long-standing (in computer terms) ASCII encoding. So, English is
expressed in Unicode codes beginning with a double zero, such as repre-
senting the exclamation mark with hexadecimal 0021.

Note Strictly speaking, XML uses the international
Standard ISO/IEC 10646. Unfortunately, the
International Organization for Standardization (ISO)
does not make its standards freely available on the
Web in the way that the World Wide Consortium
(W3C) does. The Unicode encoding follows ISO/IEC
10646 and is accessible via the Web.

Note Unicode is also used by many modern pro-
gramming languages, including Java and ECMAScript
(JavaScript). An understanding of at least the basics of
Unicode is useful for the Web developer.

Unicode uses an initially intimidating technical vocabulary. See
http://www.unicode.org/glossary/ for further details.

Unicode Supplementary Code Points
The latest versions of Unicode go beyond the hexadecimal range of 0000
to FFFF. Also included are supplementary code points in the range 100000

07 0672324717 CH06 3/3/05 12:06 PM Page 73

74 Lesson 6

to 10FFFF. This provides for the encoding of additional characters that
cannot be encoded in the 16-bit encoding.

Thus extended, Unicode allows the encoding of more than one million
characters, which is anticipated to accommodate all of the world’s charac-
ters. Of course, most of the most commonly used characters are included
in the 16-bit encoding scheme.

The first 65,000 or so characters are referred to as the Basic Multilingual
Plane—BMP, for short.

Unicode Encoding Forms
Unicode provides three encoding forms.

• UTF-8—An 8-bit encoding form. This must be supported by all
XML processors. UTF-8 maps one to one with ASCII.

• UTF-16—A 16-bit encoding form. This must be supported by all
conforming XML processors.

• UTF-32—A 32-bit encoding form. XML 1.0 processors are not
obligated to support this encoding form.

Fonts, Characters, and Glyphs
This section examines the meaning of the terms font, character, and
glyph.

A Unicode character point is a numerical representation of a conceptual
character. For example, suppose that you refer to “uppercase A.” If you
are familiar with English, you know which character is being referred to.
However, you can’t say with certainty exactly how this conceptual charac-
ter will be displayed onscreen or on paper. This is where glyphs and fonts
come in.

For the purposes of this discussion, a font is a set of glyphs. A glyph is a
particular visual representation of a character. Any character, such as the
uppercase A, can be displayed in any number of visual appearances.

07 0672324717 CH06 3/3/05 12:06 PM Page 74

75Characters in XML

This truth is illustrated using Scalable Vector Graphics (SVG). Listing 6.4
shows a simple SVG document with elements that contain the uppercase
character sequence XML, displayed in several different fonts. To run and
view the code, you will need an SVG viewer, such as the Adobe SVG
Viewer (www.adobe.com/svg/).

LISTING 6.4 myXML.svg: Displaying the Same Characters As
Different Glyphs Specified by Different Fonts
<?xml version=’1.0’?>
<svg>
<text x=”20” y=”30” style=”font-size:30; font-
family:Arial;”>XML</text>

<text x=”20” y=”70” style=”font-size:30; font-family:Arial;”>
XML</text>

<text x=”20” y=”110” style=”font-size:30; font-family:’Times
New Roman’;”>

XML</text>
<text x=”20” y=”150” style=”font-size:30; font-family:’Times
New Roman’;”>XML</text>

</svg>

Notice the difference between the second and third lines of characters.
The glyphs that are displayed in the second line form part of the Arial
font. Glyphs in the Arial font share visual features in common. An impor-
tant one is that they all lack a serif, those little marks at the ends of
strokes on some characters. The same characters, XML, are represented by
different glyphs when the Times New Roman font is used, as in the third
line in Figure 6.4. The glyphs in that font commonly possess a serif on
many letters. Compare the exact shape of the characters XML as displayed
in Figure 6.4 to see the differences.

Whether the XML is specified as literal characters or as character refer-
ences, the displayed characters are the same if the font is the same. You
can see this in the first two myXML elements shown in Figure 6.4.

The range of glyphs available for English-language characters is enor-
mous, in part expressing the creativity of font designers. For XML appli-
cation languages, the character point is conceptually the same regardless
of the visual appearance chosen to display it.

07 0672324717 CH06 3/3/05 12:06 PM Page 75

76 Lesson 6

FIGURE 6.4 Literal characters or character references yield the
same result.

Summary
In this lesson, you learned about the need for internationalization and how
XML supports it. Several technical terms, including character, font, and
glyph, were introduced and explained. The concepts of character encod-
ing, character set, Unicode, and character references also were discussed,
along with examples.

07 0672324717 CH06 3/3/05 12:06 PM Page 76

LESSON 7
The Logic
Hidden in
XML

In this chapter, you will learn how data can be modeled using XML and
how the W3C models of logical structure behind well-formed or valid
XML can be represented and manipulated.

Modeling Data As XML
Earlier chapters in this book described XML mostly in terms of a set of
syntax rules that define how sequences of characters are to be used so that
an XML processor can process an XML document without throwing
errors and that also define the physical structure, expressed as entities. But
XML documents also have a logical structure that is expressed by the
nesting of elements and the presence of attributes on selected elements.
This highly flexible document structure means that you can model many
types of data. This is useful for modeling both highly regular structured
data that might otherwise be stored in a relational database and highly
flexible narrative documents.

First, let’s look at issues relating to markup languages and see why they
are increasingly used in place of or alongside binary file formats.

Binary Files and Markup
Binary files play an important role in data storage because they are—or
can be—very compact for any given amount of data to be stored. When
RAM was measured in kilobytes rather than hundreds of megabytes and
when disk storage was measured in megabytes rather than tens of giga-
bytes, compactness of storage was crucially important to developers of

08 0672324717 CH07 3/3/05 12:06 PM Page 77

78 Lesson 7

software for personal computers. As quantities of RAM and hard disk
storage have multiplied in recent years, compactness of data has become
less important for many uses. The increase in the availability of RAM and
hard disk space has outpaced the availability of developer time to create
programs to handle data.

Many more types of data are being stored than were in use a decade or so
ago. Typically binary files are specific to a particular application or ven-
dor; programs to make them comprehensible to humans with onscreen
displays or paper reports are becoming progressively more complex.
Thus, new types of data storage must be easy to create and maintain, not
just be compact. Markup languages in general, and XML in particular,
play a part in the process of making data easier to structure and describe.
Clear data structures that can be easily modified or adapted, together with
processors that access the data contained in those structures, make it eas-
ier to create, maintain, and modify data storage than when using binary
files alone.

One of the best known attempts to use markup languages to store or dis-
play structured data is the Hypertext Markup Language (HTML).

XML More Structured Than HTML
HTML was initially designed to provide structured documents. HTML
has enjoyed enormous success as the language used by Web browsers to
display information, but it has fundamental limitations with structuring
data. Look at the short employment record expressed in the HTML code
in Listing 7.1.

LISTING 7.1 An HTML Representation of Structured Data
<html>
<body>
<h1>Peter Jones</h1>
<h2>Basic data</h2>
<p>1958/10/29</p>
<p>ABC123</p>
<h2>Employee History</h2>
<p>Peter Jones was first employed by the company on January
21st 1980.

08 0672324717 CH07 3/3/05 12:06 PM Page 78

79The Logic Hidden in XML

He has performed well since then and has been promoted four
times.</p>

</body>
</html>

An h1 element is used to provide a heading for the employee data that fol-
lows. The h1 element has a hybrid function: It communicates something
about how its content will be displayed and also indicates something
(rather vaguely) about the nature of the content in the overall structure of
the document. An h1 element indicates a heading, but an h1 element in
one HTML document might have a different importance or meaning than
an h1 element in another HTML document in the same subject domain.

The fact that an h1 element indicates a header is useful up to a point, but
you learn nothing about what an h1 header means. Nor does the h1 ele-
ment—or other HTML header elements—actually contain all the data
related to that heading. For example, the h2 element in this example does
not actually contain the p element that describes Peter Jones’s employ-
ment history. The content of the h2 element and the following p element
are logically related but are structurally only loosely related.

If the HTML document contained four employee records, you have to
depend on the good sense of the Web page author for any consistency in
structure. You might use an h1 element to indicate that multiple records
are involved but that the h1 element is only a descriptor, not a container
element.

Taken together, these characteristics of HTML mean that it can structure
data, but this structure is loosely expressed and is mixed with presentation
data. For simple data, that might be acceptable. However, as the complex-
ity of data and its volume increases—and as the prospect of more auto-
matic processing of data appears on the horizon—the fuzzy edges of the
structure that HTML provides become substantive disadvantages.

XML provides a cleaner, more consistent framework for expressing struc-
tured data. In part, this improvement relies on the fact that you can create
meaningful element type names for each element in an XML document.
In addition, by appropriately nesting XML elements, you can express
more clearly the logical relationships among elements.

LISTING 7.1 Continued

08 0672324717 CH07 3/3/05 12:06 PM Page 79

80 Lesson 7

An XML document broadly equivalent to Listing 7.1 might look some-
thing like Listing 7.2.

LISTING 7.2 An XML Representation of Employee Data
<employee>
<name>Peter Jones</name>
<dateOfBirth>1958/10/29</dateOfBirth>
<employeeID>ABC123</employeeID>
<employeeHistory>
Peter Jones was first employed by the company on January 21st
1980. He has performed well since then and has been promoted
four times.

</employeeHistory>
</employee>

An enormous advantage of the XML approach is that there is a container
element—in this case, the employee element—that contains all the data in
an XML document. Everything nested within the employee element is
logically related to that employee element. This is a structure that more
closely approximates reality.

Assuming that the element type name of the document element in an
XML document is chosen wisely, this also hints at what the data is about.
For example, when you see an employees element, you can guess that the
content likely relates to data about a group of employees. An h1 element
type name can’t communicate that—at least, not in the element name.

When element type names are chosen sensibly, XML can be termed self-
describing data. An employee element tells much more about the data
contained in it than, for example, an html or body element in an HTML
document. In addition to creating new element type names, you can create
new attributes to express information about individual elements for partic-
ular purposes.

Similarly, each component part of the employee element—whether attrib-
utes or children or descendant elements—can be viewed as further
describing the employee element. In this respect, the content of an XML
element has similarities to the properties of a programming object. Just as
encapsulation is useful in programming languages, nesting of elements is
useful for data description.

08 0672324717 CH07 3/3/05 12:06 PM Page 80

81The Logic Hidden in XML

Let’s move on to look at how you can use XML to describe various broad
types of data.

Modeling Relational-Type Data
XML allows the modeling of data that would conventionally be stored in
a relational database-management system.

Note In some systems, data is served as XML but is
stored in a relational database-management system
(RDBMS) because of the highly optimized storage pro-
vided.

Relational data is typically expressed as rows (records) and columns
(fields). A simple RDBMS table might contain employee records. Each
record might consist of an employee’s ID number, surname, first name,
initials, and date of birth. This can be easily modeled in XML. Listing 7.3
shows one approach.

LISTING 7.3 Modeling an Employee Record in XML
<?xml version=’1.0’?>
<employees>
<employee>
<employeeID>ABC123</employeeID>
<surname>Cameron</surname>
<firstName>Ewen</firstName>
<initials></initials>
<dateOfBirth>1975/12/28</dateOfBirth>

</employee>
<!-- Other “records” can go here -->
</employees>

XML provides flexibility in how the logical relationships are expressed.
For example, you can use attributes to express information that might be
contained in a child element. For example, you could use an attribute to
express the employee ID, as in Listing 7.4.

08 0672324717 CH07 3/3/05 12:06 PM Page 81

82 Lesson 7

LISTING 7.4 An Alternate Structure for Representing the
Data of Listing 7.3
<?xml version=’1.0’?>
<employees>
<employee employeeID=’ABC123’>
<surname>Cameron</surname>
<firstName>Ewen</firstName>
<initials></initials>
<dateOfBirth>1975/12/28</dateOfBirth>

</employee>
<!-- Other “records” can go here -->
</employees>

Thus, the same information has multiple possible representations in XML.
The flexibility of XML creates potential problems because one logical
structure can be expressed in more than one way. As you will see in
Chapter 11, “XSLT—Transforming XML Structure,” you can use the
Extensible Stylesheet Language Transformations (XSLT) to transform
XML data from one equivalent structure to another (as well as perform
other transformation tasks described in Chapter 10, “XSLT—Creating
HTML from XML,” and Chapter 12, “XSLT—Sorting XML”).

In the approach shown in Listing 7.3 and Listing 7.4, the XML document
corresponds broadly to an Employees table in an RDBMS system. Each
employee element holds a record, in RDBMS terms. Each column is rep-
resented by an XML element, such as the employeeID element.

You can even express a single row as follows:

<employee
employeeID=”ABC123”
surname=”Cameron”
firstName=”Ewen”
initials=””
dateOfBirth=”1975/12/28”
>

Using only attributes confines you to the equivalent of a row structure of
an RDBMS approach.

08 0672324717 CH07 3/3/05 12:06 PM Page 82

83The Logic Hidden in XML

When the data naturally follows a relational structure, ultimate storage
may best be in a proprietary format.

Hierarchical Data in XML
Some types of data do not follow the regular structure of rows and
columns that occur in RDBMS tables. For example, you could express a
date store for the support calls from a customer as follows:

<customer customerID=”DCE789”>
<call date=”2002/08/30”>
<subject>Program crashes when started</subject>
<supportOperator>Jim<supportOperator>
<status>Resolved</status>

</call>
<call date=”2002/09/25”>
<subject>Was unable to locate command to print.</subject>
<supportOperator>Karen<supportOperator>
<status>Resolved</status>

</call>
</customer>

This support record for a single customer has a hierarchy—each customer
element has nested inside it one or more call elements. In turn, each call
element has three child elements—subject element, support element,
and status element.

In data structures that model hierarchical relationships, XML can cope
with hierarchies of arbitrary complexity. As hierarchies in data increase in
depth, it becomes increasingly problematic for an RDBMS to model the
data.

Loosely Structured Data in XML
XML is derived from the Standard Generalized Markup Language
(SGML). SGML often is used for complex documents, such as aircraft
maintenance manuals. Because SGML is useful for expressing complex
documents, it is not surprising that XML is also used to express docu-
ments of significant complexity.

08 0672324717 CH07 3/3/05 12:06 PM Page 83

84 Lesson 7

Some lengthy document-centric XML documents are very rigidly struc-
tured, although they are documents rather than “data.” On the other hand,
XML can be used to contain documents that form a very loose or flexible
structure that might build on this sort of form:

<book>
<introduction>
<!-- Text for the introduction goes here, perhaps in multiple
<section> or <paragraph> elements -- >

</introduction>
<chapter number=”1”>
<!-- In more highly structured documents, we may also have
<section> elements -- >

<paragraph>Some paragraph text</paragraph>
<paragraph>Some more paragraph text</paragraph>
</chapter>
<!-- An appendix or several might go here. -->
<!-- An index, with many variant structures might be added
here. -->

</book>

The structure shown is simple and clear, but many real-life uses are much
more complex. In some cases, you might add elements such as header,
subheading, footnote, sidebar, and other possible elements that convey
the great diversity of structures used in books. XML can express all these
structures.

As you have seen, XML can express the logical relationships contained in
relational-type data, hierarchical data, and loosely structured data. For cer-
tain uses, non-XML approaches might be more efficient or appropriate,

Note All XML files are usually referred to as “docu-
ments.” XML documents are often referred to as
document-centric and data-centric. The former describes
simple letters or other correspondence, as well as
lengthy documents that would take up multiple vol-
umes if printed out. Data-centric XML “documents”
use XML to store data that conventionally would be
stored, for example, in an RDBMS or a hierarchical
database.

08 0672324717 CH07 3/3/05 12:06 PM Page 84

85The Logic Hidden in XML

but the sheer flexibility of XML makes it an important technology to mas-
ter if you are handling anything but small amounts of data.

The final sections of this chapter briefly look at how XML data can be
accessed and manipulated programmatically. Some of the topics intro-
duced, including the Document Object Model and XPath, are discussed
later in the book.

W3C XML Data Models
XML documents follow the syntax rules of well-formedness but also rep-
resent data objects that have a hierarchical structure. The hierarchical
structure must exist for each XML document, given that there is a docu-
ment entity within which the prolog (if it exists), the document element,
and all other elements exist. The simplest hierarchy for a well-formed
XML document is a document entity with a single document element con-
tained inside it.

The World Wide Web Consortium has produced three families of specifi-
cations that express, in different ways, the logical structure of an XML
document: the Document Object Model, the XML Path Language, and the
XML Information Set.

The Document Object Model
The Document Object Model (DOM) for XML documents is, at its sim-
plest, closely related to the DOM for HTML documents. The W3C has
created specifications that express increasing functionality as subsequent
levels of the DOM. The development of the DOM is ongoing—Level 1
and Level 2 have been released as full W3C specifications. DOM Level 3
is under development at the time of this writing.

As its name suggests, the DOM models an XML document in terms of
objects. Technically, the DOM specifications govern interfaces. Interfaces
can be viewed as contracts with an object. It doesn’t matter what the exact
structure of an object is. However, if it is a DOM object, it must behave as
if particular properties and methods exist for the object.

08 0672324717 CH07 3/3/05 12:06 PM Page 85

86 Lesson 7

The DOM enables developers to manipulate the in-memory representation
of an XML document, with each element and attribute represented as a
node in the in-memory hierarchy. The fundamental interface in the DOM
is the Node interface. The nodes for elements, attributes, and so on extend
the Node interface. You can add nodes that represent elements, attributes,
and so on. The in-memory representation can be discarded after the appli-
cation has performed any necessary actions; it also can be explicitly saved
to a new file or can alter the file that was loaded.

The Document Object Model is discussed in more detail in Chapter 16,
“The Document Object Model,” and Chapter 17, “The Document Object
Model, 2.”

XPath
The XML Path Language (XPath) also models an XML document as a set
of nodes. However, the hierarchy of nodes in the XPath representation of
an XML document differs in several respects from the DOM representa-
tion.

XPath uses a path syntax to express the hierarchy of the content in an
XML document. XPath bears similarities to the paths—hence the name
XML Path Language—used to express the hierarchy of the file system on
your computer.

The root node of an XPath document, which is equivalent to the document
entity, is expressed as a single forward slash character (/). Nodes can then
be accessed relative to the root node. For example, the document element
of a document with a document element called myDocumentElement can
be accessed using path syntax, /myDocumentElement.

XPath is intended for use with other XML specifications, such as XSLT
and XForms (a new forms language expressed in XML). XPath specifies
which part of an XML document is to be processed. For example, XPath
can be used with XSLT to select a set of nodes that, not surprisingly, it
terms a node-set. The node-set is then processed in one of the ways sup-
ported by the XSLT specification.

08 0672324717 CH07 3/3/05 12:06 PM Page 86

87The Logic Hidden in XML

XPath is discussed in greater detail in Chapter 9, “The XML Path
Language—XPath.”

The XML Information Set
The XML Information set, also termed the infoset, is an abstract data
model for most of an XML document and is intended to be used by other
XML-related specifications from the W3C.

An information item is similar to a node as used by DOM and XPath.
However, the detail of how an XML document is modeled differs from
both DOM and XPath.

The XML information set is the newest of the data models specified by
the W3C but is viewed as the foundation for many future XML-related
specifications produced by the W3C. For example, the infoset is used as a
basis for the W3C XML Schema language, together with some augmenta-
tion of that infoset to express notions specific to the activity of schema
validation.

Which Data Model?
The fact that the W3C has released three data models that model the same
thing—an XML document—can seem confusing. In practice, the choice
of data model to use depends on what you want to do.

The DOM is used when you want to create, manipulate, or delete parts of
an XML document using programming languages such as Java. XPath is
used primarily to navigate the in-memory representation of an XML docu-
ment, to make selected parts of that document available to other XML-
based application languages such as XSLT, the XML Pointer Language,
and XForms.

The information set is used in W3C XML Schema and is proposed as the
basis for the XML Query Language (XQuery) and version 2.0 of XSLT
and XPath (currently under active development at the W3C).

08 0672324717 CH07 3/3/05 12:06 PM Page 87

88 Lesson 7

Summary
XML can express, or model, many types of data structures, including
structures that are similar to relational data, hierarchical data, and loosely
structured data.

Data models provide the way for programming languages to efficiently
and conveniently create, modify, or manipulate XML data. Three data
models were introduced in this chapter—the Document Object Model, the
XML Path Language, and the XML Information Set.

08 0672324717 CH07 3/3/05 12:06 PM Page 88

LESSON 8
Namespaces in
XML

In this lesson, you will learn the reasons for using namespaces in XML
documents and the correct syntax for XML namespaces.

What Is a Namespace, and Why Do
You Need Them?
XML is useful for exchange of documents. A finite number of element
type names is available to use to contain the document content. In a global
Web, how do we handle the possibility of two element type names being
the same? The solution that the W3C chose is namespaces.

Note A namespace is a collection of names. In XML,
a namespace refers to a collection of element type
names and attribute names.

09 0672324717 CH08 3/3/05 12:06 PM Page 89

90 Lesson 8

So, exactly why do we need namespaces? You might have document frag-
ments such as the following:

<html>
<head>
<title>My XHTML document</title>
</head>
<body>Some content.</body>
</html>

and

<persons>
<person>
<title>President</title>
<firstName>George</firstName>
<lastName>Bush</lastName>
</person>
</persons>

Even with simple documents that mix these two XML structures, there is
a problem. In this example, how do you distinguish unambiguously the
title element that belongs to XHTML from the title element in the
persons data store? When you mix longer documents, possibly using
more than two vocabularies, the potential for problems is greater.

Three important problems almost inevitably might arise:

• It is difficult to recognize the application to be used for process-
ing particular elements.

• Elements with the same element type name are used for different
real-world meanings.

• Different element type names are used by different users or
groups of users to represent the same real-world notion.

XML namespaces were designed to overcome the first two problems. A
solution to the third problem using XSLT is described in Chapter 11,
“XSLT—Transforming XML Structure.”

09 0672324717 CH08 3/3/05 12:06 PM Page 90

91Namespaces in XML

Recognizing Which Application to Use
In the preceding code, how do you signal that a Web browser should
process the title element from the XHTML code snippet and that
another application should process the title element from the persons
data store?

The first code snippet could be nested within the second, or vice versa.
So, you need a mechanism that solves the problem, regardless of which
essentially infinite number of structures is used. You need to be able to
identify the individual elements as belonging to a particular namespace.

Element Type Name Clashes
Element type names clash when two or more XML document authors use
the same element type name to represent different real-world ideas or val-
ues.

Because the community using XML is already large and will grow fur-
ther, the possibility that element type names will clash in shared docu-
ments becomes very real. The likelihood of element name clashes also
increases as more XML documents are shared outside defined groups.

Consider the possibility of sharing information from several sources, each
of which uses an order element:

<order>
<orderNumber>AB123</orderNumber>
<Items>
<Item number=”20”>Ink cartridges</Item>
<Item number=”2”>3.5” Floppy Disks (Box of 10)</Item>

</Items>
</order>

The order element has a different meaning in the following code:

<order>
<givenBy>General B. Smart</givenBy>
<Content>Relocate 6 jet fighters to MacDill Air Force

Base</Content>
</order>

09 0672324717 CH08 3/3/05 12:06 PM Page 91

92 Lesson 8

It is different again in the following code:

<order>
<Location>Seattle</Location>
<Description>A riot lasted several hours following clashes
with anti-globalization protesters.

</order>

Note These examples illustrate the problem, but
more subtle issues also arise. Suppose that several
companies each use an order element to refer to the
placing of an order for goods and services. Those com-
panies are not obligated to use an order element with
the same structure of child and descendant elements
nested within it.

If these XML documents remained within commercial, military, or police
organizations, possibly no confusion would arise. However, suppose that
the police or the Air Force ordered a number of items from the supplier
that uses the order element in the first of the three ways shown. How is
the reader—and, more importantly, an XML processor—to know which
order element is intended in any particular context?

Clearly, a mechanism is needed to distinguish a commercial order from a
military order or an order recorded by a police department. You need to be
able to express in XML similar distinctions.

In XML, elements are distinguished by using namespaces.

Note A namespace is simply a collection of names. In
XML 1.0, a namespace doesn’t imply any particular
document structure. It simply expresses the notion
that these elements belong together.

09 0672324717 CH08 3/3/05 12:06 PM Page 92

93Namespaces in XML

A concept similar to XML namespaces exists in some programming lan-
guages. For example, in Java, a particular class must have a unique name,
to avoid ambiguity. In Java, a package provides a broad equivalent to the
concept of XML namespaces. A class must have a name that is unique
within a package. Classes in other packages might have the same class
name, but because they are in a different package, there is no risk of con-
fusion as the code is processed.

As in Java, each XML element in an XML namespace must have a unique
name; otherwise, confusion can arise.

Let’s move on to examine exactly how XML distinguishes namespaces.

Using Namespaces in XML
To clearly distinguish the order element here you would need to provide
more information about the element type name than simply order:

<order>
<givenBy>General B. Smart</givenBy>
<Content>Relocate 6 jet fighters to MacDill Air Force
Base</Content>

</order>

from the order element here

<order>
<Location>Seattle</Location>
<Description>A riot lasted several hours following clashes
with anti-globalization protesters.

</order>

The solution to this, in XML 1.0, is a qualified name. This is often abbre-
viated as QName.

A qualified name is an XML element type name that
consists of two parts—a namespace prefix and a local
part separated by the colon character (:).

09 0672324717 CH08 3/3/05 12:06 PM Page 93

94 Lesson 8

Qualified Names
You can distinguish elements using qualified names (QNames). Referring
back to the earlier example, the military version of an order could use the
QName mil:order. This would distinguish it from possible QNames for
the other two order element types, perhaps expressed as business:order
and civil:order.

Each QName consists of a namespace prefix, a colon character, and a
local part. The local part is what we have called the element type name in
a non–namespace-aware document.

Note The colon character can legally be used for any
purpose in XML. To avoid confusion and unpredictable
results, it is wise to reserve the use of the colon char-
acter as a separator in QNames only.

If you use QNames on their own, you might run into problems similar to
those you are trying to avoid. For example, the mil:order element might
itself lead to ambiguity. Are you referring to military orders or militia
orders? Similarly, if you refer to business:order elements, which of
potentially many element types created by individual businesses or con-
sortia are you referring to?

You need a more universal way to distinguish namespaces than simply
using namespace prefixes alone. You achieve potentially unique identifica-
tion of a namespace using a uniform resource identifier and mapping a
namespace prefix to it.

URIs Represent Namespaces
In XML namespaces, the namespace name is a uniform resource identi-
fier (URI).

09 0672324717 CH08 3/3/05 12:06 PM Page 94

95Namespaces in XML

A URI is a potentially lengthy sequence of characters. For example, you
might want to create a document type for a particular structure of docu-
ment. You could choose a namespace URI http://www.XMML.com/
myVeryOwnNamespace.

So, why aren’t URIs used directly in QNames? Three reasons are worth
mentioning:

First, URIs often make use of the colon character as a separator. With the
following start tag, ambiguity exists regarding which of the two colon
characters is the separator between the namespace prefix and the local
part:

<http://www.XMML.com/myVeryOwnNamespace:document>

Does this refer to an element whose namespace prefix is http and local
part is //www.XMML.com/myVeryOwnNamespace:document, or does this
refer to an element whose namespace prefix is http://www.XMML.com/
myVeryOwnNamespace and local part is document? For the human reader, it
is pretty obvious that the second possibility is much more likely; for an
XML processor, however, serious ambiguity arises.

Second, if you write elements using the literal URI throughout the XML
document, it would soon become difficult for a human reader to decipher
what the document is about. This is particularly true if lines must be bro-
ken to squeeze the lengthy URI onto the page:

<http://www.XMML.com/myVeryOwnNamespace:document>
<http://www.XMML.com/myVeryOwnNamespace:introduction>
Some content goes here.

</http://www.XMML.com/myVeryOwnNamespace:introduction>
<!-- Many more lengthy elements could go here. -->
</http://www.XMML.com/myVeryOwnNamespace:document>

Third, URIs can contain characters that are not allowed in XML names.

The problem is solved by using a succinct namespace prefix that complies
with the rules for XML names and that is mapped to a namespace URI.
Declaring a namespace involves associating the namespace prefix with the
namespace URI. In XML, you do this using a special type of attribute
called a namespace declaration.

09 0672324717 CH08 3/3/05 12:06 PM Page 95

96 Lesson 8

Namespace Declarations
To be used in an XML document, a namespace must be declared. A name-
space declaration is made in the start tag of the element to which it refers.

A namespace declaration has a special structure. For most namespace dec-
larations, the attribute name begins with the character sequence xmlns,
followed by a colon and the namespace prefix. These are followed by an
equal sign (=) and the namespace URI enclosed in a pair of double or sin-
gle quotation marks:

xmlns:namespacePrefix=’namespaceURI’

Note XML names that begin with the character
sequence XML (in any case combination) are reserved
for W3C use, as in the namespace declarations demon-
strated in this section. As a result, do not attempt to
create your own namespace named xml:.

The document element in the http://www.XMML.com/myVeryOwnNamespace
namespace can be declared as follows, assuming that you map the name-
space URI to the namespace prefix XMML:

<XMML:document xmlns:XMML=”http://www.XMML.com/
myVeryOwnNamespace>

The short sample document then would be written as follows:

<XMML:document
xmlns:XMML=”http://www.XMML.com/myVeryOwnNamespace>
<XMML:introduction>
Some content goes here.

</XMML:introduction>
<!-- Many more lengthy elements could go here. -->

</XMML:document>

The alternative form of namespace declaration is the character sequence
xmlns followed by the equal sign and the namespace URI enclosed in
paired quotation marks:

xmlns=”namespaceURI”

09 0672324717 CH08 3/3/05 12:06 PM Page 96

97Namespaces in XML

Using this approach, you could express your document as follows:

<document
xmlns=”http://www.XMML.com/myVeryOwnNamespace>
<introduction>
Some content goes here.

</introduction>
<!-- Many more lengthy elements could go here. -->

</document>

For the human reader, the immediately preceding version is perhaps easier
to read, but the earlier version using the XMML namespace prefix is less
ambiguous. For the XMML processor, these documents are identical in a
namespace sense. All the elements in each document are associated with
the namespace URI http://www.XMML.com/myVeryOwnNamespace, and the
XML processor uses the namespace URI for identifying namespaces.

Note A namespace declared using the
xmlns=”namespaceURI” namespace declaration syntax
is termed the default namespace.

Caution Namespace URIs in XML must be identical
before they are considered to refer to the same name-
space. So, if you create your own namespace, be sure
that you are totally consistent in how you use upper-
case and lowercase characters.

If document authors use URIs for domains that they own or otherwise
legitimately use, a namespace URI should be unique. In addition, it is
important that namespace URIs are persistent, to instill confidence that
URIs and their related XML vocabularies remain stable.

09 0672324717 CH08 3/3/05 12:06 PM Page 97

98 Lesson 8

Namespace declarations should be explicit in the start tag of an appropri-
ate element or should be declared in the internal subset of the DTD.
Namespace-aware processors are not required to be validating processors.
Therefore, external declarations may not be accessed by a nonvalidating
processor.

Namespaces and Attributes
An attribute is assumed to be in the same namespace as the element with
which it is associated. The namespace prefix of the element need not be
expressed on the attribute, too. For example, both the XMML:chapter ele-
ment and the number attribute in the following code are in the same name-
space:

<XMML:chapter
xmlns:XMML=http://www.XMML.com/ABookNamespace
number=”3”>
<!-- Chapter content goes here. -->
</XMML:chapter>

An attribute need not share the same namespace prefix as the start tag on
which it is placed. You have seen this already for the reserved attributes
whose qualified names begin with the character sequence xmlns.

More generally, to use an attribute with a different namespace, the name-
space prefix must be declared on either the element or an ancestor of it.
Consider this example:

<someNamespace:someElement
xmlns:someNamespace=http://www.XMML.com/someNamespace
xmlns:someOtherNamespace=http://www.XMML.com/someOtherNamespace
someOtherNamespace:someAttribute=”something”
/>

Note The namespace URI need not point to any par-
ticular document. In particular, it need not contain
any schema for the class of documents. The primary
purpose of the namespace URI is to provide a unique
and persistent identifier for an XML vocabulary.

09 0672324717 CH08 3/3/05 12:06 PM Page 98

99Namespaces in XML

In principle, the value of an XML attribute may contain the colon charac-
ter. However, in namespace-aware XML documents, if the attribute is
declared to be of type ID, IDREF, IDREFS, ENTITY, ENTITIES, or NOTATION,
use of the colon character is not permitted.

Namespace Well-Formedness
The “Namespaces in XML” Recommendation
(http://www.w3.org/TR/1999/REC-xml-names-19990114), or, more pre-
cisely, an erratum to it (http://www.w3.org/XML/xml-names-19990114-
errata), specifies a concept of namespace well-formedness.

Namespace well-formedness includes the XML well-formedness criteria
defined in Chapter 2, “The Structure of an XML Document,” and Chapter
3, “XML Must Be Well-Formed,” together with the following constraints:

• Element type names and attribute names may contain either zero
or one colon characters.

• No entity names or processing instruction targets or notation
names may contain a colon character.

• No attribute that is declared to be of type ID, IDREF, ENTITY,
ENTITIES, or NOTATION may contain a colon character in its
value.

Using Multiple Namespaces in a
Document
Namespaces remove ambiguity from element type names. This assists the
exchange of XML documents between users, but it also allows elements
from different namespaces—in context implicitly different XML applica-
tion languages—to be mixed in the same document.

You can mix elements in the same document if you understand the scope
of namespaces.

09 0672324717 CH08 3/3/05 12:06 PM Page 99

100 Lesson 8

Scope of Namespaces
The scope of a namespace is limited to all elements nested inside the ele-
ment on which the namespace was declared. However, the namespace
may be altered by a namespace declaration on any of the nested elements.

Look at a simple example:

<somePrefix:anElement xmlns:somePrefix=
http://www.XMML.com/someNamespace>

<anotherPrefix:anElement
xmlns:anotherPrefix=”http://www.XMML.com/anotherNamespace>
Some content

</anotherPrefix:anElement>
</somePrefix:anElement>

The somePrefix:anElement element has an anotherPrefix:anElement
element nested inside it. The somePrefix:anElement element is associ-
ated with the namespace URI http://www.XMML.com/someNamespace. The
namespace declaration on the anotherPrefix:anElement element associ-
ates the anotherPrefix namespace prefix with a different namespace
URI: http://www.XMML.com/anotherNamespace.

Let’s return to the earlier example and explore how order elements from
different namespaces might be used in a single XML document.

You might have a document with a structure similar to the following from
a police department to a supplier:

<PurchaseOrder
xmlns=”http://MyWonderfulLocalPoliceDepartment.com/

purchaseOrders”>
<Reason>
<order>
<Location>Seattle</Location>
<Description>A riot lasted several hours following clashes

with anti-globalization protesters.
</order>
</Reason>
<Supplier>
<business:order

xmlns:business=”http://SomeFriendlyLocalBusiness.com/
PurchaseOrders”>

09 0672324717 CH08 3/3/05 12:06 PM Page 100

101Namespaces in XML

<business:orderNumber>
AB123

</business:orderNumber>
<business:Items>
<business:Item number=”20”>Tear Gas Cartridges
</business:Item>

<business:Item number=”10”>Personal Protection Masks
</business:Item>

</business:Items>
</business:order>
</Supplier>
<PurchaseOrder>

Two namespace declarations exist. The first associates the default
namespace with the namespace URI
http://MyWonderfulLocalPoliceDepartment.com/purchaseOrders.
The second, on the business:order element, associates the business
namespace prefix with the namespace URI
http://SomeFriendlyLocalBusiness.com/PurchaseOrders. You can
clearly distinguish the order element in the default namespace from the
business:order element. The XML processor uses the namespace URIs
rather than the namespace prefixes to distinguish the namespaces.

Summary
The need for XML namespaces to accommodate the likelihood of element
type name clashes was explained in this chapter.

XML 1.0 uses a namespace URI to uniquely identify a namespace. A
namespace URI is mapped to a namespace prefix by means of a name-
space declaration. A namespace-aware element type name consists of a
namespace prefix and a local part.

09 0672324717 CH08 3/3/05 12:06 PM Page 101

LESSON 9
The XML Path
Language—
XPath

In this lesson, you will learn about the XML Path Language (XPath) and
its view of an XML document. You also will learn how to use XPath to
access nodes representing elements and attributes of XML documents.

How XPath Is Used
XPath is written in a non-XML syntax that enables you to define which
part or parts of an XML document are selected by an XML processor or
an application built on it. For example, you might want to select informa-
tion to include in a company report from elements in a data store repre-
senting sales during a specified period.

Understanding basic XPath syntax is essential to being able to use
Extensible Stylesheet Language Transformations (XSLT), described in
Chapter 10, “XSLT—Creating HTML from XML”; Chapter 11, “XSLT—
Transforming XML Structure”; and Chapter 12, “XSLT—Sorting XML.”

Note The description of XPath in this chapter focuses
mostly on the selection of elements and attributes
using the abbreviated XPath syntax. XPath also has an
unabbreviated syntax.

To understand how to use XPath, you need to see how XPath models an
XML document and how XPath syntax is used.

10 0672324717 CH09 3/3/05 12:07 PM Page 102

An XML Document As a Hierarchy of Nodes
The description of XML documents in earlier chapters focused mostly on
the syntax of the document. However, in XPath, an XML document is
treated as a logical structure and is viewed as a hierarchy of nodes.

Each XML document has an in-memory hierarchy that represents the log-
ical structure of the document, not its surface syntax. The document entity
is represented in XPath as the root node. The representation of any XML
document has exactly one root node. Because all other parts of an XML
document are logically related to the document entity, the root node that
represents the document entity is the apex of the hierarchy of nodes.

For an XML document, as distinct from an external parsed entity, each
root node must have exactly one element node child.

For a very simple XML document such as the following, the XPath struc-
ture is similar to that shown in Figure 9.1:

<?xml version=”1.0” ?>
<document>
George Bush is the son of George Bush.
</document>

Root Node

document Element
Node

Text Node

Figure 9.1 A representation of an XML document as an XPath
hierarchy.

In this short example document, only three nodes are shown as represent-
ing the document. The root node is at the apex of the hierarchy. It has one

10 0672324717 CH09 3/3/05 12:07 PM Page 103

104 Lesson 9

child node: the document element node. Notice that there is no node to
represent the XML declaration in our document. The XPath 1.0 data
model has no representation for the XML declaration or for the DOCTYPE
declaration.

Note In XPath, element nodes and attribute nodes
have names that correspond to the element type
name and attribute name. Not all XPath node types
have names.

The document element node has a single text node as its only child node.
The value of the text node is the text string George Bush is the son of
George Bush, which is the content of the document element.

A full representation of the document would also include a namespace
node, representing the implicit default XML namespace, whose name-
space URI is http://www.w3.org/XML/1998/namespace.

XPath Axes
XPath is intended to allow a processor to navigate around the in-memory
representation of an XML document. To describe how to navigate, it’s
necessary to express where that navigation starts and which direction(s) to
take from that starting point—much like a set of street directions.

The starting point for navigation around a document using the XPath axes
is called the context node. The context node can be the root node or any
other node. A special form of syntax, beginning with the forward slash (/)
character, indicates that the root node is the context node.

XPath processors navigate around the in-memory representation of an
XML document by means of axes. Thirteen types of axes exist in XPath.
Each axis represents a “direction” that the processor can take, beginning
from the context node.

The following list briefly describes the XPath 1.0 axes. The child axis
and attribute axis are the most frequently used and are considered in
more detail later in this chapter.

10 0672324717 CH09 3/3/05 12:07 PM Page 104

105The XML Path Language—XPath

• child axis—Contains the child nodes (including element nodes)
of the context node

• attribute axis—When the context node is an element node,
contains an attribute node for each attribute on the element

• descendant axis—Contains the child nodes of the context node,
their child nodes, and so on

• self axis—Contains the context node itself

• descendant-or-self axis—Contains the nodes in both the
descendant axis and the self axis

• parent axis—Contains the parent node of the context node

• ancestor axis—Contains the parent node of the context node (if
it has one), that node’s parent node, and so on

• ancestor-or-self axis—Contains the nodes in the ancestor
axis for the context node and the self axis

• namespace axis—When the context node is an element node,
contains a namespace node for each in-scope namespace decla-
ration

• following axis—Contains nodes later in document order than
the context node, excluding nodes in the descendant axis,
attribute axis, or namespace axis

• following-sibling axis—Contains nodes in the following
axis, but only if the nodes have the same parent node as the con-
text node

• preceding axis—Contains nodes that occur earlier in document
order than the context node, excluding nodes in the ancestor
axis

Note All axis names in XPath begin with lowercase
letters.

10 0672324717 CH09 3/3/05 12:07 PM Page 105

106 Lesson 9

• preceding-sibling axis—Contains nodes that satisfy the crite-
ria for the preceding axis but that also have the same parent node
as the context node

The Node Types in XPath 1.0
In XPath 1.0, seven types of node are specified, each of which corre-
sponds to a structure in the source XML document:

• Root node—Represents the document entity

• Element node—Corresponds to an element in the source docu-
ment

• Attribute node—Corresponds to an attribute in the source docu-
ment

• Namespace node—Corresponds to each namespace declaration
in scope for an element

• Processing instruction node—Corresponds to a processing
instruction in the source document

• Comment node—Corresponds to a comment in the source docu-
ment

• Text node—Corresponds to character content of an element in
the source document

Each XPath axis has a principal node type. For the attribute axis, the
principal node type is the attribute node. For the namespace axis, the prin-
cipal node type is the namespace node. For all other axes, the principal
node type is the element node.

Let’s move on to consider how XPath expressions are written to define the
axis that you plan to use and other parts of the expression.

XPath Syntax
In XPath, an expression is used to select nodes to be processed in a way
appropriate to the application in which XPath is being used. The most

10 0672324717 CH09 3/3/05 12:07 PM Page 106

107The XML Path Language—XPath

commonly used type of XPath expression is the location path that returns
a set of nodes, called a node-set.

A location path is an XPath expression that returns a
node-set.

XPath uses two forms of syntax for an expression: unabbreviated syntax
and abbreviated syntax.

We will briefly use the unabbreviated syntax to demonstrate the general
principles of XPath syntax. Mainly abbreviated syntax is used in the rest
of the chapter.

Unabbreviated syntax for a location path takes the following general form
if the context node is the root node:

/axisName::nodeTest[predicate]/axisName::nodeTest[predicate]

For other context nodes, this form is used:

axisName::nodeTest[predicate]/axisName::nodeTest[predicate]

Let’s break down the first of the two forms into its component parts.
When a location path begins with the forward slash character (/),that
indicates that the context node is the root node. The next part of the loca-
tion path is the location step:

axisName::nodeTest[predicate]

This location step follows the normal form for a location step—an axis
name followed by a pair of colon characters as a separator (::), followed
by a node test and, optionally, by one or more predicates contained in
square brackets.

Then you see the / character as a separator between location steps and a
second location step that follows the same form as the first. The axis
name can be any of the 13 axes listed earlier in the chapter.

10 0672324717 CH09 3/3/05 12:07 PM Page 107

108 Lesson 9

The node test can be a name or a wildcard. If the location step was as fol-
lows, this would select element nodes named Document present in the
child axis:

child::Document

Alternatively, you could use a wildcard, *, and select all element nodes in
the child axis by writing this:

child::*

The abbreviated syntax follows the same general structure as the unabbre-
viated syntax, but parts of the structure might not be explicitly expressed.
For example, this location path

child::myElement

is equivalent to this in abbreviated syntax:

myElement

The child axis is essentially the default axis in XPath 1.0 and doesn’t
need to be expressed.

Similarly, if you want to select an edition attribute node, perhaps in code
like this

<book edition=”2nd”>

you can use this unabbreviated syntax

attribute::edition

or this abbreviated syntax:

@edition

Here, the @ character is equivalent to the attribute axis name plus the ::
separator.

The syntax of XPath bears similarities to the syntax of directory paths
used in some operating systems. For example, consider this a document:

10 0672324717 CH09 3/3/05 12:07 PM Page 108

109The XML Path Language—XPath

<myDocument>
<myIntroduction>
Some introduction content.

</myIntroduction>
</myDocument>

You then could select the myDocument element node simply by writing
this:

/myDocument

The preceding location path has a single location step. The / character
indicates the root node. The following characters, myDocument, select all
myDocument element nodes that are in the child axis of the root node. In
this case, there is one myDocument element node that corresponds to the
document element of the source document. No predicate is present in the
location path.

As stated earlier, location paths may consist of multiple location steps.
For example, you could write a location path to select the
myIntroduction element node:

/myDocument/myIntroduction

Again, the initial / character indicates that the root node is the context
node. The first location step, myDocument, selects the child axis implic-
itly. The node test selects only myDocument element nodes. There is no
predicate. The second / character is a separator between node steps. The
second location step, myIntroduction, implicitly selects the child axis
and applies a node test that selects only myIntroduction element nodes.
Again, there is no predicate.

Let’s move on to look at some examples of selecting elements and
attributes.

Accessing Elements
A common and important use of XPath involves being able to access ele-
ments—or, more precisely, element nodes. XPath provides ways to select
element nodes either by their relationship to another node or by name.

10 0672324717 CH09 3/3/05 12:07 PM Page 109

110 Lesson 9

Consider a source document of the following structure:

<report>
<author>John Smith</author>
<date>2002/12/19</date>
<title>Safety Assessment for Greenland Tropical Tours</title>
<chapter number=”1”>Some text</chapter>
<chapter number=”2”>Some text</chapter>
<chapter number=”3”>Some text</chapter>
<appendix>Some appendix stuff</appendix>

</report>

You can select all the child element nodes of the report element node by
the following XPath location path:

/report/*

The / at the beginning of the location path indicates that you are starting
at the root node. Then you select any report element nodes that are chil-
dren of the root node. The next / character is a separator of one location
step from another. The * character is a wildcard that indicates any child
element node.

In the example document, the root node has exactly one report element
node child, which, in turn, has seven element node children. The node-set
returned by the location path would contain seven element nodes—one
author element node, one date element node, one title element node,
three chapter element nodes, and an appendix element node.

Often you will want to select element nodes of a particular type. For
example, if you wanted to select only title element nodes, you would
simply incorporate the name of the desired type of element node in the
location path:

/report/title

XPath would select only title element node children of report element
node children of the root node.

The use of predicates when selecting elements is discussed later in this
chapter when we look at some XPath functions.

10 0672324717 CH09 3/3/05 12:07 PM Page 110

111The XML Path Language—XPath

Accessing Attributes
Selecting attributes is another important use of XPath. You learned earlier
that you can use the @ character as an abbreviation for attribute::. You
can use the following short XML document to illustrate how to select
attributes.

<book edition=”1st” language=”English”>
<introduction>Some introduction text</introduction>
<chapter number=”1”>
Some Chapter 1 text.
</chapter>
<chapter number=”2”>
Some Chapter 2 text.
</chapter>
<chapter >
Some Chapter 3 text.
</chapter>
<appendix designation=”A”>
Appendix A’s content
</appendix>
</book>

If you want to select the edition attribute on the book element, you can
write this:

/book/@edition

It might help you understand this to look at the unabbreviated form:

/child::book/attribute::edition

Start with the root node as context node (as indicated by the initial / char-
acter). Then follow the child axis and apply a node test of book. This
selects book element nodes, of which there is exactly one in this docu-
ment. Using the node-set selected by the first location step, you then fol-
low the attribute axis from that single book element node and apply a
node test of edition.

When you select the nodes in the attribute axis, two attribute nodes are
selected: the edition and language attribute nodes. When you apply the
edition node test to that node-set, only the edition attribute node

10 0672324717 CH09 3/3/05 12:07 PM Page 111

112 Lesson 9

matches. Thus, the location path selects a single attribute node corre-
sponding to the edition attribute on the book element.

Now that you have seen how to select an attribute node, let’s look at a
way to select element nodes depending on the attribute node(s) that they
possess. In the preceding example document, notice that the third chapter
element has no number attribute. You can use that fact to select the first
two chapter element nodes. The syntax to make that selection follows:

/book/chapter[@number]

The syntax [@number] is a predicate used to filter chapter element nodes.
The part of the location path before the predicate selects element nodes
named chapter that are child element nodes of the book element node.
You then apply the predicate [@number] to the node-set that contains
chapter element nodes. Only the first two chapter element nodes in doc-
ument order possess number attribute nodes, so the third chapter element
node (which has no number attribute node) is filtered out of the node-set.

On the other hand, if you wanted to select number attribute nodes on
chapter element nodes, we could write this:

/book/chapter/@number

Follow the child axis from the root node to the single book element node
and then the child axis to the chapter element nodes (of which there are
three). Then, for each of the chapter element nodes, follow the
attribute axis and apply a number node test. Only two of the chapter
element nodes have a number attribute node, so only two number attribute
nodes are selected.

XPath Functions
XPath provides a function library that can manipulate or return four data
types—node-sets, Boolean values, strings, and numbers. This section
briefly looks at how two of those functions can be used.

10 0672324717 CH09 3/3/05 12:07 PM Page 112

113The XML Path Language—XPath

The position() Function
The position() function is widely used. Suppose that you have an XML
document similar to the following:

<book>
<title>Sams Teach Yourself XML in 10 Minutes</title>
<chapter number=”1” title=”What is XML?”>
<!-- The text of Chapter 1 could go here -->
</chapter>
<chapter number=”2” title=”The Structure of an XML document”>
<!-- The text of Chapter 2 could go here -->
</chapter>
<!-- Other <chapter> elements and their content would go

here -->
</book>

You might want to select the chapter element node that is second in doc-
ument order. You can do that using the position() function by writing
this:

/book/chapter[position()=2]

An abbreviated syntax exists for the position() function. The following
syntax similarly selects the second chapter element node in document
order:

/book/chapter[2]

The count() Function
Often it is useful to be able to count how many nodes are in a node-set.
The count() function can be used to do that.

For example, suppose that you wanted to offer special offers to customers
who had placed more than four orders with the company. Imagine that
you store information about orders in a format similar to the following:

<customer CustID=”DEF876”>
<customerName>Greenland Tropical Tours</customerName>
<orders>
<order date=”2001/12/22”>

10 0672324717 CH09 3/3/05 12:07 PM Page 113

114 Lesson 9

<!-- Order details would go here. -->
</order>
<order date=”2002/01/31”>
<!-- Order details would go here. -->
</order>
<order date=”2002/07/16”>
<!-- Order details would go here. -->
</order>
<!-- More <order> elements can go here. -->
</orders>
</customer>

You could count the number of order element nodes using the count()
function in the following XPath expression:

/customer/orders/count(order)

This would return a number that you could use, for example, in construct-
ing a table in HTML, if you used the XPath expression in an XSLT
stylesheet.

Many other XPath functions exist that cannot be described in the space
available here.

Summary
In this chapter, you were introduced to the XPath model of an XML docu-
ment as a hierarchy of nodes. The node types were described, and the
abbreviated XPath syntax to select elements and attributes was discussed.
The chapter also gave some examples of widely used XPath functions.

10 0672324717 CH09 3/3/05 12:07 PM Page 114

LESSON 10
XSLT—
Creating
HTML from
XML

In this lesson, you will learn how to use the Extensible Stylesheet
Language Transformations (XSLT) to create HTML documents from data
stored as XML.

XSLT Basics
XSLT is designed to be used with XML documents to transform data into
a form appropriate for presentation in a particular context or into an alter-
nate XML structure. In this chapter, you examine the basics of how to use
XSLT to create HTML documents.

The output from an XSLT transformation can be another XML format
(this is discussed in Chapter 11, “XSLT—Transforming XML Structure”),
HTML documents (the main subject of this chapter), or plain text (not
discussed in this book).

Why XSLT Is Needed
XML was originally intended to be transmitted across the Web, but
since XML 1.0 was finalized in 1998, the implementation of XML in
Web browsers has been slow and patchy. XML’s failure to take over the
Web browser does not mean that it is of no use as a data storage medium
for the Web; however, at least for now, XML must be transformed into
formats that are convenient for most Web users if XML data is to be

11 0672324717 CH10 3/3/05 12:07 PM Page 115

116 Lesson 10

available to them. That means that you need to be able to create HTML
documents from XML data stores.

XSLT is ideally suited to creating HTML documents from XML server-
side with the HTML produced being processed by a user’s Web browser
in the normal way. XSLT has an output mode to enable HTML output to
be specified. In addition, XSLT can be used to produce HTML for desk-
top browsers, and Wireless Markup Language (WML) for mobile
browsers from the same XML data store.

XSLT Tools
A large and growing number of XSLT tools is available. Appendix B,
“XML Tools,” lists some commonly used XSLT tools together with URLs
where they can be downloaded. Appendix B also contains information
about how to install these tools.

The examples in this chapter and the following two chapters illustrate the
use of XSLT using the Instant Saxon XSLT processor.

A Basic XSLT Stylesheet
All XSLT stylesheets have either a stylesheet element or a transform
element as their document element. Many stylesheet authors find it help-
ful to express XSLT elements with a namespace prefix of xsl, which is
the indicative namespace prefix used in the XSLT 1.0 Recommendation.

XSLT elements in an XSLT stylesheet must be explicitly declared as
belonging to the XSLT namespace. The XSLT namespace URI is
http://www.w3.org/1999/XSL/Transform. Thus, a stylesheet will have
either of the following basic structures, assuming that the namespace pre-
fix xsl is declared as being associated with the XSLT namespace:

<?xml version=”1.0” ?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform
version=”1.0”>
<!-- The other XSLT elements and the literal result elements
go here. -->

</xsl:stylesheet>

11 0672324717 CH10 3/3/05 12:07 PM Page 116

117XSLT—Creating HTML from XML

or

<?xml version=”1.0” ?>
<xsl:transform
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform
version=”1.0”>
<!-- The other XSLT elements and the literal result elements
go here. -->

</xsl:transform>

Note The xsl:stylesheet or xsl:transform element
must possess a version attribute. In XSLT 1.0, the only
permitted value for the version attribute is 1.0.

Notice the XML declaration in both versions. All XSLT stylesheets are
XML documents and, therefore, must follow all the well-formedness rules
described earlier in Chapter 2, “The Structure of an XML Document,”
and Chapter 3, “XML Must Be Well-Formed.”

The Structure of an XSLT Stylesheet
The xsl:stylesheet element is allowed to have only certain specified
XSLT elements as its children. These are referred to, a little confusingly
(because they are second-level elements), as top-level elements. The top-
level elements are shown in the following list. If an xsl:import element
is present, it must come before top-level elements of any other type. Apart
from that, the ordering of top-level elements is open to the developer’s
preferences.

• xsl:import—Imports the content of one stylesheet (module)
into the stylesheet containing the xsl:import element

• xsl:include—Includes the content of one stylesheet (module)
in the stylesheet containing the xsl:include element

• xsl:template—Defines an XSLT template

• xsl:output—Defines parameters of the output document

11 0672324717 CH10 3/3/05 12:07 PM Page 117

118 Lesson 10

• xsl:attribute-set—Used to define a named set of attributes

• xsl:decimal-format—Used in relation to the format-number()
function

• xsl:key—Declares a named key to be used in relation to the
key() function

• xsl:namespace-alias—Enables an XSLT stylesheet to be used
to output another XSLT stylesheet as its result document

• xsl:param—(When a top-level element) Specifies a global para-
meter

• xsl:preserve-space—Controls whitespace handling in con-
junction with xsl:strip-space

• xsl:strip-space—Controls whitespace handling in conjunction
with xsl:preserve-space

• xsl:variable—(When a top-level element) Defines a global
variable

Other XSLT elements are introduced as you meet them in the examples in
this chapter and in Chapter 11 and Chapter 12, “XSLT—Sorting XML.”

Having taken a brief look at the basics of what an XSLT stylesheet con-
tains, let’s move on to look at how to create an HTML Web page as the
output of an XSLT transformation.

Creating a Simple HTML Page
It is traditional in many introductory programming texts to create a pro-
gram that provides a “Hello World!” greeting.

Listing 10.1 shows a very short XML document that stores the message.

LISTING 10.1 XSLTMessage.xml: A Simple Message in XML
<?xml version=’1.0’?>
<XSLTMessage>
Hello World!
</XSLTMessage>

11 0672324717 CH10 3/3/05 12:07 PM Page 118

119XSLT—Creating HTML from XML

You can use the XSLT stylesheet shown in Listing 10.2 to create an
HTML Web page that extracts the message from Listing 10.1 and places it
in the HTML page.

LISTING 10.2 XSLTMessage.xsl: A Stylesheet to Extract the
Message from Listing 10.1
<?xml version=’1.0’?>
<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
version=”1.0”

>

<xsl:template match=”/”>
<html>
<head>
<title><xsl:value-of select=”name(/XSLTMessage)” /></title>
</head>
<body>
<xsl:apply-templates select=”/XSLTMessage” />
</body>
</html>
</xsl:template>

<xsl:template match=”XSLTMessage”>
<p><xsl:value-of select=”text()” /></p>
</xsl:template>
</xsl:stylesheet>

Before looking at the HTML output document that you can create, let’s
analyze what the XSLT stylesheet does.

The first line is an XML declaration. That is followed by the
xsl:stylesheet element. It has a version attribute, which is compulsory,
and a namespace declaration that associates the namespace prefix xsl
with the XSLT namespace URI, http://www.w3.org/1999/
XSL/Transform. So, it is clear that the xsl:stylesheet element and the
other elements in the stylesheet with a namespace prefix xsl are XSLT
elements.

When an XSLT processor is satisfied that a document is a well-formed
XSLT stylesheet, it looks for an xsl:template element whose match
attribute has a value of /. In other words, the template is applied to the
root node.

11 0672324717 CH10 3/3/05 12:07 PM Page 119

120 Lesson 10

Let’s look at the content of that xsl:template element a little more
closely:

<xsl:template match=”/”>
<html>
<head>
<title><xsl:value-of select=”name(/XSLTMessage)” /></title>
</head>
<body>
<xsl:apply-templates select=”/XSLTMessage” />
</body>
</html>
</xsl:template>

The first two lines nested within the xsl:template element contain literal
result elements. In other words, you create an html start tag followed by
head and title start tags. The content of the title element is defined
using an XSLT xsl:value-of element, which you will use in many of
your XSLT stylesheets. One question immediately arises: “The value of
what?” That is answered by the value of the select attribute of the
xsl:value-of element.

In this case, the value of the select attribute is this:

name(/XSLTMessage)

You use the name() function to extract the name of the document element.
We have expressed that here by giving the element type name literally.

You then create the end tags for the title and head elements. Then you
create the start tag for the body element.

The content of the body element is defined by the xsl:apply-templates
element. Its select attribute indicates that a template that matches the
context node defined by the XPath expression /XSLTMessage is to be
instantiated.

<xsl:template match=”XSLTMessage”>
<p><xsl:value-of select=”text()” /></p>
</xsl:template>

The only other template in the stylesheet matches the value in the select
attribute of the xsl:apply-templates element. The content of that

11 0672324717 CH10 3/3/05 12:07 PM Page 120

121XSLT—Creating HTML from XML

template defines the content of the body element of the HTML output
document.

That content begins with a p start tag. It is followed by content defined by
an xsl:value-of element. The value of the select attribute is text(); it
selects the text node that is a child of the context node, which is the
XSLTMessage element node. The template is completed by the creation of
an end tag of the p element.

When that template is complete, you return to the template from which
the template was instantiated. In other words, processing goes back to the
template that matches the root node. Processing completes by outputting
an end tag for the body and html elements—both literal result elements—
of the HTML output document.

To run the transformation, assuming that Instant Saxon and Listings 10.1
and 10.2 are in the same directory, simply navigate to that directory and
type this:

saxon XSLTMessage.xml XSLTMessage.xsl > XSLTMessage.html

Listing 10.3 shows the HTML document output by the Instant Saxon
XSLT processor.

LISTING 10.3 XSLTMessage.html: The Output of Applying
Listing 10.2 to Listing 10.1
<html>
<head>
<meta http-equiv=”Content-Type” content=”text/html;
charset=utf-8”>

<title>XSLTMessage</title>
</head>
<body>
<p>
Hello World!

</p>
</body>

</html>

The Instant Saxon processor has added a meta element to the head of the
HTML document.

11 0672324717 CH10 3/3/05 12:07 PM Page 121

122 Lesson 10

If you plan to regularly create HTML documents using XSLT, it is useful
to have an XSLT template specific to HTML and save some repeated typ-
ing. Listing 10.4 gives a bare outline template that you might want to
adapt to your own needs.

LISTING 10.4 HTMLTemplate.xsl: An XSLT Stylesheet to
Create a Basic HTML Document
<?xml version=’1.0’?>
<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
>

<xsl:output method=”html”
indent=”yes” />

<xsl:template match=”/”>
<html>
<head>
<title><!--title goes here--></title>
</head>
<body>
<!-- XSLT code to create page content goes here. -->
</body>
</html>
</xsl:template>

</xsl:stylesheet>

If you routinely want to include metadata about the author of the HTML
document, its keywords, and so on, you can add those to the section that
creates the head of the HTML document.

Creating an HTML List
This section looks at how to create an HTML list from an XML source
document.

The XML source document contains information about a series of reports
produced for XMML.com. In this HTML Web page, you will choose to
display only reports for which the year of the report is 2002. Listing 10.5
shows the source XML document.

11 0672324717 CH10 3/3/05 12:07 PM Page 122

123XSLT—Creating HTML from XML

LISTING 10.5 XMMLReports.xml: Reports Presented to
XMML.com
<?xml version=’1.0’?>
<XMMLReports>
<Report year=”2000”>
<Title>Sales Opportunities</Title>
<Author>Peter Mallan</Author>
<Summary>The opportunities for XML consultancy look good for
2001.</Summary>

<Content>
<!-- Main text would go here. -->
</Content>
</Report>
<Report year=”2001”>
<Title>SVG - A Graphics Standard</Title>
<Author>Pamela Askew</Author>
<Summary>Scalable Vector Graphics, SVG, looks to have enormous
potential in multinamespace XML documents.</Summary>

<Content>
<!-- Main text would go here. -->
</Content>
</Report>
<Report year=”2002”>
<Title>Market Conditions</Title>
<Author>Stephen J. Doppelganger</Author>
<Summary>Market conditions are much less favorable than in
2001.</Summary>

<Content>
<!-- Main text would go here. -->
</Content>
</Report>
<Report year=”2002”>
<Title>XML Schema Languages</Title>
<Author>Karen Clark</Author>
<Summary>W3C XML Schema and RelaxNG both have positive
aspects.</Summary>

<Content>
<!-- Main text would go here. -->
</Content>
</Report>
</XMMLReports>

11 0672324717 CH10 3/3/05 12:07 PM Page 123

124 Lesson 10

Listing 10.6 shows the XSLT stylesheet that selects for display reports
dated 2002 and displays the title, year, and author name for each such
report.

LISTING 10.6 XMMLReports.xsl: A Stylesheet to Display
Year 2002 Reports
<?xml version=’1.0’?>
<xsl:stylesheet
version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
>

<xsl:output method=”html”
indent=”yes” />

<xsl:template match=”/”>
<html>
<head>
<title></title>
</head>
<body>
<h1>XMML.com Reports for 2002</h1>

<xsl:apply-templates select=”//Report[@year=’2002’]” />

</body>
</html>
</xsl:template>

<xsl:template match=”Report”>

<xsl:value-of select=”Title” />(<xsl:value-of

select=”@year”/>):<xsl:text>
</xsl:text><xsl:value-of select=”Author” />

</xsl:template>

</xsl:stylesheet>

The preceding stylesheet bears many similarities to those you saw earlier
in this chapter.

Notice the xsl:apply-templates element in the template that matches the
root node. It is nested between the start and end tags of a ul element. So,
the xsl:apply-templates element is used to create the content of the
unordered list. The value of its select attribute is

11 0672324717 CH10 3/3/05 12:07 PM Page 124

125XSLT—Creating HTML from XML

//Report[@year=’2002’]. The pair of forward slash characters (//) is
abbreviated syntax for the descendant-or-self axis. Essentially,
//Report means to select any Report element node in the document. The
predicate [@year=’2002’] filters that node-set so that it includes only
Report element nodes that possess a year attribute whose value is 2002.

The XSLT template that matches the nodes in that node-set is then
processed. The xsl:template element with the match attribute whose
value is Report is instantiated. A list item element, li, is created. The
xsl:value-of element is used three times:

<xsl:value-of select=”Title” />(<xsl:value-of
select=”@year”/>):<xsl:text> </xsl:text>

<xsl:value-of select=”Author” />

First, the text content of the Title element is obtained, followed by the
value of the year attribute of the Report element in parentheses. The third
xsl:value-of element selects the text content of the Author element node
for the report.

The xsl:text element is used to insert whitespace—in this case, a single
space character—between the colon character and the author’s name.
Using the xsl:text element to output whitespace ensures that it is pre-
served in the output document.

The output of the transformation is shown in Listing 10.7.

LISTING 10.7 XMMLReports.html: The Output of Applying
Listing 10.6 to Listing 10.5
<html>
<head>
<meta http-equiv=”Content-Type” content=”text/html;
charset=utf-8”>

<title></title>
</head>
<body>
<h1>XMML.com Reports for 2002</h1>

Market Conditions(2002): Stephen J. Doppelganger
XML Schema Languages(2002): Karen Clark

</body>

</html>

11 0672324717 CH10 3/3/05 12:07 PM Page 125

126 Lesson 10

Creating an HTML Table
In the final example in this chapter, you create an HTML table in the out-
put document.

In this example, you look at how information about major news items
stored in XML can be transformed using XSLT to produce an HTML
page with links to the full news items. The structure of the source XML
document is shown in Listing 10.8.

LISTING 10.8 XMMLNews.xml: An XML-Based Data Store
Containing News Information
<?xml version=’1.0’?>
<XMMLNews>
<Story>
<Headline>Teddy Bear’s Picnic a Success</Headline>
<Header>2002 Teddy Bear’s Picnic a great success.</Header>
<MainText>The Drum Castle (http://www.drum-castle.org.uk)

Teddy Bear’s Picnic for 2002 was a great success.
etc</MainText>

</Story>
<Story>
<Headline>Snow Falls in Antarctica</Headline>
<Header>Heavy snow falls reported in Antarctica.</Header>
<MainText>The first snows of the Antarctic winter fell

yesterday.</MainText>
</Story>
<Story>
<Headline>Brazil Win Cup.</Headline>
<Header>The Brazilian soccer team won the 2002 World

Cup.</Header>
<MainText>After an exciting game, Brazil confirmed their

dominance of world soccer with a convincing win.</MainText>
</Story>
</XMMLNews>

The number of stories and the components parts of each story have been
kept short to save space.

The aim is to use XSLT to create an HTML Web page with a table, with
each item in the table having a link to the full text of the story. Listing
10.9 shows a stylesheet that can produce the desired HTML Web page.

11 0672324717 CH10 3/3/05 12:07 PM Page 126

127XSLT—Creating HTML from XML

LISTING 10.9 XMMLNews.xsl: A Stylesheet to Produce a List
of Stories in HTML
<?xml version=’1.0’?>
<xsl:stylesheet
version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
>

<xsl:output method=”html”
indent=”yes” />

<xsl:template match=”/”>
<html>
<head>
<title>XMMLNews - Latest Stories</title>
</head>
<body>
<h1>XMML News Service</h1>
<table>
<tr>
<td>Headline</td>
<td>Main Text</td>
</tr>
<xsl:apply-templates select=”/XMMLNews/Story”/>
</table>
</body>
</html>
</xsl:template>

<xsl:template match=”Story” >
<tr>
<td><xsl:value-of select=”Headline” /></td>
<td><xsl:value-of select=’MainText’/></td>
</tr>
</xsl:template>

</xsl:stylesheet>

The HTML document output is shown in Listing 10.10.

LISTING 10.10 XMMLNews.html: A Table of Headlines and
Stories
<html>
<head>
<meta http-equiv=”Content-Type” content=”text/html;
charset=utf-8”>

11 0672324717 CH10 3/3/05 12:07 PM Page 127

128 Lesson 10

<title>XMMLNews - Latest Stories</title>
</head>
<body>
<h1>XMML News Service</h1>
<table>
<tr>
<td>Headline</td>
<td>Main Text</td>

</tr>
<tr>
<td>Teddy Bear’s Picnic a Success</td>
<td>The Drum Castle (http://www.drum-castle.org.uk) Teddy

Bear’s Picnic for 2002 was a great success. etc</td>
</tr>
<tr>
<td>Snow Falls in Antarctica</td>
<td>The first snows of the Antarctic winter fell
yesterday.</td>

</tr>
<tr>
<td>Brazil Win Cup.</td>
<td>After an exciting game, Brazil confirmed their
dominance of world soccer with a convincing win.</td>

</tr>
</table>

</body>
</html>

Onscreen, the output is a basic HTML table.

Summary
In this lesson, you were introduced to the ways in which XSLT plays a
valuable role in the current XML world. The structure of an XSLT
stylesheet was described, and examples were given to show using XSLT
to create several types of HTML pages, ranging from very basic on up to
pages that include a list and a table.

LISTING 10.10 Continued

11 0672324717 CH10 3/3/05 12:07 PM Page 128

LESSON 11
XSLT—
Transforming
XML Structure

In this lesson, you will learn how to use XSLT to restructure content in
XML documents.

Why Change Structure?
Chapter 8, “Namespaces in XML,” mentioned problems that can occur
frequently as XML documents are exchanged among increasing numbers
of individuals and companies. XML namespaces do a lot to solve the
problem in which two identical element type names are used with differ-
ent meanings. This chapter looks at how XSLT can be used to provide a
solution to the problem of different element type names being used to
refer to the same concept or real-world value. In addition, it looks more
generally at how XSLT can be used to restructure XML documents.

For example, one company might store an order like this, with date infor-
mation in an element:

<order>
<date>2002-12-29</date>
<!-- More content here. -->
</order>

It might deal with a company that stores information about an order like
this, with date information stored in an attribute:

<order date=”2002-12-29”>
<!-- More content here. -->
</order>

12 0672324717 CH11 3/3/05 12:07 PM Page 129

130 Lesson 11

When the companies exchange documents, the first company could send
information in its own format. So, the second company would need to
transform the XML so that the date element is removed and a date
attribute is added to the order element. When the second company sends
information back, the opposite process would need to be carried out.

Historically, companies and other organizations have had their own ways
of describing the data that they use in the course of their business. When
there was no direct exchange of data, that didn’t matter too much.
However, as businesses have started exchanging data—orders or shared
information, for example—issues relating to the structure of that data have
become increasingly important.

It would be pretty unusual for two companies to have identical data struc-
tures. But if both companies use XML to store their data, XSLT can be
used to move from one format to another.

A number of possible solutions exist in any one setting. For example,
each company could create an XSLT stylesheet to convert from the other
company’s data format. If a very small number of business partners are
involved, that might work well. However, if a large number of companies
in the same business sector work together, an alternate approach might be
better.

If all the companies in the business sector can agree on a common data
format for a particular type of data, each company needs only two XSLT
stylesheets: one stylesheet to transform the company’s format to the com-
mon format and another stylesheet to transform the common format to the
company’s format. It doesn’t matter how large the number of business
partners grows. If all use the common format, they don’t need to add to
the two stylesheets just mentioned.

Let’s look at how transformations between formats can be carried out
using XSLT. In the process of transforming XML documents from one
structure to another, you need to be able to carry out three tasks:

• Copy elements from one document to another, possibly in a dif-
ferent part of the structure of the document

12 0672324717 CH11 3/3/05 12:07 PM Page 130

131XSLT—Transforming XML Structure

• Create new elements (for example when a value is contained in
an attribute value in the source document and you need an ele-
ment in the output document)

• Create new attributes (for example, when a value is contained in
text element content in the source document and you need an
attribute to contain the value in the output document)

First, let’s look at how you can copy elements from one document to
another.

Copying Elements
When you copy elements from one XML document to another, you will
likely place the element in a new place in the structure. Sometimes you
will want to copy an element only (without any child elements); other
times, you might want to copy an element together with any content that
it has. The first type of copy is called a shallow copy, and the second type
is called a deep copy.

Shallow Copy
In XSLT, a shallow copy is carried out using the xsl:copy element.
Listing 11.1 shows a simple purchase order for training services.

LISTING 11.1 PurchaseOrder.xml: A Purchase Order in XML
<?xml version=’1.0’?>
<PurchaseOrder>
<Date>2003/02/20</Date>
<To>XMML Training Services</To>
<From>Acme Computing</From>
<Items>
<Item>
<StockNumber>DBI99</StockNumber>
<Description>Database Introduction</Description>
<Quantity>2</Quantity>

</Item>
<Item>
<StockNumber>MSVG101</StockNumber>

12 0672324717 CH11 3/3/05 12:07 PM Page 131

132 Lesson 11

<Description>Introduction to Mobile SVG</Description>
<Quantity>1</Quantity>

</Item>
</Items>

</PurchaseOrder>

When such an XML purchase order is sent to XMML Training Services,
the data contained in it can be reused for purposes of the receiving busi-
ness partner. Listing 11.2 shows a stylesheet to convert the purchase order
for the purposes of the recipient. The xsl:copy element is used in this
transformation.

LISTING 11.2 PurchaseToOrder.xsl: An XSLT Stylesheet to
Create an XML Order Received File
<?xml version=’1.0’?>
<xsl:stylesheet
version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
>

<xsl:template match=”/”>
<XMMLOrder>
<xsl:apply-templates select=”/PurchaseOrder/Date” />
<xsl:apply-templates select=”/PurchaseOrder/From” />
<xsl:apply-templates select=”/PurchaseOrder/Items” />
</XMMLOrder>
</xsl:template>

<xsl:template match=”Date|From”>
<xsl:copy>
<xsl:value-of select=”.” />
</xsl:copy>
</xsl:template>

<xsl:template match=”Items”>
<xsl:copy>
<xsl:value-of select=”.” />
</xsl:copy>
</xsl:template>

</xsl:stylesheet>

LISTING 11.1 Continued

12 0672324717 CH11 3/3/05 12:07 PM Page 132

133XSLT—Transforming XML Structure

This stylesheet takes you only part way to the desired output, as you can
see by examining the content of the output document in Listing 11.3.

LISTING 11.3 XMMLOrder.xml: The Result of Applying
Listing 11.2 to Listing 11.1
<?xml version=”1.0” encoding=”UTF-8”?>
<XMMLOrder>

<Date>2003/02/20</Date>
<From>Acme Computing</From>
<Items>

DBI99
Database Introduction
2

MSVG101
Introduction to Mobile SVG
1

</Items>
</XMMLOrder>

You have copied across the element node and, for the Date and From ele-
ment nodes, included the element’s content using the xsl:value-of ele-
ment. So far, so good. However, when you use the xsl:value-of element
with xsl:copy for the Items element node, you output only the text con-
tent of its descendant elements—but without outputting the corresponding
start and end tags of the Item element and its child elements.

As you have seen, the xsl:copy element produces a shallow copy. You
supply the content of the copied element by using the xsl:value-of ele-
ment.

To correctly output and copy all the content of the Items element node,
including the start and end tags of the descendant elements, you need to
carry out a deep copy.

12 0672324717 CH11 3/3/05 12:07 PM Page 133

134 Lesson 11

Deep Copy
The xsl:copy-of element is used in XSLT to carry out a deep copy.

Listing 11.4 shows an XSLT stylesheet that carries out the desired trans-
formation. In this case, however, it uses the xsl:copy-of element in place
of the xsl:copy element used in Listing 11.3.

LISTING 11.4 PurchaseToOrder2.xsl: Using xsl:copy-of to
Produce a Deep Copy
<?xml version=’1.0’?>
<xsl:stylesheet
version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
>

<xsl:output method=”xml”
indent=”yes”
encoding=”UTF-8” />

<xsl:template match=”/”>
<XMMLOrder>
<xsl:apply-templates select=”/PurchaseOrder/Date” />
<xsl:apply-templates select=”/PurchaseOrder/From” />
<xsl:apply-templates select=”/PurchaseOrder/Items” />
</XMMLOrder>
</xsl:template>

<xsl:template match=”Date|From”>
<xsl:copy-of select=”.”/>
</xsl:template>

<xsl:template match=”Items”>
<xsl:copy-of select=”.” />
</xsl:template>

</xsl:stylesheet>

In Listing 11.4, the xsl:copy elements have been replaced with
xsl:copy-of elements, which have a select attribute that selects the con-
tent of the context node. As you can see in Listing 11.5, the output of the
transformation, using the xsl:copy-of element gives the text content of
the Date and From elements and also gives the full hierarchy of elements
and their content contained within the Items element.

12 0672324717 CH11 3/3/05 12:07 PM Page 134

135XSLT—Transforming XML Structure

LISTING 11.5 XMMLOrder2.xml: The Results Document
After Applying Listing 11.4 to Listing 11.1
<?xml version=”1.0” encoding=”UTF-8”?>
<XMMLOrder>

<Date>2003/02/20</Date>
<From>Acme Computing</From>
<Items>

<Item>

<StockNumber>DBI99</StockNumber>

<Description>Database Introduction</Description>

<Quantity>2</Quantity>

</Item>

<Item>

<StockNumber>MSVG101</StockNumber>

<Description>Introduction to Mobile SVG</Description>

<Quantity>1</Quantity>

</Item>

</Items>
</XMMLOrder>

In some transformations, you cannot simply copy elements from source
document to output document because there is some fundamental change
in structure. Often you will need to create new elements or attributes in
the output document. First let’s look at how to create new elements.

Creating New Elements
In this section, you will look at two reasons why you might need to create
new elements.

12 0672324717 CH11 3/3/05 12:07 PM Page 135

136 Lesson 11

In some transformations, the element names in the source document and
the corresponding element name in the output document differ. For exam-
ple, suppose that a company based in the United States is doing business
with a company based in the United Kingdom. The U.S. company wants
to place an order for white shirts. In the United States, the company might
describe a white shirt, using this:

<Color>white</Color>

The U.K. company might use this line, however:

<Colour>white</Colour>

Only one letter is different in the element type name, but that is enough to
trip up an XML parser.

Consider also that you might want to create a new element in the output
document if the source document uses an attribute to store data that needs
to be contained in an element in the output document. One company
could have this

<Shirt size=”medium”/>

and want to share the information with a company that stores data like
this:

<Shirt>
<Size>medium</Size>
</Shirt>

You can explore both issues in Listing 11.6. The U.S. company uses a
Color element that stores information about the color of the shirt. Because
of differences in spelling, this information is held in a Colour element in
the U.K. company’s data store. Also, the U.K. company stores shirt size
information in a Size element.

LISTING 11.6 USShirts.xml: An Order for Shirts from a
Company Based in the United States
<?xml version=’1.0’?>
<USShirts>
<Order>
<Date>2003/12/13</Date>

12 0672324717 CH11 3/3/05 12:07 PM Page 136

137XSLT—Transforming XML Structure

<From>US Shirt Company</From>
<To>UK Shirt Company</To>
<Shirt size=”medium”>
<Color>Cerise</Color>
<Quantity>100</Quantity>
</Shirt>
</Order>
</USShirts>

Listing 11.7 shows the type of output document required. Notice the new
Colour element and the Size element. In fact, Listing 11.7 is the result of
applying the stylesheet in Listing 11.8 to Listing 11.6.

LISTING 11.7 UKShirts.xml: The U.K. Company’s Form of
XML for the Order
<?xml version=”1.0” encoding=”UTF-8”?>
<UKShirts>

<Date>2003/12/13</Date>
<From>US Shirt Company</From>
<To>UK Shirt Company</To>
<Shirt>

<Size>Medium</Size>
<Colour>Cerise</Colour>
<Quantity>100</Quantity>

</Shirt>
</UKShirts>

Notice that the Shirt element no longer has a size attribute; instead, it
has a Size element child.

Listing 11.8 shows an XSLT stylesheet that creates two new elements
using the xsl:element element. One of the new elements replaces a
Color element with a Colour element. The other replaces a size attribute
with a Size element.

LISTING 11.8 USShirtToUK.xsl: An XSLT Stylesheet to
Transform to the U.K. Company’s Data Structure
<?xml version=’1.0’?>
<xsl:stylesheet
version=”1.0”

LISTING 11.6 Continued

12 0672324717 CH11 3/3/05 12:07 PM Page 137

138 Lesson 11

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
>

<xsl:output method=”xml” indent=”yes” encoding=”UTF-8” />
<xsl:template match=”/”>
<UKShirts>
<xsl:apply-templates select=”/USShirts/Order” />
</UKShirts>
</xsl:template>

<xsl:template match=”Order” >
<xsl:apply-templates select=”Date” />
<xsl:apply-templates select=”From” />
<xsl:apply-templates select=”To” />
<xsl:apply-templates select=”Shirt” />
</xsl:template>

<xsl:template match=”Date” >
<xsl:copy-of select=”.” />
</xsl:template>

<xsl:template match=”From|To” >
<xsl:copy-of select=”.” />
</xsl:template>

<xsl:template match=”Shirt”>
<xsl:copy>
<xsl:element name=”Size”>
<xsl:value-of select=”@size” />
</xsl:element>
<xsl:apply-templates select=”Color” />
<xsl:apply-templates select=”Quantity” />
</xsl:copy>
</xsl:template>

<xsl:template match=”Color”>
<xsl:element name=”Colour”>
<xsl:value-of select=”.” />
</xsl:element>
</xsl:template>

<xsl:template match=”Quantity”>
<xsl:copy-of select=”.” />
</xsl:template>

</xsl:stylesheet>

LISTING 11.8 Continued

12 0672324717 CH11 3/3/05 12:07 PM Page 138

139XSLT—Transforming XML Structure

The xsl:element element is used in two templates in the XSLT
stylesheet.

<xsl:template match=”Shirt”>
<xsl:copy>
<xsl:element name=”Size”>
<xsl:value-of select=”@size” />
</xsl:element>
<xsl:apply-templates select=”Color” />
<xsl:apply-templates select=”Quantity” />
</xsl:copy>
</xsl:template>

First, you use xsl:copy to create a shallow copy of the Shirt element.
Because you have used a shallow copy, that leaves you free to create new
content for that element. You use the xsl:element element to create a new
element—the Size element—to contain the content of the size attribute.
Notice that the name attribute of the xsl:element element is the same as
the element type name of the element you are creating.

The xsl:apply-templates element instantiates a template that matches
the Color element:

<xsl:template match=”Color”>
<xsl:element name=”Colour”>
<xsl:value-of select=”.” />
</xsl:element>
</xsl:template>

Here the xsl:element is used to create a new Colour element (U.K.
spelling) to replace the Color element (U.S. spelling). The content of the
new element is identical to the content of the Color element, so you can
simply use the xsl:value-of element to select the text content of the
Color element as the content of the new Colour element.

By using the xsl:copy, xsl:copy-of, and xsl:element elements, you
have been able to transform from the U.S. data format to the format
desired by the U.K. company.

However, if you want to transform the data from the U.K. format to the
U.S. format, you need to learn how to create new attributes.

12 0672324717 CH11 3/3/05 12:07 PM Page 139

140 Lesson 11

Creating New Attributes
To create a new attribute in the output document, you need to use the
xsl:attribute element.

On this occasion, you will transform a source document in the U.K. com-
pany’s format to an XML output document in the U.S. company’s format.
Listing 11.9 shows an XSLT stylesheet that can carry out the transforma-
tion.

LISTING 11.9 UKShirtsToUS.xsl: An XSLT Stylesheet to
Transform to the U.S. Company’s Data Format
<?xml version=’1.0’?>
<xsl:stylesheet
version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
>

<xsl:output method=”xml” indent=”yes” encoding=”UTF-8” />
<xsl:template match=”/”>
<USShirts>
<Order>
<xsl:apply-templates select=”/UKShirts” />
</Order>
</USShirts>
</xsl:template>

<xsl:template match=”Order” >
<xsl:apply-templates select=”Date” />
<xsl:apply-templates select=”From” />
<xsl:apply-templates select=”To” />
<xsl:apply-templates select=”Shirt” />
</xsl:template>

<xsl:template match=”Date” >
<xsl:copy-of select=”.” />
</xsl:template>

<xsl:template match=”From|To” >
<xsl:copy-of select=”.” />
</xsl:template>

<xsl:template match=”Shirt”>
<xsl:copy>

12 0672324717 CH11 3/3/05 12:07 PM Page 140

141XSLT—Transforming XML Structure

<xsl:attribute name=”size”>
<xsl:value-of select=”Size” />
</xsl:attribute>
<xsl:apply-templates select=”Colour” />
<xsl:apply-templates select=”Quantity” />
</xsl:copy>
</xsl:template>

<xsl:template match=”Colour”>
<xsl:element name=”Color”>
<xsl:value-of select=”.” />
</xsl:element>
</xsl:template>

<xsl:template match=”Quantity”>
<xsl:copy-of select=”.” />
</xsl:template>

</xsl:stylesheet>

Use the xsl:attribute in the template that matches the Shirt element
node:

<xsl:template match=”Shirt”>
<xsl:copy>
<xsl:attribute name=”size”>
<xsl:value-of select=”Size” />
</xsl:attribute>
<xsl:apply-templates select=”Colour” />
<xsl:apply-templates select=”Quantity” />
</xsl:copy>
</xsl:template>

First copy the Shirt element using xsl:copy. Then use the
xsl:attribute element to add an attribute to the Shirt element. The
value of that new shirt attribute is obtained from the content of the Size
element. The first xsl-apply-templates element is used to create a new
Color element to replace the Colour element used by the U.K. company’s
format.

If you can carry out shallow and deep copies and create new elements and
new attributes, you can accomplish many of the basic tasks that are neces-
sary in converting one XML format to another.

LISTING 11.9 Continued

12 0672324717 CH11 3/3/05 12:07 PM Page 141

142 Lesson 11

Summary
In this lesson, you learned about the need to transform one XML vocabu-
lary to another. You saw how to use the xsl:copy element to make a shal-
low copy and the xsl:copy-of element to make a deep copy of elements
from the source document. You also saw how to create new elements
using the xsl:element element and create new attributes in the output
document using the xsl:attribute element.

12 0672324717 CH11 3/3/05 12:07 PM Page 142

LESSON 12
XSLT—
Sorting XML

In this lesson, you will learn how to sort selected content to produce out-
put documents sorted on one or multiple criteria.

Conditional Processing and Sorting
Data
As you saw in Chapter 11, “XSLT—Transforming XML Structure,” an
XML document may not be in the precise form that you want to work
with. In addition to providing tools to copy or to create new elements and
attributes, XSLT provides tools to process data according to criteria that
you set. Among the important functionality that XSLT provides is the
capability to process elements (or not) based on criteria that you define or
to sort data according to criteria that you specify.

Many programming languages have if ... then ... else statements or
similar constructs. In XSLT, you can use the xsl:if element for similar
purposes. For more complicated choices, conventional programming lan-
guages have a switch/case statement or similar construct. In XSLT, you
can use the xsl:choose element to make choices when more than two
options are involved.

Data stored in an XML document may be ordered according to some arbi-
trary criteria, perhaps as simple as the sequence in which elements and
their content were first entered into the data store. For some purposes, you
likely will want to use data in various orders—including alphabetical
order, date order, and by value of element content or attribute value.
XSLT possesses the xsl:sort element to provide sorting functionality.

13 0672324717 CH12 3/3/05 12:07 PM Page 143

144 Lesson 12

First, let’s look more closely at conditional processing and how it is sup-
ported in XSLT.

Conditional Processing
Controlling choices in XSLT as to how and whether a node is to be
processed falls into two categories:

• Choice of two processing alternatives, one of which is to do
nothing

• Choice of multiple (greater than two) options

The xsl:if Element
The xsl:if element in XSLT corresponds broadly to if...then... else
type statements in other programming languages, but in XSLT there is no
else option. If you want an else option, you must use xsl:choose,
described later in this chapter.

An xsl:if element is always nested within an xsl:template element.
XSLT elements that are nested within templates are termed instructions or
instruction elements.

The general form is like this:

<xsl:template>
<!-- Other content can go here. -->
<xsl:if test=”XPathExpression”>
<!-- Anything in here is executed if the test attribute
returns true. -->

</xsl:if>
<!-- Other content can go here. -->
</xsl:template>

The value of the test attribute is converted to a Boolean value. If the
result is true, the content of the xsl:if element is instantiated. If the
result is false, the content of the xsl:if element is skipped.

13 0672324717 CH12 3/3/05 12:07 PM Page 144

145XSLT—Sorting XML

The following list summarizes the rules for conversion to Boolean values:

• If the expression is a node-set, the Boolean value true is
returned if the node-set contains one or more nodes.

• If the expression is a number, the Boolean value returned is true
if the number is not zero.

• If the expression is a string, the Boolean value returned is true
if the string is not the empty string.

Some possible uses of xsl:if can be more succinctly expressed using a
predicate.

For example, if you wanted to specify that a document was to be included
in a results document only if a version attribute had the value final, you
could use xsl:if inside a template that matched the Document element
node:

<xsl:template match=”Document”>
<!-- All Document elements get to here. -->
<xsl:if test=”@version=’final’”>
<!-- Conditional processing of final version documents only

goes here. -->
</xsl:if>
<!-- Any other processing that applies to all Document element

nodes could go here. -->
</xsl:template>

However, you could just as easily control things using a predicate [@ver-
sion=”final”] in the location path in an xsl:apply-templates element’s
select attribute.

However, when you want to process all Document element nodes but
process them differently depending on whether they are final or draft, you
can make use of the xsl:if element. Listing 12.1 shows an example
XML source document.

13 0672324717 CH12 3/3/05 12:07 PM Page 145

146 Lesson 12

Listing 12.1 Documents.xml: An XML Data Store
Containing Final and Draft Documents
<?xml version=’1.0’?>
<Documents>
<Document version=”outdated”>
<Title>XMML.com Training Courses</Title>
<Author>Karen Karenstein</Author>
<Date>1999/12/20</Date>
<Content>December 1999 content.</Content>

</Document>
<Document version=”final”>
<Title>XMML.com Training Courses</Title>
<Author>Camilla Zukowski</Author>
<Date>2002/12/29</Date>
<Content>December 2002 content.</Content>

</Document>
<Document version=”draft”>
<Title>XMML.com Training Courses</Title>
<Author>Camilla Zukowski</Author>
<Date>2002/07/31</Date>
<Content>July 2002 draft content.</Content>

</Document>
<Document version=”final”>
<Title>XMML.com Consultancy Services</Title>
<Author>Paul Hartington</Author>
<Date>2003/04/29</Date>
<Content>April 2003 consultancy services
information.</Content>

</Document>
</Documents>

Listing 12.2 is an XSLT stylesheet that outputs the information about
final version documents with a red h1 header and full information about
the document author, together with the document content. For documents
with a version attribute equal to draft or outdated, the document title is
output in an h2 element in blue and only the document status is output for
each such document.

Listing 12.2 Documents.xsl: An XSLT Stylesheet Using the
xsl:if Element
<?xml version=’1.0’?>
<xsl:stylesheet
version=”1.0”

13 0672324717 CH12 3/3/05 12:07 PM Page 146

147XSLT—Sorting XML

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
>

<xsl:output method=”html”
indent=”yes” />

<xsl:template match=”/”>
<html>
<head>
<title>XMML.com Documents</title>
<style type=”text/css”>
h2{color:red}
h3{color:blue}
</style>
</head>
<body>
<h1>All XMML.com documents.</h1>
<xsl:apply-templates select=”//Document” />

</body>
</html>
</xsl:template>

<xsl:template match=”Document”>
<xsl:if test=”@version=’final’”>
<h2>Document Title:<xsl:text> </xsl:text><xsl:value-of select=

”Title” /></h2>
</xsl:if>
<xsl:if test=”not(@version=’final’)”>
<h3>Document Title:<xsl:text> </xsl:text><xsl:value-of select=

”Title” /></h3>
</xsl:if>
<p>Document Status:<xsl:text> </xsl:text><xsl:value-of select=

”@version”/></p>
<xsl:if test=”@version=’final’”>
<p>Document Author:<xsl:text> </xsl:text><xsl:value-of select=

”Author”/></p>
<p>Document Content:<xsl:text> </xsl:text><xsl:value-of
select=

”Content”/></p>
</xsl:if>
</xsl:template>

</xsl:stylesheet>

Listing 12.3 contains the output from the XSLT transformation.

Listing 12.2 Continued

13 0672324717 CH12 3/3/05 12:07 PM Page 147

148 Lesson 12

Listing 12.3 Documents.html: The Output Document
After Applying Listing 12.2 to Listing 12.1
<html>

<head>
<meta http-equiv=”Content-Type” content=”text/html;
charset=utf-8”>

<title>XMML.com Documents</title><style type=”text/css”>
h2{color:red}
h3{color:blue}
</style></head>

<body>
<h1>All XMML.com documents.</h1>
<h3>Document Title: XMML.com Training Courses</h3>
<p>Document Status: outdated</p>
<h2>Document Title: XMML.com Training Courses</h2>
<p>Document Status: final</p>
<p>Document Author: Camilla Zukowski</p>
<p>Document Content: December 2002 content.</p>
<h3>Document Title: XMML.com Training Courses</h3>
<p>Document Status: draft</p>
<h2>Document Title: XMML.com Consultancy Services</h2>
<p>Document Status: final</p>
<p>Document Author: Paul Hartington</p>
<p>Document Content: April 2003 consultancy services

information. </p>
</body>

</html>

Figure 12.1 shows Listing 12.3 displayed in the Internet Explorer 5.5
browser.

To use only xsl:if elements to achieve output like this can be a little
clumsy at times. Let’s modify the output by using the xsl:choose element
in an XSLT transformation.

13 0672324717 CH12 3/3/05 12:07 PM Page 148

149XSLT—Sorting XML

Figure 12.1 Differential display of documents depending on the
value of the version attribute.

The xsl:choose Element
The xsl:choose element enables you to make multiple choices about how
nodes should be processed. For each specified test, you use an xsl:when
element with a test attribute. If you want to create a default type of pro-
cessing when none of the tests on xsl:when elements is satisfied, you can
use an xsl:otherwise element.

Listing 12.4 shows a modified stylesheet. When the value of the version
attribute has the value final, you will output the full document as in the
earlier example. This time, you will create different outputs when the
value of the version attribute is draft or outdated.

13 0672324717 CH12 3/3/05 12:07 PM Page 149

150 Lesson 12

Listing 12.4 Documents2.xsl: A Modified XSLT Stylesheet
Using xsl:choose
<?xml version=’1.0’?>
<xsl:stylesheet
version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
>

<xsl:output method=”html”
indent=”yes” />

<xsl:template match=”/”>
<html>
<head>
<title>XMML.com Documents</title>
<style type=”text/css”>
h2{color:red}
h3{color:blue}
</style>
</head>
<body>
<h1>All XMML.com documents.</h1>
<xsl:apply-templates select=”//Document” />

</body>
</html>
</xsl:template>

<xsl:template match=”Document”>
<xsl:choose>
<xsl:when test=”@version=’final’”>
<h2>Document Title:<xsl:text> </xsl:text><xsl:value-of select=

”Title” /></h2>
<p>Document Status:<xsl:text> </xsl:text><xsl:value-of select=

”@version”/></p>
<p>Document Author:<xsl:text> </xsl:text><xsl:value-of select=

”Author”/></p>
<p>Document Content:<xsl:text> </xsl:text><xsl:value-of

select=”Content”/></p>
</xsl:when>
<xsl:when test=”@version=’draft’”>
<h3>Document Title:<xsl:text> </xsl:text><xsl:value-of select=

”Title” /></h3>
<p>Document Status:<xsl:text> </xsl:text><xsl:value-of select=

”@version”/></p>
</xsl:when>

13 0672324717 CH12 3/3/05 12:07 PM Page 150

151XSLT—Sorting XML

<xsl:otherwise >
<!-- The version attribute is “outdated”. -->
<!-- Do nothing -->
</xsl:otherwise>
</xsl:choose>
</xsl:template>

</xsl:stylesheet>

Two xsl:when elements are nested inside the xsl:choose element. The
content of each xsl:when element is processed when a Document element
satisfies the test in the test attribute of the xsl:when element.

Listing 12.5 shows the modified HTML output document. Notice that the
outdated document does not appear in this output document because the
xsl:otherwise element does nothing.

Listing 12.5 Documents2.html: The Output of the
Stylesheet Using xsl:choose
<?xml version=’1.0’?>
<xsl:stylesheet
version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
>

<xsl:output method=”html”
indent=”yes” />

<xsl:template match=”/”>
<html>
<head>
<title>XMML.com Documents</title>
<style type=”text/css”>
h2{color:red}
h3{color:blue}
</style>
</head>
<body>
<h1>All XMML.com documents.</h1>
<xsl:apply-templates select=”//Document” />

</body>
</html>
</xsl:template>

Listing 12.4 Continued

13 0672324717 CH12 3/3/05 12:07 PM Page 151

152 Lesson 12

<xsl:template match=”Document”>
<xsl:choose>
<xsl:when test=”@version=’final’”>
<h2>Document Title:<xsl:text> </xsl:text><xsl:value-of select=

”Title” /></h2>
<p>Document Status:<xsl:text> </xsl:text><xsl:value-of select=

”@version”/></p>
<p>Document Author:<xsl:text> </xsl:text><xsl:value-of select=

”Author”/></p>
<p>Document Content:<xsl:text> </xsl:text><xsl:value-of

select=”Content”/></p>
</xsl:when>
<xsl:when test=”@version=’draft’”>
<h3>Document Title:<xsl:text> </xsl:text><xsl:value-of select=

”Title” /></h3>
<p>Document Status:<xsl:text> </xsl:text><xsl:value-of select=

”@version”/></p>
</xsl:when>
<xsl:otherwise >
<!-- The version attribute is “outdated”. -->
<!-- Do nothing -->
</xsl:otherwise>
</xsl:choose>
</xsl:template>

</xsl:stylesheet>

The output of each type of document is not in any particular order—it
merely reflects document order in Listing 12.1. In some situations, you
would want to sort the order of elements in the output document.

Sorting Output
XSLT provides the xsl:sort element to enable you to sort output from a
transformation into the order that you want. If you want to sort by two
criteria, you can nest xsl:sort elements inside each other.

Listing 12.6 uses the xsl:sort element to output all documents that are
final before those that are drafts. Outdated documents are governed by the
xsl:otherwise element and are not output.

Listing 12.5 Continued

13 0672324717 CH12 3/3/05 12:07 PM Page 152

153XSLT—Sorting XML

Listing 12.6 Documents3.xsl: Sorting Documents in
Descending Alphabetical Order by version Attribute Value
<?xml version=’1.0’?>
<xsl:stylesheet
version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
>

<xsl:output method=”html”
indent=”yes” />

<xsl:template match=”/”>
<html>
<head>
<title>XMML.com Documents</title>
<style type=”text/css”>
h2{color:red}
h3{color:blue}
</style>
</head>
<body>
<h1>All XMML.com documents.</h1>
<xsl:apply-templates select=”//Document” >
<xsl:sort select=”@version”
order=”descending”
data-type=”text”/>

</xsl:apply-templates>
</body>
</html>
</xsl:template>

<xsl:template match=”Document”>
<xsl:choose>
<xsl:when test=”@version=’final’”>
<h2>Document Title:<xsl:text> </xsl:text><xsl:value-of select=

”Title” /></h2>
<p>Document Status:<xsl:text> </xsl:text><xsl:value-of select=

”@version”/></p>
<p>Document Author:<xsl:text> </xsl:text><xsl:value-of select=

”Author”/></p>
<p>Document Content:<xsl:text> </xsl:text><xsl:value-of

select=”Content”/></p>
</xsl:when>
<xsl:when test=”@version=’draft’”>
<h3>Document Title:<xsl:text> </xsl:text><xsl:value-of select=

”Title” /></h3>

13 0672324717 CH12 3/3/05 12:07 PM Page 153

154 Lesson 12

<p>Document Status:<xsl:text> </xsl:text><xsl:value-of select=
”@version”/></p>

</xsl:when>
<xsl:otherwise >
<!-- The version attribute is “outdated”. -->
<!-- Do nothing -->
</xsl:otherwise>
</xsl:choose>
</xsl:template>

</xsl:stylesheet>

The key change to the XSLT stylesheet is in the xsl:apply-templates
element in the main template.

<xsl:apply-templates select=”//Document” >
<xsl:sort select=”@version”
order=”descending”
data-type=”text”/>

</xsl:apply-templates>

Instead of having an empty xsl:apply-templates element, an xsl:sort
element is nested inside the xsl:apply-templates element. You specify
the sort key using the select attribute. The order—ascending or descend-
ing—is specified using the order attribute. The data type—text, number,
or QName—is specified using the data-type attribute.

Listing 12.7 shows the sorted output. The two documents that are final
come before the single draft document because you are sorting in
descending order and because final comes after draft alphabetically.

Listing 12.7 Documents3.html: Output Sorted by Value
of the version Attribute
<html>

<head>
<meta http-equiv=”Content-Type” content=”text/html;
charset=utf-8”>

<title>XMML.com Documents</title><style type=”text/css”>
h2{color:red}
h3{color:blue}
</style></head>

Listing 12.6 Continued

13 0672324717 CH12 3/3/05 12:07 PM Page 154

155XSLT—Sorting XML

<body>
<h1>All XMML.com documents.</h1>
<h2>Document Title: XMML.com Training Courses</h2>
<p>Document Status: final</p>
<p>Document Author: Camilla Zukowski</p>
<p>Document Content: December 2002 content.</p>
<h2>Document Title: XMML.com Consultancy Services</h2>
<p>Document Status: final</p>
<p>Document Author: Paul Hartington</p>
<p>Document Content: April 2003 consultancy services

information. </p>
<h3>Document Title: XMML.com Training Courses</h3>
<p>Document Status: draft</p>

</body>
</html>

Listing 12.7 Continued

Note The xsl:sort element can also be used with the
xsl:for-each element. That usage is not considered in
this book, however.

You can sort on more than one criterion using multiple xsl:sort ele-
ments.

Multiple Sorts
When you use multiple xsl:sort elements, you put the major sort crite-
rion first, then the next most important, and so on if you are using more
than two sort criteria.

The xsl:sort element must be a direct child element of the xsl:apply-
templates element (in this example). It is an error to nest xsl:sort ele-
ments inside each other.

Listing 12.8 shows the XSLT stylesheet modified so that it outputs all
(here, both) the final documents first, but those final documents are them-
selves sorted in ascending alphabetical order.

13 0672324717 CH12 3/3/05 12:07 PM Page 155

156 Lesson 12

Listing 12.8 Documents4.xsl: Applying Two Sorts to the
Source Document
<?xml version=’1.0’?>
<xsl:stylesheet
version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
>

<xsl:output method=”html”
indent=”yes” />

<xsl:template match=”/”>
<html>
<head>
<title>XMML.com Documents</title>
<style type=”text/css”>
h2{color:red}
h3{color:blue}
</style>
</head>
<body>
<h1>All XMML.com documents.</h1>
<xsl:apply-templates select=”//Document” >
<xsl:sort select=”@version”
order=”descending”
data-type=”text”/>

<xsl:sort select=”Title”
order=”ascending”
data-type=”text”/>

</xsl:apply-templates>
</body>
</html>
</xsl:template>

<xsl:template match=”Document”>
<xsl:choose>
<xsl:when test=”@version=’final’”>
<h2>Document Title:<xsl:text> </xsl:text><xsl:value-of select=

”Title” /></h2>
<p>Document Status:<xsl:text> </xsl:text><xsl:value-of select=

”@version”/></p>
<p>Document Author:<xsl:text> </xsl:text><xsl:value-of select=

”Author”/></p>
<p>Document Content:<xsl:text> </xsl:text><xsl:value-of

select=”Content”/></p>
</xsl:when>

13 0672324717 CH12 3/3/05 12:07 PM Page 156

157XSLT—Sorting XML

<xsl:when test=”@version=’draft’”>
<h3>Document Title:<xsl:text> </xsl:text><xsl:value-of select=

”Title” /></h3>
<p>Document Status:<xsl:text> </xsl:text><xsl:value-of select=

”@version”/></p>
</xsl:when>
<xsl:otherwise >
<!-- The version attribute is “outdated”. -->
<!-- Do nothing -->
</xsl:otherwise>
</xsl:choose>
</xsl:template>

</xsl:stylesheet>

Because “Consultancy Services” is alphabetically before “Training
Services,” the consultancy services document appears first in the output
document, as you can see in Listing 12.9.

Listing 12.9 Documents4.html: The Output Document
After Applying Listing 12.8
<html>

<head>
<meta http-equiv=”Content-Type” content=”text/html;
charset=utf-8”>

<title>XMML.com Documents</title><style type=”text/css”>
h2{color:red}
h3{color:blue}
</style></head>

<body>
<h1>All XMML.com documents.</h1>
<h2>Document Title: XMML.com Consultancy Services</h2>
<p>Document Status: final</p>
<p>Document Author: Paul Hartington</p>
<p>Document Content: April 2003 consultancy services

information.</p>
<h2>Document Title: XMML.com Training Courses</h2>
<p>Document Status: final</p>
<p>Document Author: Camilla Zukowski</p>
<p>Document Content: December 2002 content.</p>

Listing 12.8 Continued

13 0672324717 CH12 3/3/05 12:07 PM Page 157

158 Lesson 12

<h3>Document Title: XMML.com Training Courses</h3>
<p>Document Status: draft</p>

</body>
</html>

Summary
In this lesson, you were introduced to how the xsl:if and xsl:choose
elements can be used to carry out conditional processing when transform-
ing XML documents. In addition, you learned how to use the xsl:sort
element to sort nodes according to single and multiple criteria.

Listing 12.9 Continued

13 0672324717 CH12 3/3/05 12:07 PM Page 158

LESSON 13
Styling XML
with CSS

In this lesson, you will learn how to associate a Cascading Style Sheets
(CSS) style sheet with an XML document and use CSS rules to style XML
documents. Combining CSS and XSLT to style XML documents is also
discussed and demonstrated.

Cascading Style Sheets and XML
Cascading Style Sheets (CSS) is a styling technology that uses non-XML
syntax to style elements in markup languages such as HTML. It also is
suitable for some tasks in the styling of XML.

CSS style sheets can be used on their own with XML or can be used with
XML and XSLT. Both uses are described and illustrated in this lesson.

Note In CSS, the words style sheet are two separate
words. In XSLT, the term stylesheet is a single word.
This difference in spelling arose because these of the
separate initial development of these two technolo-
gies at W3C.

First let’s look at some of the background that explains why CSS was
invented and what problems it solves.

14 0672324717 CH13 3/3/05 12:07 PM Page 159

160 Lesson 13

Separating Content and Presentation
Having a site-wide coherent visual appearance is desirable for all but the
most anarchic Web sites. A coordinated style with good design character-
istics can make a positive impression on visitors to a site. On that basis
alone, it is useful to be able to easily create a style that applies across a
whole Web site. But there were difficulties in doing that without CSS.

One of the problems with HTML—and one of the problems that led to the
development of XML—was that content and presentation were inter-
twined. For example, an h1 element indicated a heading, but, almost
inevitably, it also indicated a larger size for the contained text.

In the early days of HTML, it was common for the same person to create
all aspects of an HTML Web page. The Web page creator carried out
design tasks and content tasks pretty much seamlessly. When a page is
created, and particularly when a site consists of a small number of pages,
one-person authoring using HTML (with content and presentation inter-
twined) can work well. However, problems begin when a site grows and
when it must be updated, perhaps by a different person and perhaps with a
site-wide change in color or other style aspects. If style information is
contained in HTML tags alone, updating style information in every indi-
vidual page on a large site becomes a tedious, time-consuming, and
expensive process.

Another factor that is increasingly relevant is that many Web pages, par-
ticularly on larger Web sites, are generated dynamically. If styling infor-
mation was applied to each individual element in an HTML page created
dynamically, the problems of updating potentially become even more
severe. Any change in styling must be made within dynamically created
HTML code contained, for example, in a Java servlet. This could mean
even more time in amending styling information at potentially greater
cost. Separating styling information for the site into a separate CSS
stylesheet enables the Java code (or code in another language) to be
shorter and more easily maintained.

Given these factors, a way obviously must be found to update styling
information across a site efficiently, speedily, and not too expensively. By
separating styling information into CSS style sheets, any necessary

14 0672324717 CH13 3/3/05 12:07 PM Page 160

161Styling XML with CSS

changes in content can be made independent of styling changes. Equally,
styling can be changed without changing content or having to individually
edit each HTML page. Taken together, these factors can save a lot of time
and money in the ongoing costs of supporting a Web site.

Let’s move on to look at how you can associate an external CSS style
sheet with an XML document.

Associating a Stylesheet
The xml-stylesheet processing instruction is used to associate an XML
document with a CSS style sheet or with an XSLT stylesheet of the type
you saw in earlier chapters.

Tip Place the xml-stylesheet processing instruction
in the prolog of the XML document, in the line imme-
diately after the XML declaration, if you used one.

The general form of the necessary processing instruction is as follows:

<?xml-stylesheet href=”CSSStyleSheet.css” type=”text/css” ?>

The second part of the xml-stylesheet processing instruction consists of
two pseudoattributes (these aren’t true attributes because they aren’t asso-
ciated with an element)—the href and type pseudoattributes.

An XML processor can use this information to recognize that there is a
CSS file of type text/css, named CSSStyleSheet.css, which is associated
with the XML document.

Using CSS Rules with XML
A CSS style sheet is made up of rules.

14 0672324717 CH13 3/3/05 12:07 PM Page 161

162 Lesson 13

If an XML document includes a title element and you want the text con-
tent to be displayed at a font size of 24 points, you could write this:

title {font-size:24pt}

CSS Syntax
Whether it is internal (in a style element) or external, a CSS style sheet
consists of rules. The following CSS rule associates the Arial font of size
36 with the h1 element:

h1 {font-family:Arial, sans-serif;
font-size:36;}

The part of the rule outside the curly brackets is called a selector.
Selectors can be grouped by separating them using commas. The follow-
ing rule would apply to both p and li elements:

p, li {font-family:”Times Roman”, serif;
font-size:12;}

A selector may consist of one or more element type names or may be
more focused and include only certain elements that have a class
attribute of a particular value. Imagine applying a rule to p elements with
a class attribute with the value confidential:

<p class=”confidential” ...>Some text<p>

To make the text red in color, you can use this rule:

p.confidential {color:#FF0000;}

The period in p.confidential separates the element type name, p, from
the value of the class attribute—in this case, confidential.

A rule is the association of an element type name, a
class, or other part of an XML document with a CSS
declaration.

14 0672324717 CH13 3/3/05 12:07 PM Page 162

163Styling XML with CSS

Inside the curly brackets, you can have one or more declarations. A decla-
ration such as this one consists of a property—in this example, font-
family, separated by a colon from its value or values:

font-family:Arial,sans-serif;

When more than one value exists in a declaration, they are separated by a
comma from each other. The end of a declaration is signaled by a semi-
colon character.

Limitations of CSS Styling
When CSS style sheets are used in the absence of XSLT stylesheets, they
have significant limitations with XML documents.

Suppose that you had an XML document with the following structure:

<FaultReports>
<Fault status=”resolved”>
Internet Explorer will not save HTML files correctly.
</Fault>
<Fault status=”ongoing”>
Noisy telephone line to West building. Intermittent loss of

Internet connection.
</Fault>
<Fault status=”resolved”>
Modem fails to dial external numbers correctly.
</Fault>
</FaultReports>

For example, imagine that you wanted to sort the data so that all ongoing
fault reports were grouped and were followed in the displayed document
by all resolved fault reports. CSS alone doesn’t enable you to carry out
that restructuring of an XML document.

Suppose also that you want to display an image to illustrate something
about our data. CSS cannot link images.

Note Some XML application languages, such as
Scalable Vector Graphics (see Chapter 15, “Presenting
XML Graphically—SVG”), do have functionality to dis-
play vector and bitmap images.

14 0672324717 CH13 3/3/05 12:07 PM Page 163

164 Lesson 13

Some Examples Using CSS Styling
If your XML data is structured as you want to display it, you can effec-
tively use CSS to display XML content.

Listing 13.1 shows a CSS style sheet to display heading information in
red and paragraph text in a smaller, black font.

LISTING 13.1 Reports.css: A CSS Style Sheet to Display
Reports Stored in XML
header{font-family:Arial, sans-serif;

font-size:18;
color:blue;}

content{ {font-family:”Times New Roman”, serif;
font-size:12;
color:black;}

The XML source document is shown in Listing 13.2.

LISTING 13.2 Reports.xml: A Brief XML Data Store of
Reports
<?xml version=’1.0’?>
<?xml-stylesheet href=”Reports.css” type=”text/css” ?>
<Reports>
<Report>
<header>Some interesting report</header>
<content>Some fascinating content.</content>

</Report>
<Report>
<header>Another interesting report</header>
<content>Yet more fascinating content.</content>

</Report>
</Reports>

The xml-stylesheet processing instruction associates the XML docu-
ment with the Reports.css CSS style sheet.

Figure 13.1 shows the onscreen appearance when Listing 13.2 is dis-
played in the Mozilla 1.0 browser.

14 0672324717 CH13 3/3/05 12:07 PM Page 164

165Styling XML with CSS

FIGURE 13.1 Basic CSS display with all element content on same
line.

The display in Figure 13.1 is pretty rudimentary. It doesn’t even split
headings (in blue) into separate lines from the content of an individual
report. That limitation in XML documents occurs because some effects
seemingly produced by CSS in HTML Web pages are the result of the
characteristics of the HTML elements, such as the h1 element or the p ele-
ment, which automatically create a block display.

Listing 13.3 shows how you can modify the CSS style sheet, using the
display property, to display the content of each element on a separate
line.

LISTING 13.3 Reports2.css: Adding Block Display to the CSS
Style Sheet
header{font-family:Arial, sans-serif;

font-size:18;
color:blue;
display:block;}

14 0672324717 CH13 3/3/05 12:07 PM Page 165

166 Lesson 13

content{ {font-family:”Times New Roman”, serif;
font-size:12;
color:black;
display:block;}

After the XML file has been amended to point to the revised CSS file, the
onscreen appearance in the Mozilla browser should look like Figure 13.2.
The altered XML document, Reports2.xml, is available in the code
download.

LISTING 13.3 Continued

FIGURE 13.2 Appearance after the CSS has been modified to
specify block display.

If you want to target only browsers that fully support CSS2, you can use
absolute positioning to further refine the appearance onscreen. But, in
practice, you will run into a problem when you want to reorder elements
or display certain elements only. Of course, you can begin to modify the
source XML document and add class attributes to enable you to hide a

14 0672324717 CH13 3/3/05 12:07 PM Page 166

167Styling XML with CSS

class by specifying display:none in a rule. However, taking that
approach is ill advised. You are beginning to modify the structure of your
content to control presentation, which is where HTML caused difficulties.
It’s an approach that runs against the principles that XML was designed to
follow.

Rather than stretching CSS and modifying XML documents to accommo-
date CSS’s limitations, it makes more sense, at least for the moment, to
use CSS in conjunction with XSLT.

Using CSS with XSLT
If CSS (at least at Level 2) can’t do all that you want with your XML
data, you need to explore alternative approaches to displaying that data for
some uses. One productive possibility is to use CSS and XSLT together
with a source XML data store.

Using XSLT and CSS with HTML Output
If you use both XSLT to create HTML output documents (Web pages)
and CSS styling together with the HTML, all four ways of using CSS to
style HTML documents are, in principle, available:

• Linking to an external CSS style sheet using the link element

• Using the @import directive

• Using the style element

• Styling individual HTML elements

One of the reasons for using CSS is that it makes it easier to update styles
site-wide, so you most likely will want to use an external CSS style sheet.
An external CSS style sheet can be accessed using the link element or
the @import directive. The link element is used in the example that fol-
lows.

Suppose that you wanted to use the CSS style sheet shown in Listing 13.4
site-wide in an HTML site whose pages are generated using XSLT.

14 0672324717 CH13 3/3/05 12:07 PM Page 167

168 Lesson 13

LISTING 13.4 MySite.css: A Brief CSS Style Sheet
/* This style sheet is to be used site-wide with HTML pages

generated using XSLT */
h1 {font-family:Arial, sans-serif;

font-size:28;
color:#FF0000;}

h2 {font-family:Arial, sans-serif;
font-size:20;
color:#0000FF;}

p {font-family:”Times New Roman”, serif;
font-size:16;
color:black;}

li {font-family:”Times New Roman”, serif;
font-size:14;
color:#999999;}

The source XML document is shown in Listing 13.5.

LISTING 13.5 CSSInformation.xml: A Brief Data Store of
Information About CSS
<?xml version=’1.0’?>
<CSSInformation>
<Techniques>
<Technique>
The <link> element
</Technique>
<Technique>
The @import directive
</Technique>
<Technique>
The <style> element
</Technique>
<Technique>
Styling individual elements
</Technique>
</Techniques>
</CSSInformation>

Listing 13.6 is an XSLT stylesheet to create the desired HTML output
document.

14 0672324717 CH13 3/3/05 12:07 PM Page 168

169Styling XML with CSS

LISTING 13.6 CSSInformation.xsl: An XSLT Stylesheet
Creating a Link to a CSS Style Sheet
<?xml version=’1.0’?>
<xsl:stylesheet
version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
>

<xsl:output method=”html”
indent=”yes” />

<xsl:template match=”/”>
<html>
<head>
<title>Techniques for using CSS in HTML</title>
<link rel=”stylesheet” href=”MySite.css” />
</head>
<body>
<h1>Techniques for using CSS in HTML</h1>
<h2>Techniques</h2>
<p>The following are the techniques available in CSS2 to use

CSS.</p>

<xsl:apply-templates select=”//Technique” />

</body>
</html>
</xsl:template>

<xsl:template match=”Technique”>
<xsl:value-of select=”.”/>
</xsl:template>

</xsl:stylesheet>

Notice the link element in the head section of the literal result elements
in the XSLT stylesheet. The rel and href attributes of the link element
indicate that the file MySite.css (see Listing 13.4) is to be linked as the
CSS style sheet for the HTML document.

Listing 13.7 shows the HTML output document.

14 0672324717 CH13 3/3/05 12:07 PM Page 169

170 Lesson 13

LISTING 13.7 CSSInformation.html: The Result of the XSLT
Transformation
<html>
<head>
<meta http-equiv=”Content-Type” content=”text/html;

charset=utf-8”>
<title>Techniques for using CSS in HTML</title>
<link rel=”stylesheet” href=”MySite.css”>

</head>
<body>
<h1>Techniques for using CSS in HTML</h1>
<h2>Techniques</h2>
<p>The following are the techniques available in CSS2

to use CSS.</p>

The <link> element

The @import directive

The <style> element

Styling individual elements

</body>
</html>

Figure 13.3 shows the onscreen appearance. When you view the document
onscreen, you can see by the size, font family, and color of the text that
the CSS styling in MySite.css has been applied to the text in the HTML
page.

Combining CSS with XSLT in this way maintains the separation of con-
tent and presentation in XML documents. At the same time, linking exter-
nal CSS style sheets offers the maintenance benefits of CSS.

14 0672324717 CH13 3/3/05 12:07 PM Page 170

171Styling XML with CSS

FIGURE 13.3 An HTML document displayed using CSS but created
using an XSLT transformation.

Summary
This lesson discussed the need for Cascading Style Sheets (CSS) to ease
maintenance of Web sites. It also described and demonstrated the way to
link an XML document to an external CSS style. In addition, you learned
about the styling of XML documents and the advantages of using CSS
together with XSLT, for example, when elements need to be reordered.

14 0672324717 CH13 3/3/05 12:07 PM Page 171

LESSON 14
Linking in
XML—XLink

In this lesson, you will learn how to use the XML Linking Language
(XLink) simple links and the XML Pointer Language (XPointer).

The XML Linking Language
The XML Linking Language (XLink)—and the associated XML Pointer
Language (XPointer) specification, discussed later in this chapter—are
intended to provide linking functionality for XML on the Web. This will
provide XML-based linking functionality equivalent to HTML, but with
significant enhancements. Relevant parts of XLink and XPointer have
already been implemented in Scalable Vector Graphics (see Chapter 15,
“Presenting XML Graphically—SVG”) and likely will be implemented in
at least some other XML specifications.

The original vision for XML was that it should be used on the Web.
However, in practice it has displaced HTML much more slowly than was
originally envisioned. Perhaps a contributing factor to that was the lengthy
delay in finishing development of the XLink and the (still unfinished)
XPointer specifications.

XLink became a full W3C Recommendation in June 2001 (see
www.w3.org/TR/2001/REC-xlink-20010627/). At the time of this writing,
four new XPointer Working Drafts have just been issued.

XLink provides simple links, which are similar to HTML hyperlinks, and
extended links that introduce functionality beyond that provided in
HTML. XPointer is a much more powerful fragment-identifier mechanism
than HTML anchors.

First let’s look at HTML hyperlinks and their strengths and limitations.
XPointer is discussed later in the chapter.

15 0672324717 CH14 3/3/05 12:08 PM Page 172

XLink and HTML Hyperlinks
HTML hyperlinking has been immensely successful as a pivotal part of
the World Wide Web. The Web is almost unimaginable without such
hyperlinking functionality.

In HTML, the hyperlinking mechanism uses the a element. It is possible
to use the a element to link externally to other HTML Web pages or other
resources, or to link internally or externally to specified document frag-
ments.

These simple mechanisms are immensely useful, but they do have limita-
tions. For example, a link is expressed at one end only. If you click a link
on page A and move to page B, the browser Back button typically allows
you to link back to page A. But if you visit page B directly, there is likely
no way to link to page A at all.

To take another example, if you want to link to a fragment of page B but
the document author hasn’t provided an anchor at the point that interests
you, you can’t link directly to that point. You are limited to linking to the
Web page and providing instructions for what part of the document you
want a user to scroll to.

XLink and XPointer were intended to address limitations such as these.

Simple Links and Extended Links
XLink provides two significantly different types of links: simple links and
extended links.

An XLink simple link behaves on its own very much like an HTML
hyperlink. When used with XPointer, it is potentially much more flexible
in linking to specified document fragments.

XLink extended links allow links to be created among more than two
resources.

XLink Jargon
XLink brings with it a lot of jargon, which is needed to precisely express
what is happening with XLink extended links.

15 0672324717 CH14 3/3/05 12:08 PM Page 173

174 Lesson 14

In XLink terminology, a link is simply an explicit association between
two or more resources. The link is made explicit by an XLink linking ele-
ment.

Note No elements exist in the XLink namespace—
only attributes. An element in a non-XLink namespace
that possesses XLink attributes is termed an XLink
linking element.

So, an XLink simple link might look like this:

<myPrefix:myElement xlink:href=”SomeResource.xml” ... />

The preceding code assumes that the XLink namespace URI,
www.w3.org/1999/xlink, has been declared at an appropriate place in the
document.

Using or following an XLink link is termed traversal. The resource that
contains the XLink linking element is known as the starting resource, and
the destination of the link is the ending resource.

A local resource is an XML element that participates in a link by virtue
of having a linking element as its parent or being itself a linking element.
A remote resource is addressed by means of a URI reference.

A link that has a local starting resource and a remote ending resource is
termed outbound. XLink simple links, like HTML hyperlinks, are of this
type.

XLink also allows two other types of arc: inbound and third-party. An
inbound arc exists when the XLink linking element is expressed on a
local resource—in other words, there is a local ending resource and a
remote starting resource. A third-party link exists when the XLink linking
element is expressed in neither the starting resource nor the ending
resource. These types of links, which are XLink extended links, can be
used to form link databases, also called linkbases.

15 0672324717 CH14 3/3/05 12:08 PM Page 174

175Linking in XML—XLink

XLink Attributes
The XLink specification creates no new elements but does add attributes
that are in the XLink namespace to elements in other XML application
languages. Typically, the XLink namespace must be declared.

The xlink:href attribute specifies a URI for the remote resource. The
type of an XLink—simple or extended—is expressed using the
xlink:type attribute. For a simple link that replaces the local resource
when the arc is traversed, you need only those two attributes:

<myPrefix:myElement xlink:type=”simple”
xlink:href=”someURI” >

The xlink:show attribute controls where the remote resource is displayed.
The default value is replace. To display a resource in a new browser win-
dow, the xlink:show attribute has the value new.

The xlink:actuate attribute controls when the arc of the link is tra-
versed. The default value is onRequest. To traverse an arc upon document
loading, the xlink:actuate attribute has the value onLoad. At the time of
this writing, no browser implements that feature.

An extended link has the xlink:type attribute with the value extended.
An extended link may have xlink:href, xlink:show, and xlink:actuate
attributes. In addition, it may have xlink:title, xlink:resource,
xlink:arc, xlink:arcrole, xlink:label, xlink:from, and xlink:to
attributes. The latter attributes will not be discussed further.

XLink Examples
At the time of this writing, Internet Explorer browser has no support for
XLink. The Netscape 6.x and Mozilla 1.x browsers support XLink simple
links only.

Listings 14.1 and 14.2 show two brief XML documents that each contain
a single XLink simple link.

15 0672324717 CH14 3/3/05 12:08 PM Page 175

176 Lesson 14

LISTING 14.1 Document1.xml: A Document with a Single
XLink Simple Link
<?xml version=’1.0’?>
<?xml-stylesheet href=”BigText.css” type=”text/css” ?>
<Document1 xmlns:xlink=”http://www.w3.org/1999/xlink”>
<myPrefix:myElement xlink:href=”Document2.xml”
xlink:type=”simple”
xmlns:myPrefix=”http://www.XMML.com/”>

Click here to go to Document 2.
</myPrefix:myElement>
</Document1>

LISTING 14.2 Document2.xml: A Document with Another
Simple Link
<?xml version=’1.0’?>
<?xml-stylesheet href=”BigText.css” type=”text/css” ?>
<Document1 xmlns:xlink=”http://www.w3.org/1999/xlink”>
<myPrefix:myElement xlink:href=”Document1.xml”
xlink:type=”simple”
xmlns:myPrefix=”http://www.XMML.com/”>

Click here to go back to Document 1.
</myPrefix:myElement>
</Document1>

Notice that the XLink namespace is declared in each listing on the docu-
ment element. For ease of display in the screenshots, the documents have
been linked to a CSS style sheet shown in Listing 14.3.

LISTING 14.3 BigText.css: A CSS Style Sheet Controlling the
Appearance of Text
myElement {
font-family:Arial, sans-serif;
font-size:30pt;
color:blue;
text-decoration:underline;
}

Without the CSS stylesheet, the XML text would be displayed as black,
without underlining, and in the default font.

Figure 14.1 shows Listing 14.1 displayed in the Mozilla 1.0 browser. Note
that the cursor changes to a pointing finger cursor over the linking text.

15 0672324717 CH14 3/3/05 12:08 PM Page 176

177Linking in XML—XLink

FIGURE 14.1 Linking text in a simple XML document in the
Mozilla browser.

If you wanted Listing 14.2 to display in a new browser window, you could
simply add an xlink:show attribute with the value of new, as shown in
Listing 14.4.

LISTING 14.4 Document3.xml: A Link to Open a New
Browser Window
<?xml version=’1.0’?>
<?xml-stylesheet href=”BigText.css” type=”text/css” ?>
<Document1 xmlns:xlink=”http://www.w3.org/1999/xlink”>
<myPrefix:myElement xlink:href=”Document2.xml”
xlink:type=”simple”
xlink:show=”new”
xmlns:myPrefix=”http://www.XMML.com/”>

Click here to go to Document 2.
</myPrefix:myElement>
</Document1>

15 0672324717 CH14 3/3/05 12:08 PM Page 177

178 Lesson 14

XLink in SVG
One of the XML application languages that already implements XLink
simple links is the W3C’s Scalable Vector Graphics (SVG) specification.
SVG 1.0 does not support XLink extended links. An XLink example in
SVG is shown in Chapter 15.

Having looked at how you can link whole Web pages, let’s move on to see
how XPointer handles XML fragment identifiers.

Document Fragments and XPointer
In HTML documents, the process of addressing a specific part of the doc-
ument involves using anchors. This can be a useful mechanism, but it
does have significant limitations.

Caution Immediately before this writing, the
XPointer specification was split into four W3C
Working Drafts. The description that follows is based
on those drafts and, therefore, is potentially subject to
change.

Let’s suppose that you want to link to the HTML document shown in
Listing 14.5. It includes many br tags to space out the anchors.

LISTING 14.5 Anchors.html: An HTML Document with
Anchors
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”
“http://www.w3.org/TR/REC-html40/loose.dtd”>
<HTML>
<HEAD>
<TITLE>Teach Yourself XML in 10 Minutes - Chapter 14</TITLE>
</HEAD>
<BODY>
<h1>
Linking in XML - XLink
</h1>

15 0672324717 CH14 3/3/05 12:08 PM Page 178

179Linking in XML—XLink

<p>First fascinating text.</p>

<p>Second fascinating text.</p>

<p>Third fascinating text.</p>

<p>The REALLY fascinating text.</p>

</BODY>
</HTML>

If you want to link from another HTML document to any of the specified
anchors in Listing 14.5, writing a link is straightforward:

 LinkText

If you don’t have write privileges on the target document, you have lim-
ited options. You can ask the Web page author to add an anchor at the
point that you want to link to (often unrealistic in a rapidly growing Web),
link to an anchor close to the real point of interest (if there is such an
anchor), or accept that it isn’t possible to link to a desired fragment in that
page.

XPointer is designed to provide improved functionality for linking to doc-
ument fragments in XML documents. A correctly written XPointer should
be capable of identifying any arbitrary part of an XML document. How
that part of the document is processed after it is identified depends on the
application with which the XPointer processor is associated.

For example, suppose you wanted to link to a long XML document, per-
haps a lengthy report, and display it in a browser or similar software at
exactly the point of interest. You could write an XPointer to access any
part of the document that is of interest without having write access to the
target document.

LISTING 14.5 Continued

15 0672324717 CH14 3/3/05 12:08 PM Page 179

180 Lesson 14

To understand how to do that, you should look first at the relationship
between XPath (discussed in Chapter 9, “The XML Path Language—
XPath”), and XPointer.

XPointer and XPath
XPath models an XML document as a hierarchy of nodes. XPointer incor-
porates the concept of a node and also makes use of XPath functions,
some of which were discussed in Chapter 9.

The XPath notion of a node is generalized in XPointer to include the addi-
tional notions of a point and a range. The following XML code snippet
can help illustrate these concepts.

<text>Here is some text.</text>

All the text between the start and end tags of the text element is the value
of a corresponding text node. The point exactly between the initial H and
the first e of Here is a point. That type of point is a character-point.

A range could be the text string is some, with the starting point between
the space character and the initial i of is, and the ending point between
the final e of some and the following space character.

XPath operates using location paths. The output from one location step is
used as the input for the following location step. XPointer works simi-
larly. The location set returned by one pointer part is the start for process-
ing by the next pointer part, if there is one.

XPointer incorporates XPath functions and adds functions that manipulate
or return points and ranges.

Node tests in XPath have a counterpart—a test—in XPointer. An XPointer
test can be applied to a node, point, or range.

Note At the time of this writing, no XPointer tools
conform fully to the newly issued XPointer draft docu-
ments.

15 0672324717 CH14 3/3/05 12:08 PM Page 180

181Linking in XML—XLink

The XPointer Framework and Schemes
As this book was being written, a significant rewrite of the XPointer spec-
ification emerged after (from a public viewpoint) a static period of several
months. The XPointer draft specification was split into four documents:
the XPointer Framework Working Draft and three draft specifications that
describe XPointer schemes—the xpointer(), xmlns(), and element()
schemes.

An XPointer processor takes as input an XML document and a URI that
includes a fragment identifier. The output from an XPointer processor is
either identification of a part of the XML document corresponding to the
fragment identifier or an error.

The XPointer Framework
The XPointer Framework is a specification that defines the context for the
xpointer(), xmlns(), and element() schemes.

Scheme-Based XPointers
A scheme-based XPointer consists of one or more pointer parts, each of
which is of the following general form:

schemeName(characterSequence)+

In other words, the pointer part begins with the scheme name followed by
an opening parenthesis. A sequence of XML characters follows, and the
pointer part is completed by a closing parenthesis.

So, an XPointer from the xpointer() scheme to select Chapter element
nodes would look like this:

xpointer(//Chapter)

If the sequence of XML characters contains an unbalanced parenthesis
character, that unbalanced parenthesis must be escaped.

As indicated by the + cardinality operator, an XPointer may use more than
one scheme.

You will look at each of the proposed XPointer schemes in turn. First,
let’s look at the xpointer() scheme.

15 0672324717 CH14 3/3/05 12:08 PM Page 181

182 Lesson 14

The xpointer() Scheme
The xpointer() scheme is the most extensive of the XPointer schemes. In
fact, it was originally envisaged as being the only scheme until technical
issues led to the development of the xmlns() scheme (discussed later in
this chapter).

The xpointer() scheme is associated with the namespace URI
www.w3.org/2001/05/XPointer.

Caution The namespace URI given is associated with
a Working Draft for the xpointer() scheme. It is pos-
sible that the namespace URI will change for the final
version of the specification.

Points in the xpointer() Scheme
The xpointer() scheme recognizes two types of points: a node-point and
a character-point. Both types of points are defined in terms of a container
node (the node within whose content the point is situated) and an index.

A node-point is a point between nodes that are children of the container
node of the point. The index for a node-point lies between zero (the index
of the node-point immediately before the first node in the container node)
and the number of child nodes that the container node has.

A node-point corresponds conceptually to a gap between nodes. Because
character-points occur within nodes, they are envisaged as occurring
between the node-points before and after their container node.

The self axis and the descendant-or-self axis of a point location con-
tain the point itself. The parent axis contains the container node of the
point. The ancestor axis contains the container node and its ancestors.
The ancestor-or-self axis also contains the point itself. All other axes
are empty.

Points do not have an expanded name, and the string value of a point is
the empty string.

15 0672324717 CH14 3/3/05 12:08 PM Page 182

183Linking in XML—XLink

Ranges in the xpointer() Scheme
A range is defined by its start point and its end point. A range consists of
all the XML structure and content between the start point and the end
point of the range. The start point of a range need not be in the same node
as the end point if the container node of the start point is of type root, ele-
ment, or text. However, both points must be in the same XML document
or external parsed entity. The start point must not come later in the docu-
ment than the end point.

A special case arises when the start point and the end point are the same
point. In that case, the range is referred to as a collapsed range.

A range does not have an expanded name. The string value of a range
consists of the character content of text nodes inside the range.

The axes of a range are identical to the axes of its start point. The parent
axis of the range contains the parent node of the start point.

The XPointer start-point() and end-point() functions can be used to
navigate to the start point and end point, respectively, of a range.

Functions in the xpointer() Scheme
The xpointer() scheme adds functions to those available from the XPath
function library.

The string-range() function takes two required arguments (a location
set and a string) and two optional arguments (numbers). The string-
range() function returns a location for each occurrence of the string argu-
ment in the location set argument.

The range() function takes a location set argument and returns a location
set. The range() function returns a covering range for each location in the
argument location set.

15 0672324717 CH14 3/3/05 12:08 PM Page 183

184 Lesson 14

The range-inside() function returns a location set and takes a single
location set argument.

The range-to() function returns a range for each location in the context
whose start point is returned by the start-point() function and whose
end point is returned by the end-point() function.

The start-point() and end-point() functions respectively address the
starting point and ending point of a range.

The here() function is meaningful only when the context is an XML doc-
ument or an external parsed entity. If the expression being evaluated is in
a text node inside an element node, the here() function returns the ele-
ment node. Otherwise the here() function returns the node that directly
contains the expression being evaluated.

The origin() function is meaningful only when it is processed in
response to traversal of a link expressed in an XML document.

Some xpointer() Scheme Examples
To locate an element node that has an ID attribute of value “CRES99”, you
can write this:

xpointer(id(“CRES99”))

If you want to reference a range that includes the first and second chapters
of a document, you could write this:

xpointer(//chapter[number=’1’])/range-to(//chapter[number=’2’])

This assumes that the document contains chapter elements with a number
attribute corresponding to the chapter number.

Note A covering range is a range that totally encom-
passes a location. For a range, the covering range is
the same range. For a point, the start point and end
point of the covering range are the point itself.
Definitions of other covering ranges are included in
the XPointer specification.

15 0672324717 CH14 3/3/05 12:08 PM Page 184

185Linking in XML—XLink

The xmlns() Scheme
The xmlns() scheme is intended for use with the XPointer Framework to
ensure correct interpretation of namespace prefixes in XPointers.

You might assume that using namespace prefixes would be possible using
only the xpointer() scheme, but take a look at the following XML code
snippet and think of the ambiguity it introduces:

<myPrefix:myElement
xmlns:myPrefix=”http://www.XMML.com/Namespace”>
<AnElement>
First piece of text.

</AnElement>
<myPrefix:myElement
xmlns:myPrefix=”http://www.XMML.com/AnotherNamespace”>

<AnElement>
Second piece of text.
</AnElement>
<!-- Some content could go here -->

</myPrefix:myElement>
</myPrefix:myElement>

If you had the XPointer that follows, which XPointer location(s) is it
intended to refer to?

xpointer(//myPrefix:myElement/AnElement)

Is it intended to refer to both AnElement elements? Or only one? If so,
which? The myPrefix:myElement is declared to be associated with two
different namespaces. For an XML processor, that doesn’t cause difficul-
ties because it uses the namespace URI, not the namespace prefix. But for
XPointer you need to specify which namespace URI you are referring to.

To remove that ambiguity, the xmlns() scheme has been provided.

You can refer unambiguously to the outer myPrefix:myElement element
using the following XPointer:

xmlns(myPrefix:http://www.XMML.com/Namespace)
xpointer(//myPrefix:myElement/AnElement)

Or, you can refer unambiguously to the inner one using this:

xmlns(myPrefix:http://www.XMML.com/AnotherNamespace)
xpointer(//myPrefix:myElement/AnElement)

15 0672324717 CH14 3/3/05 12:08 PM Page 185

186 Lesson 14

Remember that an XML processor uses the expanded name rather than
the namespace prefix for processing. So, if you want to access both
AnElement elements, you could use both xmlns() pointer parts:

xmlns(a:http://www.XMML.com/Namespace)
xmlns(b:http://www.XMML.com/AnotherNamespace)

You could use a or b as the namespace prefix in further pointer parts using
the xpointer() scheme.

The element() Scheme
The element() scheme is intended to be used with the XPointer
Framework to provide basic addressing of elements in XML documents.

The element() scheme can use two forms of syntax: a name or a child
sequence.

Suppose you had the following XML document:

<myDocument>
<Introduction>Some text</Introduction>
<MainText>Some main text</MainText>
<Postscript>Some postscript text</Postscript>
</myDocument>

You could select the MainText element by name using this line:

element(//MainText)

Or, you could select it as a child sequence using this code:

element(/1/2)

The syntax of the child sequence is to be understood as follows. The ini-
tial / character indicates that the root node is the initial context location.
The 1 indicates that you are selecting the first element child of the root
node—in this case, the myDocument element node. The next / character is
a separator. The 2 indicates that you are selecting the second element
child node of the myDocument node—in this case, the MainText element
node.

15 0672324717 CH14 3/3/05 12:08 PM Page 186

187Linking in XML—XLink

Summary
In this lesson, you were introduced to the XML Linking Language and
learned how to use XLink simple links. The chapter also described the
XML Pointer Language and introduced the characteristics of the XPointer
Framework and the xpointer(), xmlns(), and element() schemes.

15 0672324717 CH14 3/3/05 12:08 PM Page 187

LESSON 15
Presenting
XML
Graphically—
SVG

In this lesson, you will be introduced to Scalable Vector Graphics (SVG),
an XML application language that expresses two-dimensional vector
graphics.

What Is SVG?
SVG is an XML application language that is intended to replace many
uses of bitmap graphics on the Web and provide a vector graphics stan-
dard that is not vendor-specific (compare Microsoft’s VML) and that is
open source (compare Macromedia’s Flash/SWF). SVG is written in
XML-compliant syntax.

Version 1.0 of SVG became a W3C Recommendation in September 2001.
At the time of this writing, version 1.1 of SVG is a W3C Candidate
Recommendation (www.w3.org/TR/SVG11/) and will provide modulariza-
tion of SVG so that SVG can be used on mobile browsers as well as on
traditional desktop browsers.

SVG code is always well-formed SVG and can be validated against a pub-
licly available DTD. SVG has elements for displaying text—text and
tspan—as well as several elements that represent commonly used graph-
ics shapes—for example, rect, circle, ellipse, and polygon. A path
element can be used to represent any arbitrary two-dimensional graphics
shape.

16 0672324717 CH15 3/3/05 12:08 PM Page 188

An SVG shape has its onscreen position, its dimensions, and its style
information specified by attributes. The following code specifies a circle
shape of radius 50 pixels filled with green and having a red outline (stroke
in SVG jargon):

<circle cx=”100px” cy=”100px” r=”50px”
style=”fill:#00FF00; stroke:#FF0000; stroke-width:3” />

Alternatively, styling information for an SVG image or Web page can be
contained in an internal style sheet (contained in a style element) or in
an external CSS style sheet, referenced using the xml-stylesheet pro-
cessing instruction. An internal style sheet contains non-XML text, so it
must be contained in a CDATA section:

<style type=”text/css”>
<![CDATA[
/* style rules go here. */
]]>
</style>

In addition to static shapes and text, SVG provides five animation
elements—set, animate, animateMotion, animateColor, and
animateTransform—that singly or combined can produce an essentially
unlimited number of animation effects.

SVG code is XML, so data stored as generic XML can be transformed
into SVG using an XSLT stylesheet. This allows SVG charts to be created
to express bar charts, line charts, and so on. Another growing use of SVG
is to express map data.

In addition to containing SVG elements that define graphics shapes and
text, SVG can be used to display external vector or bitmap images. For
example, the following SVG code could be used to display a PNG image
called myBitmap.png:

<image xlink:href=”myBitmap.png” x=”240px” y=”90px”
width=”350px” height=”125px” />

In addition, SVG enables the scripting of a Document Object Model
(DOM), which incorporates the DOM Level 2 (to be discussed in Chapter
16, “The Document Object Model,” and Chapter 17, “The Document

16 0672324717 CH15 3/3/05 12:08 PM Page 189

190 Lesson 15

Object Model—2). Script code may be contained in a script element, as
shown here:

<script type=”text/javascript” >
[![CDATA[
// JavaScript code is not XML and needs to be in a
// CDATA section.
]]>
</script>

Or, it may be referenced in an external JavaScript or ECMAScript file:

<script type=”text/javascript” xlink:href=”myJavaScript.js” />

SVG also includes several powerful bitmap filters that, to take a simple
example, can add a drop shadow to SVG text or shapes.

Advantages of SVG
If you were around in the early days of the Web, you might remember the
excitement as newcomers to HTML were able to learn the new technol-
ogy rapidly because the HTML source code was always accessible in a
Web browser. SVG offers the same advantage: A student of SVG can
study the source code of an interesting or impressive graphic and need not
deal with a steep learning curve.

The Adobe SVG Viewer can be downloaded from
www.adobe.com/svg/viewer/install/main.html and is a plug-in for con-
ventional Web browsers. The SVG source code of an image displayed in
the Adobe SVG Viewer is accessed by simply right-clicking the SVG
image and selecting the View Source option.

The Batik standalone SVG viewer is available for download from
http://xml.apache.org/batik/. Batik can also be used in Java applica-
tions to dynamically create and display SVG.

SVG can be combined with other XML application languages. New-gen-
eration browsers such as the X-Smiles browser (www.x-smiles.org)
enable multiple XML languages to be combined into XML-based Web
pages. For example, you could use SVG images within an XHTML Web
page that also contains forms using the XML-based XForms specification.

16 0672324717 CH15 3/3/05 12:08 PM Page 190

191Presenting XML Graphically—SVG

An alternative approach is to create all-SVG Web pages, such as those
you can see at www.XMML.com/.

Creating SVG
SVG is XML. In principle, it can be created by any text editor. Of course,
having syntax checking for well-formedness and color highlighting is an
improvement over an editor such as Windows Notepad.

Listing 15.1 shows a simple SVG document that animates some text from
a position offscreen onto the screen shortly after the document loads.

LISTING 15.1 HelloVector.svg: An Animated Greeting
Expressed in SVG
<?xml version=’1.0’?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.0//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg>
<text x=”-320” y=”50” style=”font-family:Arial; font-

size:24;”>
Hello Vector Graphics World!
<animate attributeName=”x” from=”-320” to=”20”

begin=”1s” dur=”3s” fill=”freeze” />
</text>
</svg>

The XML declaration and the DOCTYPE declaration should be familiar
from earlier chapters in this book. The document element is an svg ele-
ment. Remember that SVG is XML, so element type names are case sen-
sitive. The svg element must be written using lowercase characters only.

An SVG text element is used to contain the short message. One of the
SVG animation elements is used to animate the text from a position just
offscreen to the left onto the screen, starting one second after the docu-
ment loads.

This declarative animation provides powerful and flexible animation
facilities in SVG, which don’t need to use scripting languages for many
common effects. However, SVG has the flexibility to add script code to
augment animation effects when it is appropriate.

16 0672324717 CH15 3/3/05 12:08 PM Page 191

192 Lesson 15

Figure 15.1 shows the onscreen appearance partway through the anima-
tion of the text.

FIGURE 15.1 A simple SVG document that animates text onscreen.

To view the SVG content onscreen, you need either a Web browser that
has the Adobe SVG plug-in installed (see www.Adobe.com/svg/ for further
details) or a dedicated SVG viewer such as Batik (see
http://xml.apache.org/batik/ for further information). Some of the
examples in Chapters 16 and 17 use SVG to illustrate programmatic con-
trol of the XML Document Object Model, so you will find it useful to
install an SVG viewer.

Examples of SVG used in geographical mapping can be seen at
www.carto.net/projects/.

Another approach to creating SVG is to use a drawing tool with SVG
export capabilities. For example, Jasc WebDraw is a dedicated SVG

16 0672324717 CH15 3/3/05 12:08 PM Page 192

193Presenting XML Graphically—SVG

drawing tool. More information is available at www.Jasc.com. Other well-
known vector-drawing tools such as Adobe Illustrator (version 9 and
onward, www.Adobe.com) and CorelDraw (version 10 and onward,
www.Corel.com) have SVG export facilities. Macromedia Freehand does
not support SVG export at the time of this writing.

Because SVG is XML, it can be generated dynamically from XML data
stores on the server before being transmitted to an SVG-enabled Web
browser. Among the server-side tools that can be used to generate SVG
dynamically are XSLT, Java, and Perl.

Some SVG Examples
This section shows a few short examples of SVG code, including how to
use SVG to create a rollover and how XLink is used in SVG.

SVG Rollovers
In a conventional HTML Web page, it is necessary to use JavaScript to
produce rollover effects. In SVG, rollover effects can be produced using
SVG declarative syntax alone. Listing 15.2 shows a simple rollover with a
message about SVG.

LISTING 15.2 Mouseover.svg: A Message About SVG
<?xml version=’1.0’?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.0//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg>
<rect id=”myRect” x=”20” y=”30” rx=”10”

ry=”10” width=”250” height=”50”
style=”fill:white; stroke:blue; stroke-width:4”>

<set attributeName=”fill” from=”white” to=”#FFFF00”
begin=”mouseover” end=”mouseout” />

</rect>
<text x=”35” y=”65”

style=”fill:blue; stroke:none; font-family:Arial,sans-serif;
font-size:28; pointer-events:none “ visibility=”visible”>

16 0672324717 CH15 3/3/05 12:08 PM Page 193

194 Lesson 15

<animate begin=”myRect.mouseover”
attributeName=”visibility” from=”visible”

to=”hidden” dur=”0.1s” fill=”freeze” />
<animate begin=”myRect.mouseout”

attributeName=”visibility” from=”hidden”
to=”visible” dur=”0.1s” fill=”freeze” />
SVG is cool!
</text>
<text x=”35” y=”65”

style=”fill:red; stroke:none; font-family:Arial,sans-serif;
font-size:28; pointer-events:none; visibility:hidden;”>

<animate begin=”myRect.mouseover”
attributeName=”visibility” from=”hidden”

to=”visible” dur=”0.1s” fill=”freeze” />
<animate begin=”myRect.mouseout”

attributeName=”visibility” from=”visible”
to=”hidden” dur=”0.1s” fill=”freeze” />
SVG is RED HOT!
</text>
</svg>

When the document loads a simple text message, SVG is Cool! is visible
against a white background inside a rectangle. When the rectangle is
rolled over, its fill color changes to yellow, the first text message is hid-
den, and the message SVG is RED HOT! is displayed. The change in text
is achieved by animating the visibility property of the two text ele-
ments in the document.

Figure 15.2 shows a composite image that includes both the rolled-over
and unrolled-over versions of the rectangle.

XLink Links in SVG
SVG uses XLink linking mechanisms to link to external resources and
uses a subset of XPointer to address fragments in the same SVG docu-
ment.

Listing 15.3 shows an example of using XLink in an SVG document.

LISTING 15.2 Continued

16 0672324717 CH15 3/3/05 12:08 PM Page 194

195Presenting XML Graphically—SVG

FIGURE 15.2 Rolled-over and unrolled-over versions of the
rectangle.

LISTING 15.3 SVGLink.svg: An Example of Using an XLink
Link in SVG
<?xml version=’1.0’?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.0//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg>
<rect x=”0” y=”0” width=”100%” height=”100%”

style=”fill:#FFFFFF” />
<a xlink:href=”http://www.XMML.com/” >
<text x=”20” y=”30”

style=”fill:#666666; stroke:none; font-family:
’Times New Roman’, serif; font-size:24” >

Link to the XMML.com all-SVG Web site.
</text>

</svg>

The SVG a element uses an xlink:href attribute to specify the resource
to be traversed to. As you can see in Figure 15.3, rolling over the text

16 0672324717 CH15 3/3/05 12:08 PM Page 195

196 Lesson 15

causes a pointing-finger cursor to appear. Clicking the text links to the
www.XMML.com all-SVG Web site.

FIGURE 15.3 An XLink hyperlink to an external resource.

Using XPointer to Reference Definitions
SVG documents, other than very short ones, likely will include a defini-
tions section contained in a defs element.

Listing 15.4 shows an example of using a bare names XPointer (now
called shorthand form in the XPointer drafts that came out after the SVG
1.0 Recommendation was completed) to reference the definition of an
SVG filter that applies a drop shadow to the text.

LISTING 15.4 Reference.svg: Applying an SVG Filter on
Mouseover
<?xml version=’1.0’?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.0//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg>

16 0672324717 CH15 3/3/05 12:08 PM Page 196

197Presenting XML Graphically—SVG

<defs>
<style type=”text/css”>
<![CDATA[
text {font-family:Arial, sans-serif;
font-size:16;
fill:black;
stroke:none;
}
text.big {font-family:Arial, sans-serif;
font-size:35;
fill:black;
stroke:none;
}
]]>
</style>
<filter id=”myFilter” width=”140%” height=”140%” y=”-20%”>
<feGaussianBlur in=”SourceAlpha” stdDeviation=”2.5”

result=”Blur” />
<feOffset in=”Blur” dx=”3” dy=”3” result=”OffsetBlur” />
<feMerge>
<feMergeNode in=”OffsetBlur” />
<feMergeNode in=”SourceGraphic” />
</feMerge>
</filter>
</defs>
<text x=”20” y=”20” >
Mouse the text below and watch a drop shadow being applied to

it.
</text>
<text class=”big” x=”20” y=”120” filter=”none”>
<set begin=”mouseover” end=”mouseout”

attributeName=”fill” from=”black” to=”red” />
<set begin=”mouseover” end=”mouseout”

attributeName=”filter” from=”none” to=”url(#myFilter)” />
Sams Teach Yourself XML in 10 Minutes
</text>
<text class=”big” x=”20” y=”220” filter=”none”>
<set begin=”mouseover” end=”mouseout”

attributeName=”fill” from=”black” to=”red” />
<set begin=”mouseover” end=”mouseout”

attributeName=”filter” from=”none” to=”url(#myFilter)” />
Sams Teach Yourself XML in 10 Minutes
</text>
</svg>

LISTING 15.4 Continued

16 0672324717 CH15 3/3/05 12:08 PM Page 197

198 Lesson 15

Figure 15.4 is a composite image with both rolled-over and unrolled-over
text.

FIGURE 15.4 A drop shadow created using SVG filter elements in
response to rolling over the text

This short chapter has been able to indicate only a few of SVG’s capabili-
ties. Appendix B, “XML Tools,” gives some information about Web sites
and mailing lists where you can explore SVG further.

Summary
This lesson introduced the reasons for the development of SVG and
explained some of its advantages. It also described and demonstrated a
number of SVG 1.0 elements, the use of XLink in SVG and an example
of using an SVG filter.

16 0672324717 CH15 3/3/05 12:08 PM Page 198

LESSON 16
The Document
Object Model

In this lesson, you will learn the basics of how to program the XML
Document Object Model.

The Document Object Model
The Document Object Model (DOM) is a series of W3C specifications
that provide increasing functionality to access and manipulate XML (and
HTML) documents programmatically. The DOM provides a practical way
to manipulate, create, and modify XML documents programmatically.

At the time of this writing, the DOM Level 2 specifications (see
Appendix B, “XML Tools,” for links) are the current versions. DOM
Level 3 specifications are in development.

Note Only the DOM Level 2 Core interfaces are con-
sidered in this chapter and in Chapter 17, “The
Document Object Model—2.” The Document Object
Model Level 2 also specifies more specialized inter-
faces to be used—for example, with HTML documents
and CSS style sheets.

Object and Interfaces
The name of the Document Object Model refers to objects, but the DOM
is defined in terms of interfaces. An object packages a specified group of
properties and methods in a convenient object, for want of a better term.

17 0672324717 CH16 3/3/05 12:08 PM Page 199

200 Lesson 16

A property can be thought of as a characteristic of an object. For example,
a car might have a color property and a number_of_wheels property.
Each of these properties tells about some characteristic of the car.
Similarly, a car object might have go_forward(), go_backwards(), and
stop() methods. These methods would tell something about what the
object can do.

An interface can be thought of as a convenient package of properties and
methods. An object can implement an interface—a specified and named
package of properties and methods. It can either add properties and meth-
ods specific to that object or can implement the properties and methods
defined in one or more other interfaces.

You learned earlier that an XML document can be viewed as a logical
hierarchy. In the DOM, you can model that hierarchy using several nodes.

Let’s look at a simple XML document and consider how it is represented
in the DOM. Figure 16.1 shows a hierarchy representing the interfaces
and objects that make up the DOM representation of the document.

<book edition=”1”>
Sams Teach Yourself XML in 10 Minutes
</book>

Document Entity:
Document, Node

Document Element:
Element, Node

NodeList

edition attribute:
Attr, Node

NamedNodeMap

Text content of document element:
Text, Character Data, Node

NodeList

FIGURE 16.1 A hierarchical representation of the example
document.

17 0672324717 CH16 3/3/05 12:08 PM Page 200

201The Document Object Model

Let’s first look at Figure 16.1 and consider each part of the hierarchy. Later
you will look at individual interfaces shown in the figure in more detail.

The node at the apex of the hierarchy represents the (invisible) document
entity of an XML document. That node implements the Document inter-
face and the Node interface.

The next node in the hierarchy implements the NodeList interface. In this
simple document there is only a single node that is the child of the
NodeList—the node representing the document element, the book ele-
ment, of the XML document. That node implements the Node interface
and the Element interface.

The Element node has a child node that implements the NamedNodeList
interface as its child node. That node has a single child node that repre-
sents the edition attribute in the XML document. The node implements
the Attr and Node interfaces.

That Element node also has a node that implements the NodeList inter-
face as a child node. In this simple document, there is only a single node
that contains the text content of the Book element node. That node
implements the Node, Text, and CharacterData interfaces.

DOM Interfaces
Let’s examine in more detail the interfaces in Figure 16.1.

The Node Interface
As you saw in Figure 16.1, many DOM nodes implement the Node inter-
face. They might also have other properties and methods in addition to
those that the Node interface provides.

These DOM interfaces are said to extend the Node interface. Figure 16.2
shows the interfaces in DOM Level 2 Core that extend the Node interface.

In general, the names of the node types that inherit from the Node inter-
face can be readily understood from their names. The DocumentType inter-
face, for example, corresponds to the DOCTYPE declaration.

DOM interfaces can be extended several levels deep. Figure 16.3 shows
the node types that extend the CharacterData interface.

17 0672324717 CH16 3/3/05 12:08 PM Page 201

202 Lesson 16

FIGURE 16.2 The DOM Level 2 interfaces that extend the Node
interface.

Attr
Interface

CharacterData
Interface

Document
Interface

DocumentFragment
Interface

DocumentType
Interface

Element
Interface

Entity
Interface

EntityReference
Interface

Notation
Interface

ProcessingInstruction
Interface

Node
Interface

Comment Interface

CharacterData Interface

Text Interface

CDATASection Interface

FIGURE 16.3 The interfaces that extend the CharacterData
interface.

17 0672324717 CH16 3/3/05 12:08 PM Page 202

203The Document Object Model

Both the Comment and Text interfaces extend the CharacterData interface.
The Text interface itself is extended by the CDATASection interface. You
will look at these text-oriented interfaces later, but first let’s look briefly at
the properties and methods of the Node interface.

The Node interface has the following properties:

• attributes—Read-only, of type NamedNodeList

• childNodes—Read-only, of type NodeList

• firstChild—Read-only, of type Node

• lastChild—Read-only, of type Node

• localName—Read-only, of type String

• namespaceURI—Read-only, of type String

• nextSibling—Read-only, of type Node

• nodeName—Read-only, of type String

• nodeType—Read-only, of type Number

• nodeValue—Of type String

• ownerDocument—Read-only, of type Document

• parentNode—Read-only, of type Node

• prefix—Of type String

• previousSibling—Read-only, of type Node

The Node interface has the following methods:

• appendChild(newChild)—Returns a Node object

• cloneNode(deep)—Returns a Node object

• hasAttributes()—Returns a Boolean value

• hasChildNodes()—Returns a Boolean value

• insertBefore(newChild, refChild)—Returns a Node object

• isSupported(feature, value)—Returns a Boolean value

17 0672324717 CH16 3/3/05 12:08 PM Page 203

204 Lesson 16

• normalize()—Has no return value

• replaceChild(newChild, oldChild)—Returns a Node object

• removeChild(oldChild)—Returns a Node object

The NodeList Interface
The child nodes of the Document node implement the NodeList interface.

The NodeList interface has the length property, which is a read-only
property of type Number. The NodeList interface has the item(index)
method, which returns a Node object.

The NamedNodeMap Interface
You can locate the attributes of an element using the NamedNodeMap inter-
face.

The NamedNodeMap interface has the length property, a read-only property
of type Number.

The NamedNodeMap interface has the following methods, all of which
return a Node object:

• getNamedItem(name)

• getNamedItemNS(namespaceURI,localName)

• item(index)

• removeNamedItem(name)

• removeNamedItemNS(namespaceURI,localName)

• setNamedItem(arg)

• setNamedItemNS(namespaceURI,localName)

Before looking in more detail at the interfaces in Figure 16.1, you will
look briefly at generally relevant interfaces.

17 0672324717 CH16 3/3/05 12:08 PM Page 204

205The Document Object Model

The DOMImplementation Interface
The DOMImplementation interface has no properties, but it does provide
methods that allow a programmer to determine what is supported by that
implementation.

The hasFeature(feature, version) method returns a Boolean value
enabling you to test the availability of particular features. The
createDocument(namespaceURI, qualifiedName, doctype) method
enables you to create a new XML document. The
createDocumentType(qualifiedName, publicId, systemId) method
enables you to create a new DOCTYPE declaration.

The DOMException Interface
Several programming languages use a concept called an exception to han-
dle errors that occur while a program is running. The DOM provides a
DOMException interface. An exception is often said to be thrown and is
caught by an exception handler.

The DOMException interface has a single code property, which is of type
number. The value of the code property corresponds to the type of excep-
tion that has been raised. When programming, you should consider the
likely types of errors that might occur and provide error-handling code
that provides appropriate responses to those problems.

DOM Interfaces Properties and
Methods
Because of space constraints, this section looks at the properties and
methods of selected interfaces only.

The Document Interface
The Document interface represents an XML document. The Document
interface has the following properties:

17 0672324717 CH16 3/3/05 12:08 PM Page 205

206 Lesson 16

• doctype—Read-only, of type DocumentType

• implementation—Read-only, of type DOMImplementation

• documentElement—Of type Element

The methods of the Document interface can be used to create new parts of
an XML document or to retrieve information about the document. The
Document interface has the following methods:

• createAttribute(name)—Returns an Attr object

• createAttributeNS(namespaceURI, qualifiedName)—Returns
an Attr object

• createCDATASection(data)—Returns a CDATASection object

• createComment(data)—Returns a Comment object

• createDocumentFragment()—Returns a DocumentFragment
object

• createElement(tagName)—Returns an Element object

• createElementNS(namespaceURI, qualifiedName)—Returns
an Element object

• createEntityReference(name)—Returns an EntityReference
object

• createProcessingInstruction(target,data)—Returns a
ProcessingInstruction object

• createTextNode(data)—Returns a Text object

• getElementsByTagName(tagname)—Returns a NodeList object

• getElementsByTagNameNS(namespaceURI, localName)—
Returns a NodeList object

• importNode(importedNode, deep)—Returns a Node object

17 0672324717 CH16 3/3/05 12:08 PM Page 206

207The Document Object Model

The DocumentType Interface
The DocumentType interface is the DOM representation of the DOCTYPE
declaration.

The DocumentType interface has the following properties:

• entities—Read-only, of type NamedNodeMap

• internalSubset—Read-only, of type String

• name—Read-only, of type String

• notations—Read-only, of type NamedNodeMap

• publicId—Read-only, of type String

• systemId— Read-only, of type String

The Element Interface
The Element interface represents an element in an XML document.

The Element interface has the tagName property, which is a read-only
property of type String.

The Element interface has the following methods:

• getAttribute(name)—Returns a value of type String

• getAttributeNS(namespaceURI, localName)—Returns a value
of type String

• getAttributeNode(name)—Returns a value of type Attr

• getAttributeNodeNS(namespaceURI, localName)—Returns a
value of type Attr

• getElementsByTagName(tagname)—Returns a NodeList object

• getElementsByTagNameNS(namespaceURI,localName)—Returns
a NodeList object

• hasAttribute(name)—Returns a value of type Boolean

17 0672324717 CH16 3/3/05 12:08 PM Page 207

208 Lesson 16

• hasAttributeNS(namespaceURI, localName)—Returns a value
of type Boolean

• removeAttribute(name)—Returns no value

• removeAttributeNode(oldAttr)—Returns a value of type Attr

• removeAttributeNS(namespaceURI, localName)—Returns no
value

• setAttribute(name,value)—Returns no value

• setAttributeNode(newAttr)—Returns a value of type Attr

• setAttributeNodeNS(newAttr)—Returns a value of type Attr

• setAttributeNS(namespaceURI, localName)—Returns no
value

The Attr Interface
The Attr interface is the DOM representation of an attribute in an XML
document.

The Attr interface has the following properties:

• name—Read-only, of type String

• ownerElement—Read-only, of type Element

• specified—Read-only, of type Boolean

• value—Of type String

The Attr interface has no methods specific to it.

The CharacterData Interface
The CharacterData interface is intended to contain character data. The
Comment and Text interfaces extend the CharacterData interface.

The CharacterData interface has the following properties:

• data—Of type String

• length—Read-only, of type Number

17 0672324717 CH16 3/3/05 12:08 PM Page 208

209The Document Object Model

The CharacterData interface has the following methods:

• appendData(arg)—Has no return value

• deleteData(offset, count)—Has no return value

• insertData(offset, arg)—Has no return value

• replaceData(offset, count, arg)—Has no return value

• substringData(offset, count)—Returns a value of type
String

The Text Interface
The Text interface has no properties specific to it.

The Text interface has the splitText(offset) method, which returns a
Text object.

In Chapter 17 you will create some examples using DOM properties and
methods.

Summary
In this lesson, you were introduced to the DOM Level 2. The chapter also
discussed the concept of an interface and how an interface can be
extended. In addition, you learned about the DOM Node interface and
DOM interfaces, many of which extend the Node interface.

17 0672324717 CH16 3/3/05 12:08 PM Page 209

LESSON 17
The Document
Object
Model—2

In this lesson, you will see examples of using the Document Object Model
to create, retrieve, and manipulate parts of XML documents.

In the examples in this chapter, you will use SVG, which was introduced
in Chapter 15, “Presenting XML Graphically—SVG,” as an example of
an XML application language. SVG has a number of extensions to the
core XML DOM, but you won’t use any of those to manipulate the DOM.
Our purpose is to demonstrate the properties and methods of the XML
DOM Level 2 Core, all of which are available in SVG 1.0.

In each of the following examples, the programming language used is
JavaScript because many Web developers already have some experience
using it. Similar techniques can be applied using Java or other program-
ming languages.

Creating a New Element
The DOM provides more than one way to create an element. You will
examine some options in the examples that follow.

Using the createElement() Method
In this example, you will create a new SVG element using the
createElement() method of the Document interface. You also will set the
values of the attributes of the newly created element.

Listing 17.1 shows the code. Apart from the circle element that you will
create using the DOM, the SVG document would be blank.

18 0672324717 CH17 3/3/05 12:08 PM Page 210

LISTING 17.1 CreateCircle.svg: Creating a circle Element
Using the DOM
<?xml version=’1.0’?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.0//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg onload=”Initialize(evt)”>
<script type=”text/javascript” >
<![CDATA[
var SVGDoc;
var SVGRoot;
var myCircle;
function Initialize(){
SVGDoc = evt.getTarget().getOwnerDocument();
SVGRoot = SVGDoc.getDocumentElement();
createCircle(evt);
}

function createCircle(){
myCircle = SVGDoc.createElement(“circle”);
myCircle.setAttribute(“cx”, “50px”);
myCircle.setAttribute(“cy”, “50px”);
myCircle.setAttribute(“r”, “30px”);
myCircle.setAttribute(“style”, “fill:none;

stroke:red; stroke-width:3”);
SVGRoot.appendChild(myCircle);
}
]]>
</script>

</svg>

The onload attribute of the svg element calls the Initialize() function
when the document loads.

Notice that the content of the script element is enclosed in a CDATA sec-
tion to inform the parser that the content should not be treated as XML
suitable for parsing.

The new circle element is created using the createElement() method of
the Document node in the following line of code:

myCircle = SVGDoc.createElement(“circle”);

18 0672324717 CH17 3/3/05 12:08 PM Page 211

212 Lesson 17

The circle element node exists, but it does not yet have any values for its
attributes. The following lines of code use the setAttribute() method of
the Element node to assign values to the attributes of the circle element
that define the position of its center (cx and cy attributes), its radius (r
attribute), and its style (style attribute):

myCircle.setAttribute(“cx”, “50px”);
myCircle.setAttribute(“cy”, “50px”);
myCircle.setAttribute(“r”, “30px”);
myCircle.setAttribute(“style”, “fill:none; stroke:red;

stroke-width:3”);

You have successfully created the circle element and set its attribute val-
ues. Finally, you need to append the newly created element as a child of
the Element node that represents the svg document element. This is done
using the appendChild() method of the Node interface:

SVGRoot.appendChild(myCircle);

Figure 17.1 shows the onscreen appearance when Listing 17.1 is run.

FIGURE 17.1 A circle element created using the
createElement() method.

18 0672324717 CH17 3/3/05 12:08 PM Page 212

213The Document Object Model—2

Using the createElementNS() Method
When you have a document in which XML namespaces are not being
used or in which a single namespace is using a default namespace decla-
ration, you can use the createElement() method to create new elements.
If you have documents in which namespace prefixes are used or in which
multiple namespaces are (or might be) in use, it makes sense to remove
any doubt and use the createElementNS() method. This makes it
absolutely clear what namespace the newly created element belongs to.

Listing 17.2 shows an example that creates an SVG rect element. This
creates a rectangle onscreen. However, because all SVG elements in this
example use the namespace prefix svg, you have to use the
createElementNS() method to produce the rectangle shape.

LISTING 17.2 CreateRectNS.svg: Using the
createElementNS() Method to Create a Rectangle
<?xml version=’1.0’?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.0//EN”
”http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg:svg
xmlns:svg=”http://www.w3.org/2000/svg”
onload=”Initialize(evt)”>

<svg:script type=”text/javascript” >
<![CDATA[
var SVGDoc;
var SVGRoot;
var myRectangle;
function Initialize(){
SVGDoc = evt.getTarget().getOwnerDocument();
SVGRoot = SVGDoc.getDocumentElement();
createRectangle(evt);
}

function createRectangle(){
myRectangle = SVGDoc.createElementNS

➥(“http://www.w3.org/2000/svg”, “rect”);
myRectangle.setAttribute(“x”, “50px”);
myRectangle.setAttribute(“y”, “50px”);
myRectangle.setAttribute(“width”, “300px”);
myRectangle.setAttribute(“height”, “100px”);
myRectangle.setAttribute(“style”, “fill:#CCCCCC;

stroke:green; stroke-width:4”);

18 0672324717 CH17 3/3/05 12:08 PM Page 213

214 Lesson 17

SVGRoot.appendChild(myRectangle);
}
]]>
</svg:script>

</svg>

The createElementNS() method has two arguments. The first is the
namespace URI for the element that is to be created. The second argu-
ment is the local part of the QName for the element. The namespace URI
for SVG 1.0 is www.w3.org/2000/svg.

Notice that it isn’t necessary to specify the namespace prefix in the call to
the createElementNS() method. The namespace URI is already associ-
ated with a namespace prefix by means of the namespace declaration
xmlns:svg=”http://www.w3.org/2000/svg” contained in the start tag of
the svg:svg document element.

Figure 17.2 shows the onscreen appearance when Listing 17.2 is run.

LISTING 17.2 Continued

FIGURE 17.2 A rect element created using the
createElementNS() method.

18 0672324717 CH17 3/3/05 12:08 PM Page 214

215The Document Object Model—2

Retrieving Information from the
DOM
In earlier examples in this chapter, you created elements and set values for
attributes belonging to newly created elements. You can also access infor-
mation already contained in the DOM and use it for additional purposes.

The DocumentType Interface’s Properties
If you want to retrieve the information contained in the DOCTYPE declara-
tion, you can access and process the properties of the DocumentType
object. Listing 17.3 shows an example.

LISTING 17.3 DoctypeProps.svg: Retrieving and Displaying
the DocumentType Object’s Properties
<?xml version=’1.0’?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.0//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg:svg
xmlns:svg=”http://www.w3.org/2000/svg”
onload=”Initialize(evt)”>

<svg:script type=”text/javascript” >
<![CDATA[
var SVGDoc;
var SVGRoot;
var SVGDoctype;
function Initialize(){
SVGDoc = evt.getTarget().getOwnerDocument();
SVGRoot = SVGDoc.getDocumentElement();
SVGDoctype = SVGDoc.doctype;
getDoctype(evt);
}

function getDoctype(){
var docElem = SVGDoctype.name;
var firstString = “The document element is: “ + docElem;
var firstText = SVGDoc.getElementById(“docelem”);
var stars = firstText.firstChild;
stars.replaceData(0,5, firstString);

var docPubID = SVGDoctype.publicId;
var secondString = “The public identifier is: “ + docPubID;

18 0672324717 CH17 3/3/05 12:08 PM Page 215

216 Lesson 17

var secondText = SVGDoc.getElementById(“pub”);
var stars2 = secondText.firstChild;
stars2.replaceData(0,5, secondString);

var docSystID = SVGDoctype.systemId;
var thirdString = “The system identifier is: “ + docSystID;
var thirdText = SVGDoc.getElementById(“syst”);
var stars3 = thirdText.firstChild;
stars3.replaceData(0,5, thirdString);
}
]]>
</svg:script>
<text id=”docelem” x=”20” y=”40”>

</text>
<text id=”pub” x=”20” y=”100”>

</text>
<text id=”syst” x=”20” y=”160”>

</text>
</svg:svg>

In the Initialize() function, the SVGDoctype variable is assigned the
value of the doctype property of the SVGDoc variable. So, the SVGDoctype
variable is a DocumentType object. Therefore, you can retrieve the values
of various properties of the DocumentType object.

When you call the getDoctype() function, you retrieve each of three
properties of the DocumentType object. You use the value that they contain
to replace the data in a Text object (which extends a CharacterData
object) that is a child node of each of three SVG text elements. Let’s
look in detail at the first of these.

This code declares a variable named docElem and assigns to it the value of
the name property of the SVGDoctype variable (which itself contains the
value of the doctype property of the Document object):

var docElem = SVGDoctype.name;

LISTING 17.3 Continued

18 0672324717 CH17 3/3/05 12:08 PM Page 216

217The Document Object Model—2

This assigns the element type name of the document element to the
docElem variable.

Then you declare a variable firstString and create a message for display
that incorporates the value of the docElem variable:

var firstString = “The document element is: “ + docElem;

Then you use the getElementById() method of the Document object to
uniquely retrieve the Element node corresponding to the SVG text ele-
ment with an id attribute of the value docelem.

var firstText = SVGDoc.getElementById(“docelem”);

Next declare a stars variable and assign it the value of the firstChild
property (a property of the Element interface) of the firstText variable
(the first SVG text element, identified by its id attribute):

var stars = firstText.firstChild;

Finally, you use the replaceData() method of the CharacterData inter-
face to replace the three stars, which is the original content of the text
element.

stars.replaceData(0,5, firstString);

A similar process is carried out for each of the other two text elements.
When the document loads, the script instantly replaces the asterisks with
three messages that display the values of the name, publicId, and
systemId properties of the DocumentType interface. Figure 17.3 shows the
onscreen appearance.

Displaying a List of Child Nodes
In this example, you will retrieve information about the NodeList object.
This object contains information about the child nodes of the node that
represents the svg element in Listing 17.4.

18 0672324717 CH17 3/3/05 12:08 PM Page 217

218 Lesson 17

FIGURE 17.3 Displaying properties of the DocumentType interface.

LISTING 17.4 ChildNodes.svg: Retrieving Information About
Child Nodes
<?xml version=’1.0’?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.0//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg
xmlns:svg=”http://www.w3.org/2000/svg”
onload=”Initialize(evt)”>

<script type=”text/javascript” >
<![CDATA[
var SVGDoc;
var SVGRoot;
var SVGDoctype;
function Initialize(){
SVGDoc = evt.getTarget().getOwnerDocument();
SVGRoot = SVGDoc.getDocumentElement();
SVGDoctype = SVGDoc.doctype;
getChildNodes(evt);
}

18 0672324717 CH17 3/3/05 12:08 PM Page 218

219The Document Object Model—2

function getChildNodes(){
var Length = SVGRoot.childNodes.length;
alert(“The <svg> element has “ + Length + “ child nodes.”);

for (i=0; i<Length; i++){
if (SVGRoot.childNodes.item(i).nodeType==1){
alert(“At position “ + i + “ in the NodeList object

is a <” + SVGRoot.childNodes.item(i).tagName + “>
element.”);

} // end if

} // end for loop
} // end getChildNodes() function
]]>
</script>
<text id=”first” x=”20” y=”40”>
This is the first <text> element.
</text>
<text id=”second” x=”20” y=”100”>
This is the second <text> element.
</text>
<text id=”third” x=”20” y=”160”>
This is the third <text> element.
</text>
<rect x=”20” y=”200” width=”200” height=”50”

style=”stroke:red; stroke-width:4; fill:none;” />
</svg>

Before considering the explanation of how the code works, first look at
the output of the code onscreen. Figures 17.4 and 17.5 show two of the
alert boxes produced by the code. First, you might be surprised by the
first alert box shown in Figure 17.4. Why does it say that there are 11
child nodes? If you look carefully at the code, you will see that each ele-
ment starts on a new line. So, there is a Text node consisting only of
whitespace separating each element.

LISTING 17.4 Continued

FIGURE 17.4 An alert box showing the number of child nodes for
the <svg> element.

18 0672324717 CH17 3/3/05 12:08 PM Page 219

220 Lesson 17

FIGURE 17.5 An alert box for the <rect> element.

Now look at how the code works. Inside the getChildNodes() function,
you declare the Length variable. To the Length variable you assign the
length property of the NodeList object that contains information about
the child nodes of the document element.

var Length = SVGRoot.childNodes.length;

Next, you use the JavaScript alert() function to output the value of the
Length variable:

alert(“The <svg> element has “ + Length + “ child nodes.”);

Then you use a for loop to iterate through the child nodes. The if state-
ment tests whether the value of the nodeType property retrieved by the
item() method of the NodeList object equals 1. When the value of the
nodeType property is 1, you know that it is an Element node. If the node
isn’t an Element node (because it is whitespace), you do nothing. But
when the value of the nodeType property indicates that the node is an
Element node, you output the position of the node and its element type
name using the tagName property of the Element interface.

for (i=0; i<Length; i++){
if (SVGRoot.childNodes.item(i).nodeType==1){
alert(“At position “ + i + “ in the NodeList object is a <” +

SVGRoot.childNodes.item(i).tagName + “> element.”);
} // end if

} // end for loop
} // end getChildNodes() function

Summary
In this lesson, you examined examples of using several DOM properties
and methods. You learned how to use some DOM methods to create new
elements and how to retrieve the values of various DOM properties.

18 0672324717 CH17 3/3/05 12:08 PM Page 220

LESSON 18
SAX—The
Simple API for
XML

In this lesson you will learn about the Simple API for XML, SAX, and the
basics of how SAX programming is done.

What SAX Is and How It Differs
from DOM
As you learned in Chapter 16, “The Document Object Model,” and
Chapter 17, “The Document Object Model—2,” DOM programming
depends on a tree-like hierarchy of nodes that implement a specified num-
ber of interfaces. SAX takes a very different approach. It uses events that
occur during parsing of an XML document, and it doesn’t build a tree
hierarchy in memory.

SAX programming is often done using either Java or Visual Basic. In this
chapter, you will use Java to illustrate how SAX can be coded.

Brief History of SAX
Unlike most of the XML-related topics covered in this book, SAX is not a
product of the W3C. It was created by members of the XML-Dev mailing
list to fill a perceived gap in available tools in the early days around the
time XML 1.0 was finalized. SAX version 1 was completed in May 1998.
SAX version 2 was completed in May 2000.

Pro and Cons of SAX
This section discusses a number of issues relating to SAX and its suitabil-
ity, compared to DOM programming.

19 0672324717 CH18 3/3/05 12:08 PM Page 221

222 Lesson 18

Large Documents
To manipulate a document using DOM programming requires the com-
plete in-memory hierarchy of nodes to be built before manipulation using
DOM can begin. As document size increases, the time needed to build the
in-memory tree increases.

Also, as XML document size increases, the amount of RAM needed to
contain the in-memory hierarchy of nodes increases as well. Beyond a
certain document size, which varies according to installed RAM and other
factors, the amount of memory available will be inadequate and swapping
to disk will be needed. As expected, this will cause deterioration in perfor-
mance.

In principle, SAX is free from this type of memory limitation because
events occur during parsing of an XML document and because the appro-
priate processing in response to those events takes place without the need
to create a potentially large in-memory hierarchy.

Programmer Mindset
It is widely accepted that many XML programmers find the concepts of
programming using SAX much less natural than using DOM program-
ming. Perhaps that preference is partly because DOM programming is
familiar from scripting HTML Web pages. Whatever the cause, many pro-
grammers aren’t too comfortable using SAX.

Writing code to handle a cascade of events is certainly different from
writing typical JavaScript or Java procedural code.

Basics of SAX Programming
SAX programming depends on recognizing events that occur during the
process of parsing an XML document.

Parsing Events
In this section, you will use pseudocode to see what happens as an XML
document is parsed using a SAX parser.

19 0672324717 CH18 3/3/05 12:08 PM Page 222

223SAX—The Simple API for XML

Listing 18.1 shows a short XML document that you will use to illustrate
the SAX approach.

LISTING 18.1 SAXSource.xml: A Short XML Document
<?xml version=’1.0’?>
<?xml-stylesheet href=”myCSS.css” type=”text/css” ?>
<!-- This is an XML comment. -->
<myDocument>
Some text content.
</myDocument>

A SAX parser would respond to parsing an XML document like this by
signaling events, similar to the following:

start_document;
processing_instruction;
start_element (<myDocument>);
characters;
end_element (</myDocument>);
end_document;

The existence of the XML declaration and the comment are ignored.

Clearly, in anything but a very short document, a very large number of
events will be signaled. It is up to the programmer to write code to define
what to do in response to all such events.

SAX 2 Interfaces
When discussing the Document Object Model, we defined an interface as
a specified grouping of properties and methods. SAX uses the following
important interfaces:

• ContentHandler—Defines methods that process XML document
content

• DTDHandler—Defines methods that process DTDs

• ErrorHandler—Defines methods that process errors

These interfaces are implemented by classes in SAX parsers.

19 0672324717 CH18 3/3/05 12:08 PM Page 223

224 Lesson 18

Installing a SAX Parser
To run a Java SAX-capable parser, you need the following installed on
your computer:

• A Java Software Development Kit, version 1.1 or higher.

• A SAX2-compatible XML parser installed on your Java
CLASSPATH.

• A SAX2 distribution on your Java CLASSPATH. This would likely
be included with the SAX2-compatible XML parser.

Installing the JSDK
You might already have a JSDK installed. If not, you can download a
JSDK from http://java.sun.com/j2se/. The URL gives you access to
information about the Standard Edition of Java—j2se.

You can check if you have a JSDK installed by searching for a file named
javac.exe. If javac.exe is present, you have a JSDK (formerly called a
JDK) installed. Up to Java version 1.3, you might find javac.exe in a
directory named something like c:\jdk1.3.1\bin. In Java 2 version 1.4, you
will find it in a directory named something like c:\j2sdk1.4\bin.

Download the JSDK appropriate to your operating system and install it
according to the instructions supplied by Sun.

Take note of the exact name of the directory that you install the JSDK
into. You will add that to your computer’s path environment variable in a
moment.

Installing the Xerces Parser
Information about the Java version of the Xerces 2 XML parser is located
at http://xml.apache.org/xerces2-j/index.html. From the Downloads
link, select the latest stable version of the Xerces-J parser appropriate to
your operating system.

When the download has completed, install the Xerces-J parser to a direc-
tory. We installed Xerces-J in c:\Xerces-J2.0.2.

19 0672324717 CH18 3/3/05 12:08 PM Page 224

225SAX—The Simple API for XML

Setting path and CLASSPATH Environment
Variables
Your computer needs to be capable of locating the Java programs and the
Xerces parser.

The directory into which you installed the JSDK must be added to the
path environment variable. In Windows 2000, go to the Control Panel and
select the System option. The System Properties window should open.
Select the Advanced tab. Click the Environment Variables button halfway
down the page. Scroll down the list of System Variables until the path
variable is highlighted. Click the Edit button. A window will open with
the current value of the path variable.

Your current path might be something like this:

c:\WINNT\system32;c:\WINNT

You need to add the directory where the JSDK is installed. In my case,
the JSDK is in c:\j2sdk1.4.0\bin, so that is added to the existing value of
the path variable, separated by a semicolon from the existing value.

c:\WINNT\system32;c:\WINNT;c:\j2sdk1.4.0\bin

Caution Check if another Java installation already
exists in the path variable. If so, you might want to
simply use that. Having more than one Java installa-
tion specified in the path environment variable is a
recipe for problems.

If you have done no Java programming on your computer, you will likely
have to create a new CLASSPATH environment variable. Otherwise, edit the
existing CLASSPATH environment variable to add c:\Xerces-J2.0.2 (or the
directory you installed Xerces in) to it, separated by a semicolon from any
existing paths.

19 0672324717 CH18 3/3/05 12:08 PM Page 225

226 Lesson 18

You also need to add the Xerces-J version 2 jar files to the CLASSPATH—
xercesImpl.jar and xmlParserAPIs.jar.

Now that we’ve discussed a number of issues about how to use SAX, let’s
move on and use a Java example to illustrate the basics of how SAX can
be used.

Simple SAX Example
This example creates a Java program that you can run from the command
line. You will be able to specify an XML document to be parsed, and mes-
sages will be output onscreen in response to events generated by the SAX
parser.

Tip If you don’t want to permanently change envi-
ronment variables, create a short batch file that will
set the path and CLASSPATH variables from the com-
mand line.

Note Java, like XML, is case sensitive. All names of
interfaces, classes, and so on in the following code
must use the correct case if your application is to run
correctly.

Listing 18.2 shows a simple SAX example.

LISTING 18.2 myHandler.java: A Java Program That
Provides Screen Output in Response to SAX Events
import org.xml.sax.XMLReader;
import org.xml.sax.SAXException;
import org.xml.sax.Attributes;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.helpers.XMLReaderFactory;

import org.apache.xerces.parsers.SAXParser;

19 0672324717 CH18 3/3/05 12:08 PM Page 226

227SAX—The Simple API for XML

public class myHandler extends DefaultHandler
{
public static void main(String[] argv) throws Exception {

if (argv.length == 0) {
System.out.println(“You need to specify a file name”);
System.exit(0);
}

System.out.println(“The program myHandler has started ...”);
myHandler reader = new myHandler();
reader.read(argv[0]);
}

public void read(String fileName) throws Exception{
System.out.println(“read() method entered ...”);

XMLReader parser = XMLReaderFactory.createXMLReader();

parser.setContentHandler(this);
parser.parse(fileName);
}

public void startDocument() throws SAXException {
System.out.println(“The document has been opened.”);
}

public void processingInstruction(String target,
String data) throws SAXException {

System.out.println(“A processing instruction with target,
“ +target+ “ and data “ +data+ “.”);

}

public void startElement(String uri, String localName,
String QName, Attributes attributes) throws SAXException{

System.out.println(“Start tag of element “
+ localName + “ was found.”);

}

public void endElement(String uri, String localName,
String QName) throws SAXException{

System.out.println(“End tag of element “
+ localName + “ was found.”);

}

public void characters(char[] characters, int start,
int length) throws SAXException {

LISTING 18.2 Continued

19 0672324717 CH18 3/3/05 12:08 PM Page 227

228 Lesson 18

System.out.println(“Character content encountered.”);
}

public void endDocument() throws SAXException {
System.out.println(“The document has been completed.”);

}

}

The Java file must be compiled. Using the javac compiler, you can issue
this command to create a class file:

javac myHandler.java

To run the class file, issue this command:

java -Dorg.xml.sax.driver=org.apache.xerces.parsers.SAXParser
myHandler SAXSource.xml

That command assigns the class org.apache.xerces.parsers.SAXParser
to the environment variable org.xml.sax.driver.

When the code is run, you will see an onscreen appearance like that
shown in Figure 18.1.

Let’s look briefly at what the code does.

You first create a class called myHandler. The main() method accepts
string arguments. So, when you enter the following command, the
SAXSource.xml is the sole string argument.

java -Dorg.xml.sax.driver=org.apache.xerces.parsers.SAXParser
myHandler SAXSource.xml

This next if statement checks to see if a filename has been supplied as an
argument:

if (argv.length == 0) {
System.out.println(“You need to specify a file name”);
System.exit(0);

If no filename is supplied, an error message is output and the program
exits.

LISTING 18.2 Continued

19 0672324717 CH18 3/3/05 12:09 PM Page 228

229SAX—The Simple API for XML

FIGURE 18.1 The output when the myHandler class is run.

This code indicates that the program has started successfully:

System.out.println(“The program myHandler has started ...”);

The read() method creates an XMLReader that parses the file supplied in
the argument at the command line.

The parser raises events at many points as it parses the document. The
startDocument() method outputs a message when the start of the docu-
ment has been encountered. Then when the <?xml-stylesheet ?> pro-
cessing instruction is encountered, the processingInstruction() method
outputs a message that tells what the target and data of the processing
instruction are.

When the start of the myDocument element is found, the startElement()
method is called and a message is output. When the character content of
the myDocument element is encountered, the characters() method is
called and outputs a message.

19 0672324717 CH18 3/3/05 12:09 PM Page 229

230 Lesson 18

Finally, the endElement() and endDocument() methods are called and
appropriate messages are output to the screen.

In this short example, when each of the methods of the
org.xml.sax.helpers.DefaultHandler interface is called as a result of
the appropriate event happening during parsing, we have simply output a
message to the screen that says what event(s) has been encountered.

Of course, in more serious use of SAX, the way in which you implement
an interface is very flexible, and you can write Java code to do whatever
is appropriate in response to particular events encountered by the SAX
parser.

Summary
This lesson introduced you to the Simple API for XML, SAX. It
described the event-based approach of SAX and gave an example to
demonstrate simple usage of SAX.

19 0672324717 CH18 3/3/05 12:09 PM Page 230

LESSON 19
Beyond
DTDs—W3C
XML Schema

In this chapter, you will learn about W3C XML Schema, an alternative
technology to Document Type Definitions (DTDs) described in Chapter 4,
“Valid XML—Document Type Definitions.”

W3C XML Schema Basics
W3C XML Schema is a schema-definition language expressed in XML
syntax. To avoid ambiguity, W3C XML Schema is often referred to as
XSD Schema because in an earlier version it was called XML Schema
Definition Language. Recently, the abbreviation WXS has also come into
use to refer to the W3C XML Schema language.

Note Other schema languages are expressed in XML
syntax, such as RELAX NG (a combination of TREX and
RELAX) and XDR (XML Data Reduced, from Microsoft).

In this section, you are introduced to some of the reasons why W3C XML
Schema was developed as an alternative schema mechanism to the
Document Type Definition (DTD).

Note The W3C XML Schema specification is lengthy
and very complex. This chapter can give you only an
indication of some straightforward W3C XML Schema
structures.

20 0672324717 CH19 3/3/05 12:09 PM Page 231

232 Lesson 19

Limitations of DTDs
DTDs were inherited by XML from the Standard Generalized Markup
Language (SGML). SGML was (and is) commonly used for document-
centric data storage such as very large documents, including technical
manuals. A DTD that describes most data as #PCDATA is adequate for
many document-centric purposes because one piece of text is pretty much
like another—simply a sequence of characters.

However, for many uses of XML to store data that might otherwise be
stored in a relational or other type of database-management system, you
will likely want to say more about the type of pieces of data that an ele-
ment can contain.

A piece of data conforms to a type if the characters it
contains express a defined idea. For example, you
might have a date type as the allowed content of an
element. If the characters contained were 2002/12/25,
using an internationally recognized date format con-
vention, you can interpret that as a date. If the ele-
ment contained the characters $100.50, you would
conclude that the type of the data contained in the
element didn’t conform to a date type.

In a DTD, when mixed content was allowed, very few constraints could
be imposed on the allowed content. For example, using a DTD, with
mixed content it isn’t possible to impose a defined order on elements.
W3C XML Schema provides greater control in this situation.

W3C XML Schema also gives greater control over how many occurrences
of an element are allowed. For example, it allows you to define that an
element occurs at least twice and at most five times:

<xsd:element name=”someName” minOccurs=”2” maxOccurs=”5” />

You can’t do that in a DTD.

20 0672324717 CH19 3/3/05 12:09 PM Page 232

233Beyond DTDs—W3C XML Schema

W3C XML Schema also specifies many additional datatypes for element
content, and so on. W3C XML Schema has many built-in datatypes and
also allows you to create your own, for example, by restricting allowed
content to enumerated values or values defined by a regular expression.

W3C XML Schema Jargon
Let’s look briefly at some terminology. A W3C XML Schema document
defines the allowed content for a class of XML documents. A single docu-
ment of that class is called an instance document.

Elements and attributes are said to be declared in a W3C XML Schema
document. The content of elements and attributes has a type, which can be
either of simple type or complex type. Types can be built-in (that is, they
are defined in the W3C XML Schema specification itself) or can be
defined by a schema developer. Elements and attributes have declarations.
Simple types and complex types have definitions.

Note Typically, anything but very simple schemas are
created semi-automatically by programs such as XML
Spy. The examples shown in this chapter are intended
to show you basic structures within a W3C XML
Schema.

Declaring Elements
In W3C XML Schema terminology, elements and attributes are declared.
Both elements and attributes can occur in an instance document.

Listing 19.1 shows a simple example of an XML instance document.
Listing 19.2 shows a W3C XML Schema document against which Listing
19.1 can be validated.

20 0672324717 CH19 3/3/05 12:09 PM Page 233

234 Lesson 19

LISTING 19.1 BasicDocument.xml: A Short XML Instance
Document
<?xml version=”1.0”?>
<basicDocument>
Some text content.
</basicDocument>

LISTING 19.2 BasicDocument.xsd: A Schema for Listing 19.1
<?xml version=’1.0’?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<xsd:element name=”basicDocument” type=”xsd:string” />
</xsd:schema>

The indicative namespace prefix in the W3C XML Schema document is
xsd. The namespace declaration in the start tag of the xsd:schema element
associates the xsd namespace prefix with the namespace URI
www.w3.org/2001/XMLSchema.

An xsd:element element is used to declare the basicDocument element
that is found in the instance document. The content of the basicDocument
element is text content only and is declared, using the type attribute of the
xsd:element element, to be of type xsd:string. The xsd:string type is
one of many built-in types specified in the W3C XML Schema
Recommendations.

If you have a slightly more complex instance document, such as the one
in Listing 19.3, you must make use of a complex type definition as well
as an element declaration.

LISTING 19.3 LessBasicDocument.xml: An XML Document
with Attributes and Nested Elements
<?xml version=’1.0’?>
<lessBasicDocument>
<Person category=”celebrity” status=”alive”>
<Name>Tiger Woods</Name>
<Citizenship>United States</Citizenship>
<Occupation>Professional Golfer</Occupation>

</Person>
</lessBasicDocument>

20 0672324717 CH19 3/3/05 12:09 PM Page 234

235Beyond DTDs—W3C XML Schema

As you can see, the content of the lessBasicDocument element is a hier-
archy of nested elements. In addition, the Person element has two attrib-
utes, category and status.

Listing 19.4 shows one approach to a schema for Listing 19.3. W3C XML
Schema provides flexible tools that allow several approaches to how the
structure of an instance document is represented.

LISTING 19.4 LessBasicDocument.xsd: A Schema for
Listing 19.3
<?xml version=’1.0’?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”lessBasicDocument” type=”myPersonType”/>

<xsd:complexType name=”myPersonType”>
<xsd:element name=”Person” type=”PersonType”/>

</xsd:complexType>

<xsd:complexType name=”PersonType”>
<xsd:sequence>
<xsd:element name=”Name” type=”xsd:string” />
<xsd:element name=”Citizenship” type=”xsd:string” />
<xsd:element name=”Occupation” type=”OccupationType” />

</xsd:sequence>
<xsd:attribute name=”category” type=”xsd:string” />
<xsd:attribute name=”status” type=”StatusType” />

</xsd:complexType>

<xsd:simpleType name=”OccupationType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”Professional Golfer” />
<xsd:enumeration value=”Actor” />
<xsd:enumeration value=”Professional Footballer” />

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=”StatusType”>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”alive|dead” />

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

20 0672324717 CH19 3/3/05 12:09 PM Page 235

236 Lesson 19

The document element is declared using this:

<xsd:element name=”lessBasicDocument”
type=”myPersonType”/>

For the allowed content of the lessBasicDocument element, you need to
find the definition for the myPersonType complex type:

<xsd:complexType name=”myPersonType”>
<xsd:element name=”Person” type=”PersonType”/>

</xsd:complexType>

To find the allowed content of the Person element, you need to find the
definition of the PersonType complex type:

<xsd:complexType name=”PersonType”>
<xsd:sequence>
<xsd:element name=”Name” type=”xsd:string” />
<xsd:element name=”Citizenship” type=”xsd:string” />
<xsd:element name=”Occupation” type=”OccupationType” />

</xsd:sequence>
<xsd:attribute name=”category” type=”xsd:string” />
<xsd:attribute name=”status” type=”StatusType” />

</xsd:complexType>

This definition specifies that a Person element is allowed to have a
sequence of child elements, as defined by the content of the
xsd:sequence element. The Person element may also have two attributes
named category and status.

The values of some elements and attributes are simply strings, as indi-
cated by the xsd:string value for the type attribute. The xsd:string
type is one of many built-in datatypes in W3C XML Schema.

The allowed content of the Occupation element is defined in the
definition for the OccupationType type:

<xsd:simpleType name=”OccupationType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”Professional Golfer” />
<xsd:enumeration value=”Actor” />
<xsd:enumeration value=”Professional Footballer” />

</xsd:restriction>
</xsd:simpleType>

20 0672324717 CH19 3/3/05 12:09 PM Page 236

237Beyond DTDs—W3C XML Schema

The xsd:restriction element is used to restrict (or constrain) allowed
values. The base attribute of xsd:restriction indicates the base type that
is being restricted. In this case, the base type is xsd:string. The
xsd:enumeration element is used to specify allowed values.

An alternative type of restriction uses the xsd:pattern element. The con-
tent of the value attribute of xsd:pattern that defines the allowed values
can be a single literal value or a choice of values (as in the following
code):

<xsd:simpleType name=”StatusType”>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”alive|dead” />

</xsd:restriction>
</xsd:simpleType>

Or, it can be a regular expression.

Declaring Attributes
To declare an attribute, you use the xsd:attribute element. The name
attribute of the xsd:attribute element contains the attribute name. The
value of an attribute is always a simple type. If the permitted values of the
attribute are restricted, the xsd:simpleType element is used with the
xsd:restriction child element to constrain the permitted values of the
attribute.

Declaration of an attribute inside an xsd:complexType element was shown
in Listing 19.4. An alternate approach is to declare the attribute inside an
element declaration:

<xsd:element name=”Person”>
<xsd:complexType >
<xsd:sequence>
<xsd:element name=”Name” type=”xsd:string” />
<xsd:element name=”Citizenship” type=”xsd:string” />
<xsd:element name=”Occupation” type=”OccupationType” />

</xsd:sequence>
<xsd:attribute name=”category” type=”xsd:string” />
<xsd:attribute name=”status” type=”StatusType” />

</xsd:complexType>
<xsd:element>

20 0672324717 CH19 3/3/05 12:09 PM Page 237

238 Lesson 19

Defining Complex and Simple Types
In W3C XML Schema there are two basic types of element content, sim-
ple types and complex types.

Simple types contain only text content and have no child elements or any
attributes on the element. If an element has one or more attributes or has
one or more child elements, it is said to be of complex type.

Defining Simple Types
Suppose you have a document with the following structure:

<memo>
<from>John Smith</from>
<email>JSmith@XMML.com</email>
<to>Peter Roehampton</to>
<emailto>Peter@SVGenius.com</emailto>
<message>Hello Peter. I attach the SVG graphic you wanted to

see.</message>
</memo>

Several elements have simple string content of type xsd:string. You can
define a simple type, such as for the email element, as in this code, if the
allowed content is a built-in W3C XML Schema datatype:

<xsd:element name=”email” type=”xsd:string” />

However, you might want to define your own simple type. If you want to
constrain allowed values for element content, you can use an anonymous
simple type definition (that is, using no name attribute on the
xsd:complexType element), like this:

<xsd:element name=”from”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”John Smith” />
<xsd:enumeration value=”Janet Smith” />

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

The allowed values for the element content are the strings “John Smith”
and “Janet Smith”. This would ensure that only authorized senders of
email could be identified in the from element.

20 0672324717 CH19 3/3/05 12:09 PM Page 238

239Beyond DTDs—W3C XML Schema

Defining Complex Types
The type of an element that has either element content or attribute(s) or
both is of complex type. A complex type can be named or anonymous.

A named complex type definition is referenced using the type attribute of
an xsd:element element. An anonymous complex type definition is
nested inside an xsd:element.

If a sequence of elements is the allowed content, as in this code

<parent>
<firstChild>content</firstChild>
<secondChild>more content</secondChild>
</parent>

then an xsd:sequence element is nested within the xsd:complexType ele-
ment and the permitted elements are listed in the allowed order:

<xsd:complexType>
<xsd:sequence>
<xsd:element name=”firstChild” type=”xsd:string” />
<xsd:element name=”secondChild” type=”xsd:string” />

</xsd:sequence>
</xsd:complexType>

Alternatively, if the allowed structures in the instance document were

<parent>
<firstChoice>Some content</firstChoice>
</parent>

or

<parent>
<secondChoice>Some other content</secondChoice>
</parent>

this can be expressed in a schema using the xsd:choice element:

<xsd:complexType>
<xsd:choice>
<xsd:element name=”firstChoice” type=”xsd:string” />
<xsd:element name=”secondChoice” type=”xsd:string” />

</xsd:choice>
</xsd:complexType>

20 0672324717 CH19 3/3/05 12:09 PM Page 239

240 Lesson 19

Much more to W3C XML Schema exists than has been mentioned in this
brief introduction. However, the structures illustrated give you a flavor of
the syntax of W3C XML Schema.

Summary
This lesson presented some of the reasons why XML developers need
something with more functionality than traditional DTDs.

You learned how to declare elements and attributes in W3C XML
Schema, and you also learned how to define W3C XML Schema simple
types and complex types.

20 0672324717 CH19 3/3/05 12:09 PM Page 240

APPENDIX A
XML Online
Resources

The number of online XML-related resources is huge and growing. This
appendix lists some resources that you might find useful as you look to
build on the knowledge you have gained in Sams Teach Yourself XML in
10 Minutes.

Web Sites
Web sites with useful XML information abound. This section can list only
a few.

The World Wide Web Consortium
The World Wide Web Consortium (W3C) published the XML 1.0
Recommendation and a large number of associated specifications for lan-
guages created in XML or, like XPath, in non-XML syntax but designed
to be used with XML documents.

All W3C technical documents—full Recommendations and non-final ver-
sions of specifications—can be accessed at www.w3.org/TR/.

The following list contains URLs that will take you directly to selected
W3C Recommendations for some of the XML technologies discussed in
this book.

• The XML 1.0 Recommendation (2nd Edition)—
www.w3.org/TR/2000/REC-xml-20001006

• The Namespaces in XML Recommendation—
www.w3.org/TR/REC-xml-names-19990114

21 0672324717 AppA 3/3/05 12:09 PM Page 241

242 Appendix A

• The Associating Stylesheets with XML Documents 1.0
Recommendation—www.w3.org/1999/06/REC-xml-stylesheet-

19990629

• The XML Path Language (XPath) Version 1.0—
www.w3.org/TR/1999/REC-xpath-19991116

• XSL Transformations (XSLT) Version 1.0—
www.w3.org/TR/1999/REC-xslt-19991116

• The Document Object Model (DOM) Level 2 Core
Specification—www.w3.org/TR/2000/REC-DOM-Level-2-Core-

20001113

• The Document Object Model (DOM) Level 2 Events
Specification—www.w3.org/TR/2000/REC-DOM-Level-2-Events-

20001113

• Scalable Vector Graphics (SVG) 1.0 Specification—
www.w3.org/TR/2001/REC-SVG-20010904/

• XML Linking Language (XLink) Version 1.0—
www.w3.org/TR/2001/REC-xlink-20010627/

• XPointer Framework—www.w3.org/TR/xptr-framework/

• XPointer xpointer() Scheme—www.w3.org/TR/xptr-

xpointer/

• XPointer xmlns() Scheme—www.w3.org/TR/xptr-xmlns/

• XPointer element() Scheme—www.w3.org/TR/xptr-element/

• XML Schema Part 1: Structures—www.w3.org/TR/2001/REC-

xmlschema-1-20010502/

• XML Schema Part 2: Datatypes—www.w3.org/TR/2001/REC-

xmlschema-2-20010502/

In addition to the specification documents for the individual technologies
discussed in this book, the W3C site provides Web pages that describe
ongoing developments, available tools, and other useful information.

21 0672324717 AppA 3/3/05 12:09 PM Page 242

243XML Online Resources

These pages can be accessed from the menu of choices at the left of the
W3C home page at http://www.w3.org/.

XML.com
XML.com is a general XML Web site that includes tutorial articles and
general discussion of an extensive range of XML-related topics.
XML.com is an excellent site that many people with more than a passing
interest in the XML family of technologies visit regularly.

XMLHack.com
The XMLHack.com Web site covers many news-related XML items. It
has an archive of news items browsable by subject. Visitors can subscribe
to an announcement mailing list giving information on the latest news
items and developments on the XMLHack.com Web site.

The Apache XML Web Site
The Apache Foundation has several active XML projects. Information on
those projects can be accessed at http://xml.apache.org/.

Google
At http://groups.google.com/, you can access Usenet discussions on
numerous topics, including XML.

SVGSpider.com
Now showing its age, http://www.SVGSpider.com is the world’s first con-
tinuing all-SVG Web site. Other example all-SVG sites can be viewed at
http://www.XMML.com and http://www.EditITWrite.com.

Mailing Lists
Many mailing lists are devoted to general or very specific XML-related
topics.

21 0672324717 AppA 3/3/05 12:09 PM Page 243

244 Appendix A

The XML-DEV Mailing List
The XML-DEV mailing list is very active and includes discussions of any
XML-related topic. The level of discussion tends to be fairly high. It isn’t
typically a good place to ask beginner questions. To subscribe, send an
email to xml-dev-request@lists.xml.org with the word Subscribe in
the subject line.

The XSL Mailing List
The XSL mailing list is hosted at http://www.mulberrytech.com/
xsl/xsl-list/index.html. The XSLT community is a large and active
one, and the volume of posts on the XSL list can be overwhelming at
times.

The XSLTalk Mailing List
Hosted at www.yahoogroups.com/group/XSLTalk, this mailing list tends to
have a Microsoft flavor to its discussions.

The SVG-Developers Mailing List
Despite reaching W3C Recommendation status as recently as September
2001, SVG has a very active developers’ mailing list hosted at
http://www.yahoogroups.com/group/svg-developers/. Subscription
information is available at the site.

The SVG-Developers mailing list is also a very active mailing list, with
posts often exceeding 30 per day on a sustained basis.

A mailing list dedicated to the use of SVG on mobile platforms has
recently been formed. Further information is located at
www.yahoogroups.com/group/SVG-Mobile.

The www-svg Mailing List
The W3C has a mailing list devoted to SVG. Activity tends to focus on
details of the SVG specification, and the volume of posts is much lower
than on the SVG-Developers mailing list.

21 0672324717 AppA 3/3/05 12:09 PM Page 244

245XML Online Resources

W3C XML Schema Mailing Lists
The W3C has a mailing list that you can join by sending an email to
xmlschema-dev-request@w3.org with subscribe in the subject line.

There is also an XSD Schema mailing list on YahooGroups.com. Details
are found at www.yahoogroups.com/group/XSDSchema. To join, send an
email to XSDSchema-subscribe@yahoogroups.com.

21 0672324717 AppA 3/3/05 12:09 PM Page 245

APPENDIX B
XML Tools

This appendix describes some XML tools. First, let’s look at some XML
editors.

XML Editors
Many XML editors are on the market, with varied functionality and vary-
ing prices. The absence of a particular editor in this section does not indi-
cate that it is an inappropriate editor for your use.

XML Writer
XML Writer is a basic but very useful XML editor that is easy to use and
relatively inexpensive. Further details are available at
www.xmlwriter.com/.

XML Writer features syntax color highlighting and can check XML docu-
ments for well-formedness and validity. You can create and save document
templates. Examples of this include an XSLT stylesheet with a basic
HTML document as literal result elements, and an SVG document with
the elements already in place for adding JavaScript code.

At the time of this writing, the current version is 1.2.1 and the upcoming
release of version 2.0 has been hinted at for a very long time. This delay
means that the current version has no support for W3C XML Schemas,
although DTDs are well-supported. Screen shots of version 2.0 are now
being shown, which are a good sign that a more full-featured version 2.0
is not too far away. In version 2.0, support for W3C XML Schema is
promised along with many other improvements.

A 30-day download of XML Writer is available to enable you to test the
program’s capabilities.

22 0672324717 AppB 3/3/05 12:09 PM Page 246

XML Spy
XML Spy is a well-featured XML editor with capabilities that go far
beyond the capability to edit XML documents. The higher price of the
product reflects its multiple capabilities. The current version at the time of
writing is 5.0, and further information is available at www.xmlspy.com.

XML Spy supports XML document editing, either as text or as a logical
hierarchy. XML Spy supports XSLT, XML Schema, and XSL-FO, and it
also can generate XML from any ODBC-compliant data source. If you
use multiple XML languages, you might find XML Spy particularly
appropriate to your needs.

A 30-day download is available to enable you to test the capabilities of
XML Spy. Given the many aspects of the program, you will likely be able
to explore only part of the program in that time.

XSLT Tools
This section describes several commonly used XSLT tools. XML Spy
Suite, mentioned in the preceding section, also includes an XSLT
Designer.

Saxon and Instant Saxon
Saxon is a Java-based XSLT processor. Instant Saxon is a Windows-spe-
cific executable version that can be run on Windows 95, 98, Me, and
2000.

Note If you want to run Instant Saxon on Windows
XP, you will need to download the Microsoft Java
Virtual Machine, the JVM, separately from the
Microsoft Web site. Visit www.microsoft.com/
java/default.htm for current information.

22 0672324717 AppB 3/3/05 12:09 PM Page 247

248 Appendix B

The various versions of Saxon—stable and developer versions—and
Instant Saxon are described at http://saxon.sourceforge.net.

The full Saxon download contains API documentation and examples, as
well as source code. Instant Saxon contains an executable with a single
HTML Web page in a Zip file.

Caution Older versions of the Microsoft JVM can
cause Saxon to output blank documents. This problem
is now not common, but you might want to check
that you have the latest version of the JVM using the
Windows Update facility in Internet Explorer.

To install Instant Saxon on a Windows platform, assuming that you have
WinZip (www.winzip.com) or a similar utility installed, simply double-
click the Zip file and select an appropriately named directory (perhaps
C:\Instant Saxon) to install Saxon into. To check whether Instant Saxon
has installed correctly, open a command prompt, change to the installation
directory you chose, and type Saxon. The command prompt window
should show a message indicating the version of Instant Saxon that you
installed and a series of messages explaining the basic syntax for using
Instant Saxon. If you see that message, the installation has been success-
ful.

Likely, you will want to store XML and XSLT files in the Instant Saxon
directory or add the appropriate directory to the path environment
variable.

MSXML
Microsoft started development of an “XSL” processor at a time before
XSL (in W3C terminology) split into XSLT and XSL Formatting Objects
(XSL-FO).

22 0672324717 AppB 3/3/05 12:09 PM Page 248

249XML Tools

MSXML version 3 (and above) includes an XML processor and an XSLT
processor (among other things). If you have Microsoft Internet Explorer
version 5.5 or earlier, you will not have MSXML version 3 installed by
default. Earlier versions of MSXML support a Microsoft-specific, non-
standard approximation of XSLT. Versions of MSXML earlier than 3
should be avoided to ensure future compatibility with W3C standards.

To download the MSXML parser and XSLT processor, visit
www.microsoft.com/XML/.

Note A lot of practical advice about installing and
using the various versions of the MSXML parser is
available at www.netcrucible.com/.

Note Microsoft has begun to refer to the MSXML
software as Microsoft XML Core Services. If you can’t
find any reference to MSXML 3 or 4, search for the
newer term.

Chris Bayes has written an MSXML Sniffer utility that can detect
whether you have MSXML version 3 or above installed and whether it is
in replace mode (which is what you want for XSLT processing). Go to
www.bayes.co.uk/xml/index.xml?/xml/main.xml and look for the link
to MSXML Sniffer (left panel of the Web page, at the time of writing).

Note Internet Explorer version 6 has MSXML version
3 already installed.

Xalan
Xalan is a Java-based XSLT processor under ongoing development by the
Apache Foundation (http://xml.apache.org). Details of the Java version

22 0672324717 AppB 3/3/05 12:09 PM Page 249

250 Appendix B

of the Xalan XSLT processor can be found at
http://xml.apache.org/xalan-j/index.html. At the time of this writ-
ing, Xalan-J, the Java version of Xalan, is at version 2.4.

Note Xalan version 1 is no longer supported and has
been removed from the xml.apache.org Web site. If
your computer uses only early versions of Java, you
might be able to download the necessary files to run
Xalan 1 by searching in Google.com.

Xalan can be used from the command line, can be used in an applet or
servlet, or can be incorporated in a full application.

By default, Xalan-J uses the Xerces XML parser, also from the Apache
Foundation. Typically the Xalan download includes the appropriate ver-
sion of the Xerces parser. If you want to run Xalan with another XML
processor, configuration instructions are available from the Apache Web
site.

To run the currently supported versions of Xalan-J and Xerces, you need
either a Java Runtime or a Java Software Developer’s Kit installed on
your computer. Version 1.2 or later is required. If you do not already have
a suitable Java Runtime or JSDK installed, you can download one from
http://java.sun.com. Further information on the latest versions is also
available there.

Be sure to add the Xalan and Xerces jar files to the classpath on your
computer.

Caution If you use multiple Java applications that
make use of the Xerces XML parser, it is very easy to
have multiple versions of Xerces on your computer at
one time. If more than one version has been added to
the classpath, you might find that the wrong version
is accessed first and that unexpected and puzzling
errors occur.

22 0672324717 AppB 3/3/05 12:09 PM Page 250

251XML Tools

XLink and XPointer Tools
At the time of this writing, XLink and XPointer tools are very limited in
number.

The Mozilla 1.0 browser (www.mozilla.org) implements simple XLink
links.

The most full-featured XLink processor is the XLiP processor from
Fujitsu (www.labs.fujitsu.com/free/xlip/en/), which is a Java applica-
tion.

At the time of this writing, XLiP was not updated to take into account the
July 2002 XPointer working drafts. Despite that, it is the most full-fea-
tured XLink and XPointer tool generally available. At the time of this
writing, a free evaluation download is available.

XLiP also supports a demo of the Extensible Business Reporting
Language, XBRL. To run it, you need the Tomcat server available from
http://jakarta.apache.org/tomcat/.

Tip If you plan to use multiple Java-based applica-
tions, create a simple batch file that you run when
you open the command window. The batch file can
set the path and classpath to settings that are specific
to the Java application that you want to run. This
avoids potential clashes between different versions of
Java software.

22 0672324717 AppB 3/3/05 12:09 PM Page 251

APPENDIX C
XML Glossary

This appendix provides definitions of selected XML-related terms.

arc XLink construct that provides information about how to traverse a
pair of resources.

attribute axis XPath axis that contains only attribute nodes. The
abbreviated syntax for the attribute axis is the @ character, usually fol-
lowed immediately by the attribute name or a wildcard.

axis XPath term referring to the way in which the in-memory represen-
tation of an XML document is navigated.

axis name The part of a location step that specifies which XPath axis is
to be used in the location step.

CDATA section Character data not intended to be parsed by an XML
processor is enclosed in a CDATA section.

character encoding A way to represent a character, or set of characters
by one or more numeric values.

character point Unicode term indicating the numeric representation of
a character.

character-point XPointer xpointer() scheme term indicating a point
within a container node whose content is character content.

child axis XPath axis that contains element nodes, comment nodes, pro-
cessing instruction nodes, and text nodes.

child element Element that is nested completely within another XML
element, which is termed the parent element.

child node Node in the XPath child axis.

code point Numeric code for a character in character encodings such as
Unicode.

23 0672324717 AppC 3/3/05 12:09 PM Page 252

collapsed range XPointer term referring to a range where the start point
and the end point are the same point.

complex type One of two types of element content permitted in W3C
XML Schemas. An element is said to be of complex type if it has one or
more attributes or one or more child elements. An element with only text
content is said to be of simple type.

container node XPointer term indicating a node within whose content a
point is located.

context XPath term indicating the starting point for interpretation of a
location path or expression.

context location XPointer term corresponding to and extending the
XPath notion of a context node.

context node XPath term referring to the node that navigation starts
from.

covering range XPointer term designating a range that completely
encloses a location.

current node XSLT term that often, but not always, refers to the same
node as the XPath context node.

deep copy Copy that results from copying an element in an XSLT trans-
formation with its content. The xsl:copy-of element is used.

default namespace A namespace name (also called a namespace URI)
declared using a namespace declaration of the form
xmlns=’namespaceURI’.

descendant node Node in the XPath descendant axis.

DOCTYPE declaration Informal synonym for the Document Type
Declaration.

document element Also called the root element. All elements of an
XML document are nested between the start tag and end tag of the docu-
ment element.

Document Object Model A W3C-approved way to model content of
XML documents.

23 0672324717 AppC 3/3/05 12:09 PM Page 253

254 Appendix C

document order XPath term referring to the order in which elements
occur in an XML document. A document precedes a second element in
document order if the start tag of the element precedes the start tag of the
second element.

Document Type Declaration XML 1.0 construct that expresses the ele-
ment type name of the document element; references the external subset
of the DTD, if one exists; and contains the internal subset of the DTD, if
one exists.

Document Type Definition Often referred to as a DTD. A DTD con-
sists of two parts—the internal subset and the external subset. The internal
subset consists of markup declarations that are contained within the
DOCTYPE declaration.

DOM Abbreviation for the Document Object Model.

DTD Abbreviation for the Document Type Definition.

element content The content between the start tag and end tag of an
element.

element node In XPath, node that represents an element in the source
XML document.

element type name The name of an element type. The element type
name of a <myElement></myElement> tag pair is myElement.

empty element XML element that has no content. It may be represented
by a start tag and end tag pair with no content (not even a single white-
space character in between) or as a shorthand empty element tag,
<anEmptyTag/>.

empty element tag Shorthand form of expressing a start tag/end tag
pair when the element is empty. Instead of writing <Tag></Tag>, the
empty element tag <Tag/> can be used. The empty element tag cannot be
used if there is any element content, including a single whitespace charac-
ter.

encoding form Unicode term that defines how a character is repre-
sented in bits. XML supports UTF-8 and UTF-16.

end point XPointer term indicating the final point that defines a range.
See also start point.

23 0672324717 AppC 3/3/05 12:09 PM Page 254

255XML Glossary

end tag The closing delimiter of an element. Each end tag in a well-
formed XML document must have a matching start tag.

ending resource XLink term for the resource that is the destination of a
link expressed in an XLink linking element in the starting resource.

evaluation context XPointer term corresponding to (and extending) the
XPath concept of a context. An evaluation context consists of a location
(the context location), a nonzero position, a nonzero context size, a set of
variable bindings, a library of functions, a namespace binding context,
and (where applicable) properties for the values returned by the here()
and origin() functions.

expanded name Namespace term for a name consisting of the name-
space URI and the local part of the QName of the element node or other
node.

expression Term used in XPath to express how to address a selected
part of the in-memory representation of an XML document. The most
commonly used type of XPath expression is the location path.

external parsed entity An external entity whose content can be parsed
by an XML processor.

external subset The part of the DTD that is contained in a separate file
from the XML document to which it applies. The location of the external
subset is indicated within the Document Type Declaration.

fragment identifier An identifier for a part (fragment) of a document,
including XML documents. See XML Pointer Language.

general entity An entity used within the document element. A general
entity may be a parsed entity or an unparsed entity.

here() function XPointer function that returns the context location.

i10n Abbreviation for localization.

i18n A widely used abbreviation for internationalization.

inbound XLink term that refers to a link where the linking element is
expressed on the ending resource.

23 0672324717 AppC 3/3/05 12:09 PM Page 255

256 Appendix C

indicative namespace prefix The namespace prefix typically used with
elements from a particular namespace. For example, the indicative name-
space prefix for XSLT is xsl.

information item A part of the XML information set. An item is
broadly equivalent to a node in other models.

information set An abstract data model that represents the information
contained in an XML document as a set of information items.

infoset Abbreviation for the XML Information Set.

instance document A document that is an example of a class of XML
documents, whose structure is defined by a schema that can be a DTD or
a schema expressed in XML.

instantiate XSLT term used to refer to the processing of an XSLT tem-
plate.

instruction XSLT term referring to an XSLT element that is contained
within an XSLT template.

instruction element Synonym for an XSLT instruction.

interface Collection of properties and methods that can be implemented
by one or more objects.

internal subset The part of the DTD that is contained within an XML
document. See also external subset.

link XLink term for an association between two or more resources.

linkbase XLink term, short for link database, that uses extended links of
inbound and third-party types.

linking element XLink term for an element from a non-XLink name-
space that has XLink attributes expressing an XLink link.

literal result element An element not in the XSLT namespace that is
contained in an XSLT stylesheet. The literal result element is output liter-
ally in the result document (output document).

local part The final part of a QName that follows the colon character.

local resource XLink term for a resource that is an XLink linking ele-
ment or that has an XLink linking element as its parent.

23 0672324717 AppC 3/3/05 12:09 PM Page 256

257XML Glossary

location XPointer term that includes XPath nodes and XPointer points
and ranges.

location path XPath expression that returns a node set.

location set XPointer xpointer() scheme term referring to an
unordered set of XPointer locations. A location set is a generalization of
the XPath notion of a node set.

location step A part of an XPath location path that consists of an axis
specifier, a node test, and an optional predicate.

LRE Abbreviation sometimes used to refer to a literal result element.

markup declaration In a Document Type Definition, the declaration of
elements, attributes, entities, and so on as being present in the permitted
structure of a class of XML documents.

named template An XSLT term that refers to an xsl:template
element that has a name attribute and that can be called by name using
xsl:call-template.

namespace In XML, is a collection of names identified by a uniform
resource identifier (URI).

namespace declaration XML 1.0 term indicating an attribute that asso-
ciates a namespace prefix with a namespace URI.

namespace name Synonym for the namespace URI.

namespace prefix The initial part of a QName that is followed by a
colon character and the local part.

namespace URI The unique identifier of an XML namespace. Also
called a namespace name. The namespace URI together with the local
part form the expanded name of a node.

NCName An XML name that does not contain a colon character (:).
Both the namespace prefix and the local part of a qualified name are
NCNames.

node Term used in the Document Object Model and the XML Path
Language (XPath) to indicate a logical component of an XML document.
Nodes may represent elements, attributes, or other structures present in an
XML document. The term node is also used in XPointer.

23 0672324717 AppC 3/3/05 12:09 PM Page 257

258 Appendix C

node-point An XPointer xpointer() scheme point consisting of a point
relative to a container node that can have child nodes.

node-set An unordered set of XPath nodes. The result of applying an
XPath location path.

node test One of three parts of an XPath location step. The first part is
the axis specifier, the second is the node test, and finally is an optional
predicate. The node test refines the selection of nodes made by the axis
specifier.

origin() function An XPointer function.

outbound An XLink term used to refer to a link with a local starting
resource and a remote ending resource.

output document A synonym for the result document.

output tree An XSLT term; a synonym for the result tree.

parameter entity Entity declared and used within the Document Type
Definition.

parent element Element that contains another XML element nested
between its start tag and its end tag (without any intervening level of nest-
ing). The element so nested is termed a child element.

parsed entity Entity used within the document element of an XML doc-
ument. A parsed entity is always a general entity.

pattern An XPath expression that evaluates to a node set. Commonly, a
pattern is used to specify which nodes a template is applied to.

point XPointer xpointer() scheme term, indicating a precise point (for
example, between two characters) in an XML document. An XPointer
point type is broadly equivalent to a DOM Level 2 position.

pointer XPointer term indicating a string that conforms to the XPointer
Framework specification.

pointer part XPointer term referring to part of a pointer that consists of
a scheme name and pointer data that conforms to the specification of that
scheme.

position DOM Level 2 term broadly equivalent to an XPointer point.

23 0672324717 AppC 3/3/05 12:09 PM Page 258

259XML Glossary

post schema validation infoset The information set of a document that
has been validated using the W3C XML Schema specification by a con-
forming processor. The post schema validation infoset contains additions
to the infoset that describe the results of the validation attempt.

predicate Optional part of an XPath location step that filters the node
set selected by the axis specifier and the node test.

principal node type XPath term that specifies the type of XPath node
selected in an axis by default. For example, in the child axis, the element
node is the principal node type.

processing instruction XML processors pass information to associated
applications by means of processing instructions that consist of a target
(which identifies the application to which the information is to be passed)
and a sequence of characters that is the information passed to the applica-
tion.

PSVI Abbreviation for the post schema validation infoset.

public identifier A globally applicable way of identifying the external
subset of a DTD. The public identifier is always accompanied by use of a
corresponding system identifier.

qualified name A name consisting of a namespace prefix, followed by a
colon character and then a local part.

QName Abbreviation for qualified name.

range XPointer xpointer() scheme term. A range is measured between
two points. A range is similar to what can be selected by dragging across
XML text onscreen. A range can span more than one node.

RELAX NG A schema language expressed in XML syntax. It is an
alternative to W3C XML Schemas.

remote resource XLink term for a resource that participates in an
XLink link and that is addressed using a URI reference.

result document The document produced as the result of applying an
XSLT stylesheet to a source document. Also called an output document.
The result document is produced by serializing the result tree.

23 0672324717 AppC 3/3/05 12:09 PM Page 259

260 Appendix C

result tree The in-memory hierarchical structure produced by an XSLT
transformation. This structure typically represents an XML, HTML, or
other document.

root element A synonym for the document element.

schema A document that describes the permitted structure of a class of
XML documents. In XML 1.0, the Document Type Definition (DTD) is
the specified schema. Alternatively, schemas may be expressed in XML
syntax, as in W3C XML Schemas or RELAX NG.

scheme XPointer term that refers to a pointer data format that has a
name and is defined in a (W3C) specification.

shallow copy In XSLT, copy made when an element is copied without
its content.

simple type One of two types of element content allowed in W3C XML
Schemas. If an element has only text content and no attributes or child
elements, it is of simple type. See also complex type.

source document XSLT term referring to the XML document to which
an XSLT transformation is applied.

start point XPointer term indicating the point at the beginning of a
node or a range. See also end point.

start tag The opening delimiter of any content that an element might
have. Each start tag (except for the special case of the shorthand tag for an
empty element) must have a matching end tag.

starting resource XLink term for the resource on which an XLink link-
ing element expresses a link.

style sheet Term used in Cascading Style Sheets (CSS) to refer to a set
of CSS rules. These rules may be embedded within an HTML or XML
file, or they may reside in an external file.

stylesheet Term used in XSLT to refer to an XSLT file. Note that it is
one word, compared to the two words used in a CSS style sheet.
Sometimes called a transformation sheet.

SVG Abbreviation for Scalable Vector Graphics. SVG is an application
language of XML intended to describe two-dimensional vector graphics.

23 0672324717 AppC 3/3/05 12:09 PM Page 260

261XML Glossary

system identifier A URI reference contained in the Document Type
Declaration that indicates the location of the external subset of the DTD.

template XSLT term indicating a collection of instructions nested in an
xsl:template element.

test XPointer term that corresponds to an XPath node test, generalized
to include points and ranges.

third party XLink term that refers to a link where the XLink linking
element is in neither the starting resource nor the ending resource.

top-level element A potentially misleading XSLT term that refers to
elements that are child elements of the xsl:stylesheet element.

transformation sheet A synonym for an XSLT stylesheet.

traversal XLink term for following or using an arc in an XLink link.

Unicode The encoding scheme used by XML. Unicode has both 8-bit
and 16-bit encodings used by XML. It also has supplementary code points
that allow about one million characters to be encoded. See
www.unicode.org for further information.

uniform resource identifier See URI.

unparsed entity An entity referenced from an attribute declared to be of
type ENTITY or ENTITIES. Such an entity is not intended to be parsed by
an XML processor.

URI Abbreviation for uniform resource identifier. A reference to a
resource.

UTF-8 Unicode term indicating an encoding form that must be sup-
ported by conforming XML processors and that encodes character points
in 8-bit numbers.

UTF-16 Unicode term indicating an encoding form that must be sup-
ported by conforming XML processors and that encodes character points
in 16-bit numbers.

W3C XML Schema Officially called simply XML Schema. W3C XML
Schema is the W3C language for expressing XML schemas.

23 0672324717 AppC 3/3/05 12:09 PM Page 261

262 Appendix C

well-formed XML documents are said to be well-formed when they sat-
isfy the well-formedness criteria, including nesting start and end tags cor-
rectly.

whitespace In XML, a collective term for the space character (#x20),
the carriage return character (#x9), the line feed character (#xD) and the
tab character (#xA).

XML Pointer Language A language specified by the W3C that pro-
vides a fragment identifier syntax for XML documents.

XML Schema A slightly ambiguous term that can refer, when written
as XML Schema, to the W3C XML Schema specification specifically, or,
when written as XML schema (initial lowercase), to a single schema or to
XML schema languages generically.

XPath The XML Path Language. XPath uses a non-XML syntax and is
used to address selected parts of a source XML document.

XPointer Abbreviation for the XML Pointer Language.

XPointer framework W3C specification that provides a framework for
the XPointer schema specifications.

XPointer scheme One of three syntax options that can be included in
XPointer expressions. The three XPointer schemes are xpointer(),
xmlns(), and element().

XSD Schema Also called W3C XML Schema.

XSLT Extensible Stylesheet Language Transformation language. XSLT
is used to transform an XML document, or selected parts of it, into
another XML document or a document in another syntax, such as HTML.

XSLT namespace The namespace URI for the XSLT namespace is
www.w3.org/1999/XSL/Transform.

XSLT template instruction Any element in the XSLT namespace that
occurs inside an xsl:template element.

23 0672324717 AppC 3/3/05 12:09 PM Page 262

SYMBOLS

‘ (apostrophe), 25, 57
* (asterisk) wildcard, XPath axes, 108
@ (at sign), XPath (XML Path

Language), 108, 111
+ cardinality operator, 181
: (colon), 31-32, 93-96
, (comma), declarations, 163
{ } (curly brackets), 162-163
:: (double colons), XPath (XML Path

Language) axes, 107
// (double forward slashes), 125
“ ” (double quotation marks), 25, 38
= (equal sign), 25, 96
! (exclamation mark), 67-68
/ (forward slash), 86, 104, 107
([opening parenthesis], pointer parts,

181
. (period), 32, 162
; (semicolon), 57, 71, 163
“ (single double quotation mark), quot

entity reference, 57
_ (underscore), names, 31
- (hyphen), names, 32
-- (double hyphens), character string,

21
--> ending delimiter, 20, 36
---> ending delimiter, 21, 36

<![CDATA[starting delimiter, 26
< (left angle bracket), lt entity refer-

ence, 57
< character, none in attribute values, 35
< > (angle brackets), HTML

(Hypertext Markup Language), 9
> (right angle bracket), gt entity refer-

ence, 57
<? starting delimiter, 21
<!-- starting delimiter, 20
?> ending delimiter, 21
] (right square bracket), closing delim-

iter (DTD internal subsets), 45
[(left square bracket), opening delim-

iter (DTD internal subsets), 45
]]> ending delimiter, 26
& (ampersand), amp entity reference or

parsed entities, 57
&# (decimal notation), character refer-

ences, 71
&#x (hexadecimal notation), character

references, 71

NUMBERS

1-byte ASCII code, 70
2-byte ASCII code, 70
16-bit ASCII code, 70-72

INDEX

24 0672324717 index 3/3/05 12:09 PM Page 263

264 TEACH YOURSELF XML IN 10 MINUTES

A
a element (HTML), 173
A-F (hexadecimal notation), character

references, 71
abbreviated XPath (XML Path

Language) syntax, 107-108
accessing XPath (XML Path

Language), 109-112
Adobe Illustrator Web site, 193
Adobe SVG Viewer

downloading, 190-192
Web site, 75

alert boxes, child nodes, 219
alert() function, 220
American Standard Coding for

Information Interchange (ASCII)
characters, 66-69
code (1-byte, 2-byte, 16-bit), 70

ampersand (&) (amp entity reference
or parsed entities), 57

ancestor axis, 105, 182
ancestor-or-self axis, 105, 182
anchors, HTML (Hypertext Markup

Language) documents, 178-179
Anchors.html file (code), 178-179
angle brackets

< >, HTML (Hypertext Markup
Language), 9

< (left), lt entity reference, 57
> (right), gt entity reference, 57

animations
greetings, HelloVector.svg file

(code), 191
SVG (Scalable Vector Graphics),

189-191
text, 192

Any content content model (DTDs), 47
Apache XML Web site, 243
APIs. See SAX
apostrophe (‘)

apos entity reference, 57
attributes, 25

appendChild(newChild) method, 203
appendData(arg) method, 209
applications

Java, 250-251
namespaces, 91
parsers, 21

arcs (inbound, outbound, third-party),
174

ASCII (American Standard Coding for
Information Interchange)

characters, 66-69
code (1-byte, 2-byte, 16-bit), 70

asterisk (*), XPath (XML Path
Language) axes, 108

at sign (@), XPath (XML Path
Language), 108, 111

ATTLIST keyword, 51
Attr interface (DOM), properties, 208
attributes

‘ (apostrophe), 25
= (equal sign), 25
“ ” (quotation marks), 25
adding to elements, 15
attributeType, values, 50
axis, 105
CDATA value, 50
creating, 140-141
declaring in DTDs (Document

Type Definitions), 50-51
default values, specifying in

DTDs (Document Type
Definitions), 52

defaultDeclaration, values, 50-51
of elements, 25
encoding, 19
ENTITIES value, 50
ENTITY value, 50
external entity references (none),

34-35
#FIXED “some ValueInQuotes”

value, 51
ID value, 50
IDREF value, 50
IDREFS value, 50
#IMPLIED value, 51
LessBasicDocument.xml file

(code), 234
LessBasicDocument.xsd file

(code), 235
names, 33
namespaces, 98-99
NMTOKEN value, 50
NMTOKENS value, 50
nodes, 104-106
property, 203

24 0672324717 index 3/3/05 12:09 PM Page 264

265INDEX

#REQUIRED value, 51
“some ValueInQuotes” value, 51
standalone, 19
SVG (Scalable Vector Graphics)

shapes, 189
types in DTDs (Document Type

Definitions), 51
unique, 34
values, 33-35
version, 18, 117, 148-155
W3C XML Schema, 233, 237
well-formed documents (XML),

33-35
XLink (XML Linking Language),

175
xlink:actuate, 175
xlink:href, 175
xlink:show, 175
xlink:type, 175
XPath (XML Path Language),

111-112
xsd:choice element, 239
xsd:complexType element,

237-239
xsd:element element, 239
xsd:pattern element, 237
xsd:restriction element, 237
xsd:sequence element, 239
xsd:simpleType element, 237
xsd:string element, 236

attributeType, values, 50
axes

ancestor, 105, 182
ancestor-or-self, 105, 182
attribute, 105
child, 105
descendant, 105
descendant-or-self, 105, 182
following, 105
following-sibling, 105
namespace, 105
parent, 105, 182
preceding, 105
preceding-sibling, 106
self, 105, 182
XPath (XML Path Language),

104-108

B
balancing start and end tags, 32-33
bare names (XPointer), 196
Basic Multilingual Plane (BMP)

(Unicode), 74
BasicDocument.xml file (code),

233-234
BasicDocument.xsd file (code), 234
batch files (Java applications), 251
Batik viewer, downloading, 190-192
Bayes, Chris, 249
BigText.css file (code), 176
binary files, modeling data as XML,

77-78
bitmaps

images, displaying, 163
SVG (Scalable Vector Graphics),

189-190
bits

16-bit code, 70-72
UTF-8, UTF-16, UTF-32 encod-

ing forms (Unicode), 74
block displays (reports), 166
BMP (Basic Multilingual Plane)

(Unicode), 74
books, descriptions

external parsed entities, 54-55
single document entities, 54

Boolean values, conversion rules, 145
brackets

angle (< >), HTML (Hypertext
Markup Language), 9

curly ({ }), 162-163
left angle (<), lt entity reference,

57
left square ([) opening delimiter

(DTD internal subsets), 45
right angle (>), gt entity refer-

ence, 57
right square (]) closing delimiter

(DTD internal subsets), 45
browsers. See Web browsers
bytes

1-byte or 2-byte ASCII code, 70
sizes, 71

How can we make this index more useful? Email us at indexes@samspublishing.com

24 0672324717 index 3/3/05 12:09 PM Page 265

266 TEACH YOURSELF XML IN 10 MINUTES

C
cardinality

elements in DTDs (Document
Type Definitions), 48-49

operator (+), 181
Cascading Style Sheets. See CSS
case sensitivity

element type names, 6
Java, 226
names, 31
XML (Extensible Markup

Language), 31
XPath (XML Path Language)

axis names, 105-106
CDATA (character data), 25, 45

]]> ending delimiter, 26
<![CDATA[starting delimiter, 26
escape characters, 27
text, 27-28
value, 50

Character Map
English language, 68
foreign languages, 68-69
ToolTip, 67

character references
; (semicolon), 71
decimal notation (&#), 71
hexadecimal notation (&#x) or

(A-F), 71
predefined entities, 39
well-formed documents (XML),

38-39
character sequences

<!-- starting delimiter, 20
<![CDATA[starting delimiter, 26
-- (double hyphens), character

string, 21
--> ending delimiter, 20-21, 36
<? starting delimiter, 21
?> ending delimiter, 21
]]> ending delimiter, 26
XML or xml, 59, 96

character strings, -- (double hyphens),
21

character-points, 182
CharacterData interface (DOM), 201,

208-209

characters
16-bit encoding (code), 71-72
ASCII (American Standard

Coding for Information
Interchange), 66-70

bytes, sizes, 71
CDATA (character data), 45
data, types, 232
displaying (code), 75
encodings, 66-69
English language, 65
escape, CDATA sections, 27
Explore.xml file, 16-bit character

encoding (code), 71-72
expressing in hexadecimal and

decimal notation (code), 68
fonts, 74-75
foreign-language, displaying, 71
glyphs, 74-75
Good.xml file, statement in

English and German (code), 71
hexadecimal, screen visibility, 66
initial, XML names, 31
internationalization, 65-69
non-initial, XML names, 32
parsed data, 58
PCDATA (parsed character data),

45
references, 68-72
serif fonts, 75
U+0021 (Unicode), 68
Unicode, 19, 70-74
XML and internationalization,

69-72
characterSequence, 21
child

axis, 105
nodes, 103, 217-220

Child elements content model (DTDs),
47

ChildNodes.svg file (code), 217-219
circle elements, creating, 210-212
classes

myHandler, output, 228-230
W3C XML Schema, 233

CLASSPATH environment variable,
setting, 225-226

cloneNode(deep) method, 203

24 0672324717 index 3/3/05 12:09 PM Page 266

267INDEX

code
Anchors.html file (code), 178-179
ASCII (1-byte, 2-byte, or 16.bit),

70
BasicDocument.xml file, 233-234
BasicDocument.xsd file, 234
bytes, sizes of, 71
characters, 68, 75
ChildNodes.svg file, 217-219
CreateCircle.svg file, 210-211
CreateRectNS.svg file, 213-214
CSS (Cascading Style Sheets),

162-163, 176
CSSInformation.html file,

169-170
CSSInformation.xml file, 168
CSSInformation.xsl file, 168-169
deep copy, creating, 134
DoctypeProps.svg file, 215-216
Document1.xml file, 175-176
Document2.xml file, 176
Documents.html file, 147-148
Documents.xml file, 145-146
Documents.xsl file, 146-147
Documents2.html file, 151-152
Documents2.xsl file, 149-151
Documents3.html file, 154-155
Documents3.xsl file, 152-154
Documents4.html file, 157-158
Documents4.xsl file, 155-157
DocumentType object, displaying

properties, 215-216
Explore.xml file, 16-bit character

encoding, 71-72
Good.xml file, statement in

English and German, 71
HelloVector.svg file, 191
HTML (Hypertext Markup

Language), structured data,
78-79

HTMLTemplate.xsl file, 122
LessBasicDocument.xml file, 234
LessBasicDocument.xsd file, 235
links, opening Web browser win-

dows, 177
Mouseover.svg file, 193-194
myHandler class output, 228-230
myHandler.java file, 226-228
MySite.css file, 167-168

myXML.xml file, displaying char-
acters, 75

property, 205
PurchaseOrder.xml file, 131-132
PurchaseToOrder.xsl file, 132
PurchaseToOrder2.xsl file, 134
Reference.svg file, 196-197
Reports.css file, 164
Reports.xml file, 164
Reports2.css file, 165-166
rules, 10-11
SAXSource.xml file, 223
SingleEntity.xml file, book

descriptions, 54
SplitEntities.xml file, book

descriptions, 54
statements in English and

German, 71
supplementary code points

(Unicode), 73-74
SVG (Scalable Vector Graphics),

188
SVGLink.svg file, 194-195
Title.xml file, book descriptions,

55
UKShirts.xml file, 137
UKShirtsToUS.xsl file, 140-141
USShirts.xml file, 136-137
USShirtToUK.xsl file, 137-139
XLink (XML Linking Language),

176-177
XML, 80-82, 189
XMMLNews.html file, 127-128
XMMLNews.xml file, 126
XMMLNews.xsl file, 126-127
XMMLOrder.xml file, 133
XMMLOrder2.xml file, 134-135
XMMLReports.html file, 125
XMMLReports.xml file, 122-123
XMMLReports.xsl file, 124
XPath (XML Path Language),

106-109
XSLTMessage.html file, 121
XSLTMessage.xml file, 118
XSLTMessage.xsl file, 119

collapsed ranges, 183
colon (:)

double (::), XPath (XML Path
Language) axes, 107

names, 31-32

How can we make this index more useful? Email us at indexes@samspublishing.com

24 0672324717 index 3/3/05 12:09 PM Page 267

268 TEACH YOURSELF XML IN 10 MINUTES

namespace declarations, 96
Qnames (qualified names), 93-94

comma (,), declarations, 163
Comment interface (DOM), 203
comment node, 106
comments

<!-- starting delimiter, 20
-- (double hyphens), character

string, 21
--> ending delimiter, 20-21, 36
document prolog, 20-21
well-formed documents (XML),

36
comparing

HTML (Hypertext Markup
Language)

and XLink (XML Linking
Language), 173

and XML (Extensible
Markup Language), 12-13,
78-81

SAX (Simple API for XML) and
DOM (Document Object
Model), 221

stylesheets and style sheets, 159
complex types of W3C XML Schema,

233, 239-240
conditional processing of data,

143-144
conditional sections, DTDs (Document

Type Definitions), 46
constraints, well-formed documents

(XML), 30
container nodes, 182
content

after document element end tag,
28

models (DTDs), 46-47
and presentation, separating, 13,

160-161
in XML documents, restructuring,

129-131
ContentHandler interface, 223
context nodes, XPath (XML Path

Language), 104
conversion rules for Boolean values,

145
converted ranges, 184
copying elements, 131-135

Core interfaces, DOM (Document
Object Model) Level 2, 199-201

CorelDraw Web site, 193
count()function, 113-114
createAttribute(name) method, 206
createAttributeNS(namespaceURI,

qualifiedName) method, 206
createCDATASection(data) method,

206
CreateCircle.svg file (code), 210-211
createComment(data) method, 206
createDocument(namespaceURI,

qualifiedName, doctype) method, 205
createDocumentFragment() method,

206
createDocumentType(qualifiedName,

publicId, systemId) method, 205
createElement() method, 210-212
createElement(tagName) method, 206
createElementNS() method, 213-214
createElementNS(namespaceURI,

qualifiedName) method, 206
createEntityReference(name) method,

206
createProcessingInstruction(target,data)

method, 206
CreateRectNS.svg file (code), 213-214
createTextNode(data) method, 206
creating

attributes, 140-141
circle elements, 210-212
DOM (Document Object Model)

elements, 210-214
elements, 135-139
HTML (Hypertext Markup

Language)
lists, 122-125
pages, 118-122
tables, 126-128

rect elements, 214
rectangles (code), 213-214
SVG (Scalable Vector Graphics),

191-193
vocabularies, 11-12
W3C XML Schema, 233

CSS (Cascading Style Sheets), 13
CSSInformation.html file (code),

169-170
CSSInformation.xml file (code),

168

24 0672324717 index 3/3/05 12:09 PM Page 268

269INDEX

CSSInformation.xsl file (code),
168-169

data, styling, 164-167
documents (XML), associating

with style sheets, 161
HTML (Hypertext Markup

Language), 160, 170-171
MySite.css file (code), 167-168
reports, displaying, 164-166
Reports.css file (code), 164
Reports.xml file (code), 164
Reports2.css file (code), 165-166
style sheets, 159-163, 167, 189
text appearance, controlling

(code), 176
Web sites, separating content and

presentaton, 160-161
XSLT (Extensible Stylesheet

Language Transformations),
HTML (Hypertext Markup
Language) output, 167-170

CSSInformation.html file (code),
169-170

CSSInformation.xml file (code), 168
CSSInformation.xsl file (code),

168-169
CSSStyleSheet.css file, 161
curly brackets ({ }), 162-163

D
data

CDATA (character data), 45
conditional processing, 143-144
employee, XML code, 80
hierarchical in XML, 83
human readable, 7-8
loosely structured in XML, 83-85
modeling as XML, 77-85
models, XML Information Set

(infoset), 87
objects, hierarchical structure, 85
parsed, 58
PCDATA (parsed character data),

45
property, 208
relational-type, modeling, 81-83
sorting, 143-158

structured, 78-81
styling (CSS), 164-167
types, 232
unparsed, types of, 62
XML models (W3C), 85-86
xsl:choose element, 144, 149-152
xsl:for-each element, 155
xsl:if element, 144-148
xsl:otherwise element, 149
xsl:sort element, 152-158
xsl:template element, 144
xsl:when element, 149

databases, RDBMS (relational data-
base-management system), 81

decimal notations, characters
&#, references, 71
expressing (code), 68

declarations
, (comma), 163
{ } (curly brackets), 163
; (semicolon), 163
DOCTYPE, 22-23, 44
document prolog, 18-19
DTDs (Document Type

Definitions), external or internal
subsets, 22

encoding attribute, 19
markup, 19-20, 38, 43-44
namespaces, 96-98
standalone attribute, 19
SVG (Scalable Vector Graphics),

191
text, external parsed entities, 61
version attributes, 18
W3C XML Schema, 233

declarative animations (SVG), 191
declaring

attributes, 50-51, 237
elements, 46-49, 233-237
entities, 36, 52-53
notations, 62
predefined entities in well-formed

documents (XML), 39
deep copy (elements), 134-135
defaults

namespaces, 97
values of attributes, specifying, 52

defaultDeclaration, values, 50-51

How can we make this index more useful? Email us at indexes@samspublishing.com

24 0672324717 index 3/3/05 12:09 PM Page 269

270 TEACH YOURSELF XML IN 10 MINUTES

defining
document structures in DTDs

(Document Type Definitions),
42-43

W3C XML Schema, 233
complex types, 239-240
simple types, 238

definitions
entity, 53
links, 174
namespace, 89
referencing with XPointer (XML

Pointer Language), 196-198
rule, 162
schemas, 42
transformations, 9

deleteData(offset, count) method, 209
delimiters

<!-- starting, 20
--> ending, 20, 36
---> ending, 21, 36
<? starting, 21
?> ending, 21
closing or opening, 26, 45

descendant axis, 105
descendant-or-self axis, 105, 182
description element, 59
descriptions of books, 54-55
developers, SVG-Developers mailing

list Web site, 244
displaying

bitmap images, 163, 189
characters, code, 75
child nodes, 217-220
documents, 148-149
DocumentType, 215-217
foreign-language characters, 71
HTML (Hypertext Markup

Language) documents, 170-171
reports, 164-166
vector images, 163, 189

DOCTYPE declarations, 22-23, 44
doctype property, 206
DoctypeProps.svg file (code), 215-216
Document interface (DOM), 205-206
Document Object Model. See DOM
Document Type Definitions. See DTDs
Document1.xml file (code), 175-176
Document2.xml file (code), 176
Document3.xml file (code), 177

documentElement property, 206
documents (XML)

attributes, creating, 140-141
BasicDocument.xml file (code),

233-234
BasicDocument.xsd file (code),

234
CDATA sections, 25-28
content restructuring, 129-131
CSS (Cascading Style Sheets),

161
displaying, 148-149
DOCTYPE declarations, 22-23
document element end tab, con-

tent after, 28
DTDs (Document Type

Definitions), 23
element end tag, content after, 28
elements, 8, 17-18, 24-25,

131-139
entity, 53
external parsed entities, book

descriptions, 54-55
fragments, XPointer (XML

Pointer Language), 178-180
HTML (Hypertext Markup

Language), 170-171, 178-179
HTMLTemplate.xsl file (code),

122
human readable, 7-8
instance, 44, 233
LessBasicDocument.xml file

(code), 234
LessBasicDocument.xsd file

(code), 235
markup declarations, 43-44
namespaces, 90, 99-101
nodes, hierarchy, 103-104
optional content, 17
parsers, 21
parts of, 17
prolog, 17-21
PurchaseOrder.xml file (code),

131-132
PurchaseToOrder.xsl file (code),

132
PurchaseToOrder2.xsl file (code),

134
purposes of, 5-7
SAX (Simple API for XML), 222

24 0672324717 index 3/3/05 12:09 PM Page 270

271INDEX

SAXSource.xml file (code), 223
schemas, definition, 42
shared, 41-43
single document entities, book

descriptions, 54
structure, defining in DTDs

(Document Type Definitions),
42-43

SVG (Scalable Vector Graphics),
text animations, 192

text, linking in Mozilla browser,
176-177

transforming, 115
UKShirts.xml file (code), 137
UKShirtsToUS.xsl file (code),

140-141
USShirts.xml file (code), 136-137
USShirtToUK.xsl file (code),

137-139
UTF-8 character encoding, 19
UTF-16 character encoding, 19
valid, 43
well-formed, 29-40
XML files, 84
XMMLOrder.xml file (code), 133
XMMLOrder2.xml file (code),

134-135
XPath (XML Path Language), 86,

103
XSLT (Extensible Stylesheet

Language Transformations),
115

Documents.html file (code), 147-148
Documents.xml file (code), 145-146
Documents.xsl file (code), 146-147
Documents2.html file (code), 151-152
Documents2.xsl file (code), 149-151
Documents3.html file (code), 154-155
Documents3.xsl file (code), 152-154
Documents4.html file (code), 157-158
Documents4.xsl file (code), 155-157
DocumentType interface, properties,

207, 215-217
DocumentType object, displaying

properties (code), 215-216
DOM (Document Object Model),

85-86
appendChild(newChild) method,

203
appendData(arg) method, 209

Attr interface properties, 208
attributes property, 203
CharacterData interface, 208-209
child nodes, information retrieval

(code), 217-219
ChildNodes.svg file (code),

217-219
cloneNode(deep) method, 203
code property, 205
Comment interface, 203
createAttribute(name) method,

206
createAttributeNS(namespaceURI

, qualifiedName) method, 206
createCDATASection(data)

method, 206
CreateCircle.svg file (code),

210-211
createComment(data) method,

206
createDocument(namespaceURI,

qualifiedName, doctype)
method, 205

createDocumentFragment()
method, 206

createDocumentType(qualified
Name, publicId, systemId)
method, 205

createElement(tagName) method,
206

createElementNS(namespaceURI,
qualifiedName) method, 206

createEntityReference(name)
method, 206

createProcessingInstruction(tar-
get,data) method, 206

CreateRectNS.svg file (code),
213-214

createTextNode(data) method,
206

data property, 208
deleteData(offset, count) method,

209
doctype property, 206
DoctypeProps.svg file (code),

215-216
Document interface, 205-206
documentElement property, 206
DocumentType interface, proper-

ties, 207

How can we make this index more useful? Email us at indexes@samspublishing.com

24 0672324717 index 3/3/05 12:09 PM Page 271

272 TEACH YOURSELF XML IN 10 MINUTES

DOMException interface, proper-
ties, 205

DOMImplementation interface,
methods, 205

Element interface, 207-208
elements, creating, 210-214
firstChild property, 203
getAttribute(name) method, 207
getAttributeNode(name) method,

207
getAttributeNodeNS(namespaceU

RI, localName) method, 207
getAttributeNS(namespaceURI,

localName) method, 207
getElementsByTagName(tag-

name) method, 206-207
getElementsByTagNameNS(name

spaceURI, localName) method,
206-207

getNamedItem(name) method,
204

getNamedItemNS(namespaceURI
,localName) method, 204

hasAttribute(name) method, 207
hasAttributeNS(namespaceURI,

localName) method, 208
hasAttributes() method, 203
hasChildNodes() method, 203
hasFeature(feature, version)

method, 205
importNode(importedNode, deep)

method, 206
information retrieval, 215-220
insertBefore(newChild, refChild)

method, 203
insertData(offset, arg) method,

209
interfaces, 85, 199-201
isSupported(feature, value)

method, 203
item(index) method, 204
lastChild property, 203
length property, 204
Level 2 Core

Events Specification Web
site, 242

interfaces, 199-201
Specification Web site, 242
specifications, 199

localName property, 203

methods, 199
name property, 208
NamedNodeMap interface (meth-

ods or properties), 204
Node interface, 201-204
NodeList interface, 204
nodeName property, 203
nodeType property, 203
nodeValue property, 203
normalize() method, 204
notations property, 207
objects, 199-201
prefix property, 203
properties, 199
removeAttribute(name) method,

208
removeAttributeNode(oldAttr)

method, 208
removeAttributeNS(namespaceU

RI, localName) method, 208
removeChild(oldChild) method,

204
removeNamedItem(name)

method, 204
removeNamedItemNS(namespace

URI,localName) method, 204
replaceChild(newChild, oldChild)

method, 204
replaceData(offset, count, arg)

method, 209
and SAX (Simple API for XML),

comparing, 221
scripting with SVG (Scalable

Vector Graphics), 189
setAttribute(name, value) method,

208
setAttributeNode(newAttr)

method, 208
setAttributeNodeNS(newAttr)

method, 208
setAttributeNS(namespaceURI,

localName) method, 208
setNamedItem(arg) method, 204
setNamedItemNS(namespaceURI,

localName) method, 204
splitText(offset) method, 209
substringData(offset, count)

method, 209
systemID property, 207
tagname property, 207

24 0672324717 index 3/3/05 12:09 PM Page 272

273INDEX

Text interface, 203, 209
value property, 208

DOMException interface, properties,
205

DOMImplementation interface, meth-
ods, 205

double forward slashes (//), 125
double quotation marks (“ ”)

attributes, 25
replacement text, 38
single (“), quot entity reference,

57
downloading

Adobe SVG Viewer, 190-192
Batik viewer, 190-192
JSDK (Java Software

Development Kit), 224
JVM (Java Virtual Machine), 247
MSXML parser, 249
Xerces parcer, 224

drop shadows, SVG (Scalable Vector
Graphics) filters, 198

DTDHandler interface, 223
DTDs (Document Type Definitions)

Any content content model, 47
attributes, 50-52
attributeType, values, 50
CDATA (character data), 45
Child elements content model, 47
conditional sections, 46
content models, 46-47
defaultDeclaration, values, 50-51
DOCTYPE declarations, 22-23,

44
document structure, defining,

42-43
elements, declaring, 46-49
Empty element content model, 46
entities, declaring, 52
external parsed entities, 55
external subsets, 37, 44-45
instance documents, 44
internal subsets, 37, 45
limitations, 232-233
markup declarations, 43-44
Mixed content content model, 47
parameter entities, 57, 62-64
parameter entity references, 37
PCDATA (parsed character data),

45

shared documents, 41-43
subsets (external or internal), 22
Text only content model, 46
valid XML documents, 43
W3C XML Schema, 231-240,

245
XML processors, 40-42

E
editors

XML Spy, 247
XML Writer, 246

Element interface (DOM), 207-208
element() scheme, 186
elements

a (HTML), 173
attributes, 15, 25
cardinality in DTDs (Document

Type Definitions), 48-49
circle, creating, 210-212
copying, 131-135
creating, 135-139
declaring in DTDs (Document

Type Definitions), 46-49
description, 59
document element end tag, con-

tent after, 28
documents (XML), 17-18, 24
DOM (Document Object Model),

creating, 210-214
link, accessing CSS (Cascading

Style Sheets), 167
linking, 174
literal result, 120
meta, 121
nested, 24-25, 234-235
nodes, 103-106
qualified names, 94
rect, creating, 214
root, 24
start and end tags, balancing,

32-33
stylesheet, 116
SVG (Scalable Vector Graphics),

188-191
<svg>, child nodes, 219
title, 120

How can we make this index more useful? Email us at indexes@samspublishing.com

24 0672324717 index 3/3/05 12:09 PM Page 273

274 TEACH YOURSELF XML IN 10 MINUTES

top-level (XSLT), 117
transform, 116
type names, 6, 32, 91-93, 162
of W3C XML Schema, declaring,

233-237
well-formed documents (XML),

32-33
XLink (XML Linking Language),

174-175
in XML documents, naming, 8
XPath (XML Path Language),

accessing, 109-110
xsd:choice, 239
xsd:complexType, 237-239
xsd:element, 239
xsd:pattern, 237
xsd:restriction, 237
xsd:sequence, 239
xsd:simpleType, 237
xsd:string, 236
xsl:apply-templates, 120, 124,

139-141
xsl:attribute, 140-141
xsl:attribute-set, 118
xsl:choose, 143-144, 149-152
xsl:copy, 131-133, 141
xsl:copy-of, 134
xsl:decimal-format, 118
xsl:element, 137-139
xsl:for-each, sorting data, 155
xsl:if, 143-148
xsl:import, 117
xsl:include, 117
xsl:key, 118
xsl:namespace-alias, 118
xsl:otherwise, sorting data, 149
xsl:output, 117
xsl:param, 118
xsl:preserve-space, 118
xsl:sort, 143, 152-158
xsl:strip-space, 118
xsl:stylesheet, 117
xsl:template, 117-119, 125, 144
xsl:text, 125
xsl:transform, version attribute,

117
xsl:value-of, 120-121, 133, 139
xsl:variable, 118
xsl:when, sorting data, 149

email, XML-DEV mailing list, 244
employees (XML code)

data, 80
records, modeling, 81-82

Empty element content model (DTDs),
46

encoding
16-bit characters (code), 71-72
attribute, 19
characters (Unicode), 66-69, 73
forms (Unicode), 74
UTF-8 or UTF-16, 19, 74
UTF-32 encoding form

(Unicode), 74
end-point() function, 184
end points, 183
end tags, 14, 28, 32-33
ending delimiters

-->, 20, 36
--->, 21, 36
?>, 21
] (right square bracket), DTD

internal subsets, 45
]]>, 26

ending resources (XLink), 174
English language, 65, 68, 71-73
entities

amp reference (&), 57
apos reference (‘), 57
declaring, 36, 52-53
definition, 53
description element, 59
document, 53
external parsed, 54-56
external references, none for

attributes, 34-35
general, 58
gt reference (>), 57
lt reference (<), 57
names, 54, 59
parameter, 38, 56-57, 62-64
parameter references in DTDs

(Document Type Definitions),
37

parsed, 36-37, 56-61
predefined, 39, 57
quot reference (“), 57
references, 56-57
single document, book descrip-

tions, 54

24 0672324717 index 3/3/05 12:09 PM Page 274

275INDEX

SingleEntity.xml file, book
descriptions (code), 54

SplitEntities.xml file, book
descriptions (code), 54

SVG (Scalable Vector Graphics),
53, 60

Title.xml file, book descriptions
(code), 55

unparsed, 57, 61-62
ENTITIES value, 50
ENTITY value, 50
entityName, unparsed entities, 62
environment variables, 225-226
equal sign (=), 25, 96
ErrorHandler interface, 223
escape characters, CDATA sections, 27
events (SAX), parsing, 222-223
exclamation mark (!), 67-68
Explore.xml file, 16-bit character

encoding (code), 71-72
expressions, location paths, 107
extended links (XLink), 172-173
Extensible Business Reporting

Language (XBRL), 251
Extensible Markup Language. See

XML
Extensible Stylesheet Language

Transformations. See XSLT
external entity references, none for

attributes, 34-35
external parsed entities, 36-37, 54-61
external subsets of DTDs (Document

Type Definitions), 22, 37, 44-45

F
files

Anchors.html (code), 178-179
BasicDocument.xml (code),

233-234
BasicDocument.xsd (code), 234
batch, Java application, 251
BigText.css (code), 176
binary, modeling data as XML,

77-78
ChildNodes.svg (code), 217-219
CreateCircle.svg (code), 210-211

CreateRectNS.svg (code),
213-214

CSSInformation.html (code),
169-170

CSSInformation.xml (code), 168
CSSInformation.xsl (code),

168-169
CSSStyleSheet.css, 161
DoctypeProps.svg (code),

215-216
Document1.xml (code), 175-176
Document2.xml (code), 176
Document3.xml (code), 177
documents, known as, 84
Documents.html (code), 147-148
Documents.xml (code), 145-146
Documents.xsl (code), 146-147
Documents2.html (code), 151-152
Documents2.xsl (code), 149-151
Documents3.html (code), 154-155
Documents3.xsl (code), 152-154
Documents4.html (code), 157-158
Documents4.xsl (code), 155-157
Explore.xml, 16-bit character

encoding (code), 71-72
Good.xml, statement in English

and German (code), 71
HelloVector.svg (code), 191
HTMLTemplate.xsl (code), 122
LessBasicDocument.xml (code),

234
LessBasicDocument.xsd (code),

235
Mouseover.svg (code), 193-194
myHandler.java (code), 226-228
MySite.css (code), 167-168
myXML.xml, displaying charac-

ters (code), 75
PurchaseOrder.xml (code),

131-132
PurchaseToOrder.xsl (code), 132
PurchaseToOrder2.xsl (code), 134
Reference.svg (code), 196-197
Reports.css (code), 164
Reports.xml (code), 164
Reports2.css (code), 165-166
SAXSource.xml (code), 223
SingleEntity.xml, book descrip-

tions (code), 54

How can we make this index more useful? Email us at indexes@samspublishing.com

24 0672324717 index 3/3/05 12:09 PM Page 275

276 TEACH YOURSELF XML IN 10 MINUTES

SplitEntities.xml, book descrip-
tions (code), 54

SVGLink.svg (code), 194-195
Title.xml, book descriptions

(code), 55
UKShirts.xml (code), 137
UKShirtsToUS.xsl (code),

140-141
USShirts.xml (code), 136-137
USShirtToUK.xsl (code),

137-139
XMMLNews.html (code),

127-128
XMMLNews.xml (code), 126
XMMLNews.xsl (code), 126-127
XMMLOrder.xml (code), 133
XMMLOrder2.xml (code),

134-135
XMMLReports.html (code), 125
XMMLReports.xml (code),

122-123
XMMLReports.xsl (code), 124
XSLTMessage.html (code), 121
XSLTMessage.xml (code), 118
XSLTMessage.xsl (code), 119

filters, SVG (Scalable Vector
Graphics), 190, 196-198

firstChild property, 203
#FIXED “some ValueInQuotes” value,

51
following axis, 105
following-sibling axis, 105
fonts, 74-75
foreign languages

Character map, 68
characters, displaying, 71

forms
encoding (Unicode), 74
shorthand (XPointer), 196
W3C XForms specification, 8

forward slash (/)
double (//), 125
root nodes, 86, 104
XPath (XML Path Language)

axes, 107
fragments of documents, XPointer

(XML Pointer Language), 178-180

frameworks, XPointer (XML Pointer
Language) Framework

element() scheme, 186
schemes, 181
xmlns() scheme, 185-186
xpointer() scheme, 182-184

Fujitsu Web site, 251
functions

alert(), 220
count(), 113-114
end-point(), 184
getChildNodes(), 220
getDoctype(), 216
here(), 184
Initialize(), 216
name(), 120
origin(), 184
position(), 113
range(), 183
range-inside(), 184
range-to(), 184
start-point(), 184
string-range(), 183
XPath (XML Path Language),

112
xpointer() scheme, 183-184

G
general entities, 58
German language, 68, 71
getAttribute(name) method, 207
getAttributeNode(name) method, 207
getAttributeNodeNS(namespaceURI,

localName) method, 207
getAttributeNS(namespaceURI,

localName) method, 207
getChildNodes() function, 220
getDoctype() function, 216
getElementById() method, 217
getElementsByTagName(tagname)

method, 206-207
getElementsByTagNameNS(namespace

URI, localName) method, 206-207
getNamedItem(name) method, 204
getNamedItemNS(namespaceURI,local

Name) method, 204

24 0672324717 index 3/3/05 12:09 PM Page 276

277INDEX

glyphs, 74-75
Good.xml file, statement in English

and German (code), 71
Google Web site, 243
graphics. See SVG
greetings, animated, HelloVector.svg

file (code), 191
gt entity reference (>), 57

H
hasAttribute(name) method, 207
hasAttributeNS(namespaceURI,

localName) method, 208
hasAttributes() method, 203
hasChildNodes() method, 203
hasFeature(feature, version) method,

205
headlines, XMMLNews.html file

(code), 127-128
HelloVector.svg file (code), 191
here() function, 184
hexadecimal

characters, screen visibility, 66
notations, 68, 71

hierarchies
data in XML, 83
DOM (Document Object Model)

interfaces and objects, 200
nodes, 103-104
structures, data objects, 85
XPath (XML Path Language),

XML documents, 103
histories, SAX (Simple API for XML),

221
HTML (Hypertext Markup Language)

< > (angle brackets), 9
a element, 173
Anchors.html file (code), 178-179
CSS (Cascading Style Sheets),

160, 167-170
documents, 170-171, 178-179
hyperlinks and XLink (XML

Linking Language), comparing,
173

lists, creating, 122-125
pages, creating, 118-122
structured data (code), 78-79

tables, creating, 126-128
tags, 9
and XML (Extensible Markup

Language), comparing, 12-13,
78-81

XSLT (Extensible Stylesheet
Language Transformations),
167-170

HTMLTemplate.xsl file (code), 122
human readable (XML), 7-8
hyperlinks

browser windows, opening (code),
177

definition, 174
extended (XLink), 172-173
HTML (Hypertext Markup

Language) and XLink (XML
Linking Language), comparing,
173

inbound arc, 174
outbound arc, 174
simple (XLink), 172-176
third-party arc, 174
transversal, 174
XLink (XML Linking Language),

173-174, 194-196
Hypertext Markup Language. See

HTML
hyphen (-), names, 32

I
i18n (internationalization), 65-72
ID value, 50
identifiers, URIs (uniform resource

identifiers), 23, 94-95, 116
IDREF value, 50
IDREFS value, 50
IGNORE option, conditional sections,

46
Illustrator (Adobe), Web site, 193
images, bitmap or vector, 163, 189
#IMPLIED value, 51
importNode(importedNode, deep)

method, 206
inbound arc (XLink), 174
INCLUDE option, conditional sections,

46

How can we make this index more useful? Email us at indexes@samspublishing.com

24 0672324717 index 3/3/05 12:09 PM Page 277

278 TEACH YOURSELF XML IN 10 MINUTES

information retrieval, DOM
(Document Object Model), 215-220

infoset (XML Information Set), data
models, 87

initial characters of XML names, 31
Initialize() function, 216
insertBefore(newChild, refChild)

method, 203
insertData(offset, arg) method, 209
installations, Java (Path environment

variable), 225
installing

JSDK (Java Software
Development Kit), 224

SAX (Simple API for XML)
parsers, 224-226

Xerces parcer, 224
instance documents

and DTDs (Document Type
Definitions), 44

W3C XML Schema, 233
Instant Saxon (XSLT), 247-248
instructions, processing

<? starting delimiter, 21
?> ending delimiter, 21
document prolog, 20-21
xml-stylesheet, 21, 161

interfaces
Attr (DOM), properties, 208
CharacterData (DOM), 201,

208-209
COM Level 2 Core, 199-201
Comment (DOM), 203
ContentHandler, 223
Document (DOM), 205-206
DocumentType, properties, 207,

215-217
DOM (Document Object Model),

85, 199-209
DOMException, properties, 205
DOMImplementation, methods,

205
DTDHandler, 223
Element (DOM), 207-208
ErrorHandler, 223
NamedNodeMap (DOM), meth-

ods or properties, 204
Node (DOM), 201-204
NodeList (DOM), 204

SAX (Simple API for XML) 2,
223

Text (DOM), 203, 209
internal parsed entities, 56, 59-60
internal style sheets, SVG (Scalable

Vector Graphics), 189
internal subsets, DTDs (Document

Type Definitions), 22, 37, 45
internationalization (i18n), 65-72
Internet Explorer, 175, 249
ISO (International Organization for

Standardization), ISO/IEC 10646, 73
isSupported(feature, value) method,

203
item(index) method, 204

J-K
jargon

W3C XML Schema, 233
XLink (XML Linking Language),

173-174
Jasc WebDraw Web site, 192
Java

applications, 250-251
case sensitivity, 226
installations, Path environment

variable, 225
myHandler class, output, 228-230
myHandler.java file, 226-228

JSDK (Java Software Development
Kit), downloading and installing, 224

JVM (Java Virtual Machine), 247-248

keywords
ATTLIST, 51
NDATA, 62
PUBLIC, 23

L
languages. See also HTML; XLink;

XML; XPath; XPointer; XSLT
BMP (Basic Multilingual Plane)

(Unicode), 74
English, 65, 68, 73
foreign, 68

24 0672324717 index 3/3/05 12:09 PM Page 278

279INDEX

German, 68
markup, 9-10, 77-78
meta, 10-12
programming, Unicode, 73
schemas, 231
Web support, 65
WML (Wireless Markup

Language), 116
XBRL (Extensible Business

Reporting Language), 251
lastChild property, 203
left angle bracket ([), lt entity refer-

ence, 57
length property, 204
LessBasicDocument.xml file (code),

234
LessBasicDocument.xsd file (code),

235
Level 2 (DOM)

Core interfaces, 199-201
specifications, 199

link element, accessing CSS
(Cascading Style Sheets), 167

linking
elements, 174
text in Mozilla browser, 176-177

links. See hyperlinks
lists

HTML (Hypertext Markup
Language), creating, 122-125

mailing, 244-245
literal result elements, 120
local parts of Qnames, 93
local resources (XLink), 174
localName property, 203
location paths (XPath), 107
locationOfInformation variable,

unparsed entities, 62
logic in XML, 77
loosely structured data in XML, 83-85
lt entity reference ([), 57

M
mailing lists, 244-245
mapping, geographical examples (Web

site), 192
maps, Character Map, 67-69

markup declarations, 19-20, 38, 43-44
markup languages, 9-10. See also

HTML; XML
data, modeling as XML, 77-78
WML (Wireless Markup

Language), 116
messages (code), 118-121
meta element, 121
meta languages, 10-12
methods

appendChild(newChild), 203
appendData(arg), 209
CharacterData interface (DOM),

209
cloneNode(deep), 203
ContentHandler interface, 223
createAttribute(name), 206
createAttributeNS(namespaceURI

, qualifiedName), 206
createCDATASection(data), 206
createComment(data), 206
createDocument(namespaceURI,

qualifiedName, doctype), 205
createDocumentFragment(), 206
createDocumentType(qualified

Name, publicId, systemId), 205
createElement(), 210-212
createElement(tagName), 206
createElementNS(), 213-214
createElementNS(namespaceURI,

qualifiedName), 206
createEntityReference(name), 206
createProcessingInstruction(tar-

get,data), 206
createTextNode(data), 206
deleteData(offset, count), 209
Document interface (DOM), 206
DOM (Document Object Model),

199
DOMImplementation interface,

205
DTDHandler interface, 223
Element interface (DOM),

207-208
ErrorHandler interface, 223
getAttribute(name), 207
getAttributeNode(name), 207
getAttributeNodeNS(namespace

URI, localName), 207

How can we make this index more useful? Email us at indexes@samspublishing.com

24 0672324717 index 3/3/05 12:09 PM Page 279

280 TEACH YOURSELF XML IN 10 MINUTES

getAttributeNS(namespaceURI,
localName), 207

getElementById(), 217
getElementsByTagName(tag-

name), 206-207
getElementsByTagNameNS(name

spaceURI, localName), 206-207
getNamedItem(name), 204
getNamedItemNS(namespaceURI,

localName), 204
hasAttribute(name), 207
hasAttributeNS(namespaceURI,

localName), 208
hasAttributes(), 203
hasChildNodes(), 203
hasFeature(feature, version), 205
importNode(importedNode,

deep), 206
insertBefore(newChild, refChild),

203
insertData(offset, arg), 209
isSupported(feature, value), 203
item(index), 204
NamedNodeMap interface

(DOM), 204
Node interface (DOM), 203-204
normalize(), 204
removeAttribute(name), 208
removeAttributeNode(oldAttr),

208
removeAttributeNS(namespace

URI, localName), 208
removeChild(oldChild), 204
removeNamedItem(name), 204
removeNamedItemNS(namespace

URI,localName), 204
replaceChild(newChild,

oldChild), 204
replaceData(), 217
replaceData(offset, count, arg),

209
setAttribute(name, value), 208
setAttributeNode(newAttr), 208
setAttributeNodeNS(newAttr),

208
setAttributeNS(namespaceURI,

localName), 208
setNamedItem(arg), 204
setNamedItemNS(namespaceURI

,localName), 204

splitText(offset), 209
substringData(offset, count), 209
Text interface (DOM), 209

Mixed content content model (DTDs),
47

modeling
data as XML, 77-85
employee records in XML (code),

81-82
relational-type data, 81-83

models. See also DOM
DTDs (Document Type

Definitions)
Any content content, 47
Child elements content, 47
Empty element content, 46
Mixed content content, 47
Text only content, 46

data, XML Information Set
(infoset), 87

XML data (W3C), 85-86
Mouseover.svg file (code), 193-194
mouseovers, SVG (Scalable Vector

Graphics) filters, 196-197
Mozilla 1.0 browser, 164-166, 176-177,

251
Mozilla 1.x, XLink (XML Linking

Language), 175
MSXML (XSLT), 248-249
myHandler class, output, 228-230
myHandler.java file (code), 226-228
MySite.css file (code), 167-168
myXML.xml file, displaying characters

(code), 75

N
name() function, 120
NamedNodeMap interface (DOM),

methods or properties, 204
names

: (colon), 31-32, 93-94
- (hyphen), 32
. (period), 32
_ (underscore), 31
attribute nodes, 104
of attributes, 33
bare (XPointer), 196

24 0672324717 index 3/3/05 12:09 PM Page 280

281INDEX

case sensitivity, 31
element, 162
element nodes, 104
element type, 6, 32, 91-93
of entities, 54, 59
elements in XML documents, 8
entityName, unparsed entities, 62
initial characters, 31
non-initial characters, 32
notationName, unparsed entities,

62
property, 208
Qnames (qualified names), 93-94
qualified, 94
well-formed documents (XML),

30-32
namespaces

in applications, 91
attributes, 98-99
axis, 105
declarations, 96-98
default, 97
definition, 89
in documents, 90, 99-101
element type names, clashing,

91-93
local parts, 93
nodes, 106
packages, 93
prefixes, 93
Qnames (qualified names), 93
qualified names, 94
URIs (uniform resource identi-

fiers), 94-95
well-formed, 99
XLink (XML Linking Language),

175
XML or xml character sequence,

96
XSLT URI, 116

NDATA keyword, 62
nested elements, 24-25, 234-235
Netscape 6.x, XLink (XML Linking

Language), 175
news

XMMLNews.html file (code),
127-128

XMMLNews.xml file (code), 126
XMMLNews.xsl file (code),

126-127

NMTOKEN value, 50
NMTOKENS value, 50
Node interface (DOM), 201-204
node-points, 182
NodeList interface (DOM), 204
nodeName property, 203
nodes

attribute, 104-106
child, 217-220
comment, 106
container, 182
context, XPath (XML Path

Language), 104
element, 104-106
element node child, 103
namespace, 106
principal types (XPath axes), 106
processing instruction, 106
root, 86, 103-106
text, 106
XPath (XML Path Language) 1.0

types, 106
nodeType property, 203
nodeValue property, 203
non-initial characters of XML names,

32
nonvalidating XML processors, 42
normalize() method, 204
notationName, unparsed entities, 62
notations

decimal, characters, 68, 71
declaring, 62
hexadecimal, characters, 68, 71
property, 207
unparsed entities, 62

O
objects. See also DOM

data, hierarchical structure, 85
DocumentType, displaying prop-

erties (code), 215-216
online resources, mailing lists,

244-245. See also Web sites
opening Web browser windows (code),

177
opening parentheses [(], pointer parts,

181

How can we make this index more useful? Email us at indexes@samspublishing.com

24 0672324717 index 3/3/05 12:09 PM Page 281

282 TEACH YOURSELF XML IN 10 MINUTES

operators, + cardinality, 181
origin() function, 184
outbound arc (XLink), 174
output, myHandler class, 228-230

P
packages, namespaces, 93
pages (Web), 118-122, 191
parameters, entities, 37-38, 56-57,

62-64
parent axis, 105, 182
parsed character data (PCDATA), 45
parsed data, 58
parsed entities

& (ampersand), 57
; (semicolon), 57
external, 54-61
general entities, 58
internal, 56, 59-60
unparsed, 57, 61-62
in well-formed documents

(XML), 37
parsers

applications, 21
documents (XML), 21
MSXML, downloading, 249
SAX (Simple API for XML),

224-226
Xerces, 224, 250

parsing
entities in well-formed documents

(XML), 36-37
events (SAX), 222-223

Path environment variable, 225-226
paths, location (XPath), 107
PCDATA (parsed character data), 45
period (.), 32, 162
pointer languages. See XPointer
pointers, parts, 181
points, 73-74, 182-183
position() function, 113
preceding axis, 105
preceding-sibling axis, 106
predefined entities, 39, 57
prefix property, 203
prefixes, namespace, Qnames (quali-

fied names), 93

presentation and content, separating,
13, 160-161

principal node types, XPath (XML Path
Language) axes, 106

processing
data, conditional, 143-144
instructions, 20-21, 106, 161

processors
UTF-8 character encoding, 19
UTF-16 character encoding, 19
XML (Extensible Markup

Language), 14, 39-42, 70, 161
programming

languages (Unicode), 73
SAX (Simple API for XML),

222-223
prolog, documents (XML), 17-21
properties

Attr interface (DOM), 208
attributes, 203
CharacterData interface (DOM),

208
code, 205
data, 208
doctype, 206
Document interface (DOM), 205
documentElement, 206
DocumentType, 207, 215-217
DOM (Document Object Model),

199
DOMException interface, 205
Element interface (DOM), 207
firstChild, 203
lastChild, 203
length, 204
localName, 203
name, 208
NamedNodeMap interface

(DOM), 204
Node interface (DOM), 203
nodeName, 203
nodeType, 203
nodeValue, 203
notations, 207
prefix, 203
systemID, 207
tagname, 207
value, 208

24 0672324717 index 3/3/05 12:09 PM Page 282

283INDEX

public identifiers, 23
PUBLIC keyword, 23
PurchaseOrder.xml file (code),

131-132
PurchaseToOrder.xsl file (code), 132
PurchaseToOrder2.xsl file (code), 134

Q-R
Qnames (qualified names), 93-94
quotation marks

double (“ ”), 25, 38
single double (“), quot entity ref-

erence, 57

range() function, 183
range-inside() function, 184
range-to() function, 184
ranges, 183-184
RDBMS (relational database-manage-

ment system), 81
readability, human readable (XML),

7-8
records, employee, modeling in XML

(code), 81-82
rect elements, creating, 214
rectangles, 194, 213-214
Reference.svg file (code), 196-197
references

; (semicolon), 38-39, 71
amp entity (&), 57
apos entity (‘), 57
character, 39, 68-72
definitions with XPointer (XML

Pointer Language), 196-198
entity, 56-57
external entities, none for attrib-

utes, 34-35
foreign-language characters, dis-

playing, 71
gt entity (>), 57
lt entity (<), 57
parameter entities in DTDs

(Document Type Definitions),
37

quot entity (“), 57

relational database-management system
(RDBMS), 81

relational-type data, modeling, 81-83
remote resources (XLink), 174
removeAttribute(name) method, 208
removeAttributeNode(oldAttr) method,

208
removeAttributeNS(namespaceURI,

localName) method, 208
removeChild(oldChild) method, 204
removeNamedItem(name) method, 204
removeNamedItemNS(namespacURI,

localName) method, 204
replaceChild(newChild, oldChild)

method, 204
replaceData() method, 217
replaceData(offset, count, arg) method,

209
replacement text, 38
reports, 122-125, 164-166
Reports.css file (code), 164
Reports.xml file (code), 164
Reports2.css file (code), 165-166
#REQUIRED value, 51
resources. See also Web sites

mailing lists, 244-245
XLink (XML Linking Language)

(ending, local, remote, starting),
174

retrieving information, DOM
(Document Object Model), 215-220

right angle bracket (>), gt entity refer-
ence, 57

rollovers, 193-194
root elements, 24
root nodes, 86, 103-106
rules

Boolean values, conversions to,
145

CSS (Cascading Style Sheets),
161-163

definition, 162
well-formed documents (XML),

30
XML syntax, 10-11

How can we make this index more useful? Email us at indexes@samspublishing.com

24 0672324717 index 3/3/05 12:09 PM Page 283

284 TEACH YOURSELF XML IN 10 MINUTES

S
SAX (Simple API for XML)

ContentHandler interface, 223
documents, 222
and DOM (Document Object

Model), comparing, 221
DTDHandler interface, 223
ErrorHandler interface, 223
examples, 226
history, 221
myHandler class, output, 228-230
myHandler.java file (code),

226-228
parsers, 224-226
programmer mindset, 222
programming, 222-223
SAXSource.xml file (code), 223

Saxon (XSLT), 247-248
SAXSource.xml file (code), 223
Scalable Vector Graphics. See SVG
schemas

definition, 42
languages, 231
W3C XML Schema, 231-240,

245
schemes

XPointer (XML Pointer
Language), 181-186

xpointer(), 182-184
scope, namespaces in documents,

100-101
screens

hexadecimal characters, visibility,
66

SVG (Scalable Vector Graphics)
content, viewing, 192

text animations, 192
scripting DOM (Document Object

Model) with SVG (Scalable Vector
Graphics), 189

sections
CDATA sections, 25-27
conditional, 46

selectors, CSS (Cascading Style
Sheets) rules or curly brackets ({ }),
162

self axis, 105, 182
semicolon (;), 57, 71, 163

sensitivity, case
element type names, 6
Java, 226
names, 31
XML, 31
XPath (XML Path Language) axis

names, 105-106
sequences of characters. See character

sequences
serif fonts, 75
servers, Tomcat Web site, 251
setAttribute(name, value) method, 208
setAttributeNode(newAttr) method,

208
setAttributeNodeNS(newAttr) method,

208
setAttributeNS(namespaceURI,

localName) method, 208
setNamedItem(arg) method, 204
setNamedItemNS(namespaceURI,local

Name) method, 204
SGML (Standard Generalized Markup

Language), limitations of DTDs
(Document Type Definitions),
232-233

shadows, drop (SVG filters), 198
shallow copy (elements), 131-133
shapes, SVG (Scalable Vector

Graphics), 189
shared documents, 41-43
shirts (code), 136-141
shorthand forms (XPointer), 196
Simple API for XML. See SAX
simple links (XLink), 172-176
simple types of W3C XML Schema,

233, 238
single document entity, book descrip-

tions, 54
single double quotation mark (“), quot

entity reference, 57
SingleEntity.xml file, book descriptions

(code), 54
sizes of bytes, 71
slashes

/ (forward), 86, 104, 107
// (double forward), 125

Sniffer utility (MSXML) Web site, 249
“some ValueInQuotes” value, 51
sorting data, 143-158

24 0672324717 index 3/3/05 12:09 PM Page 284

285INDEX

specifications
DOM (Document Object Model)

Level 2, 199
SVG (Scalable Vector Graphics),

8
W3C (World Wide Web

Consortium), 8, 178, 231
SplitEntities.xml file, book descrip-

tions (code), 54
splitText(offset) method, 209
Spy (XML), 247
square brackets, delimiters for DTD

internal subsets
[(left) opening, 45
] (right) closing, 45

standalone attribute, 19
Standard Generalized Markup

Language (SGML), limitations of
DTDs (Document Type Definitions),
232-233

start points, 183
start tags, 14, 32-33
start-point() function, 184
starting delimiters

<!--, 20
<![CDATA[, 26
<?, 21
[(left square bracket), DTD inter-

nal subsets, 45
starting resources (XLink), 174
statements in English and German

(code), 71
stories

XMMLNews.html file (code),
127-128

XMMLNews.xsl file (code),
126-127

string-range() function, 183
strings, character, -- (double hyphens),

21
structures

data, 78-81
of documents, defining, 42-43
hierarchical, data objects, 85
namespace declarations, 96
XSLT (Extensible Stylesheet

Language Transformations)
stylesheet, 117-118

style sheets, SVG (Scalable Vector
Graphics), 189. See also CSS

stylesheets. See also XSLT
Documents.html file (code),

147-148
Documents.xsl file (code),

146-147
Documents2.html file (code),

151-152
Documents2.xsl file (code),

149-151
Documents3.html file (code),

154-155
Documents3.xsl file (code),

152-154
Documents4.html file (code),

157-158
Documents4.xsl file (code),

155-157
HTMLTemplate.xsl file (code),

122
stylesheet element, 116
xml-stylesheet processing instruc-

tion, 21
XMMLNews.html file (code),

127-128
XMMLNews.xml file (code), 126
XMMLNews.xsl file (code),

126-127
XMMLReports.html file (code),

125
XMMLReports.xml file (code),

122-123
XMMLReports.xsl file (code),

124
XSLTMessage.html file (code),

121
XSLTMessage.xsl file (code), 119
xsl:apply-templates element, 120,

124, 139, 141
xsl:attribute element, 140-141
xsl:attribute-set element, 118
xsl:copy element, 131-133, 141
xsl:copy-of element, 134
xsl:decimal-format element, 118
xsl:element element, 137-139
xsl:import element, 117
xsl:include element, 117

How can we make this index more useful? Email us at indexes@samspublishing.com

24 0672324717 index 3/3/05 12:09 PM Page 285

286 TEACH YOURSELF XML IN 10 MINUTES

xsl:key element, 118
xsl:namespace-alias element, 118
xsl:output element, 117
xsl:param element, 118
xsl:preserve-space element, 118
xsl:strip-space element, 118
xsl:stylesheet element, 117
xsl:template element, 117-119,

125
xsl:text element, 125
xsl:transform element, 117
xsl:value-of element, 120-121,

133, 139
xsl:variable element, 118

styling data (CSS), 164-167
styling limitations, CSS (Cascading

Style Sheets) rules, 163
subsets, DTDs (Document Type

Definitions), external or internal, 22,
37, 44-45

substringData(offset, count) method,
209

supplementary code points (Unicode),
73-74

SVG (Scalable Vector Graphics)
Adobe Illustrator Web site, 193
Adobe SVG Viewer, 75, 190-192
advantages, 190
animations, 189-191
Batik viewer, downloading,

190-192
bitmaps, 189-190
ChildNodes.svg file (code),

217-219
code, 188
content, viewing, 192
CorelDraw Web site, 193
CreateCircle.svg file (code),

210-211
CreateRectNS.svg file (code),

213-214
creating, 191-193
declarations, 191
DoctypeProps.svg file (code),

215-216
elements, 188, 191
entities, 53, 60
filters, 196-198
geographical mapping examples

(Web site), 192

HelloVector.svg file (code), 191
Jasc WebDraw Web site, 192
Mouseover.svg file (code),

193-194
rectangles, rolled-over and

unrolled-over versions, 194
Reference.svg file (code),

196-197
rollovers, 193-194
scripting, DOM (Document

Object Model), 189
shapes, attributes, 189
specification, 8
Specification Web site, 242
style sheets, 189
SVGLink.svg file (code), 194-195
text animations, 192
vector images, displaying, 189
W3C Candidate Recommendation

Web site, 188
Web pages, XMML Web site, 191
X-Smiles browser, Web site, 190
XLink (XML Linking Language),

178, 194-196
XML code, 189
XPointer (XML Pointer

Language), 196-198
<svg>, child nodes, 219
SVG-Developers mailing list Web site,

244
SVGLink.svg file (code), 194-195
SVGSpider.com Web site, 243
syntax. See code
system identifier, 23
systemID property, 207

T
tables, HTML (Hypertext Markup

Language), creating, 126-128
tags

document element end, content
after, 28

HTML (Hypertext Markup
Language), 9

names (element type names), 6,
91-93, 207

start and end, balancing, 32-33
XML, end and start, 14

24 0672324717 index 3/3/05 12:09 PM Page 286

287INDEX

text
animating, 192
appearance, controlling (code),

176
CDATA sections, 27-28
declarations, external parsed enti-

ties, 61
linking in Mozilla browser,

176-177
node, 106
replacement, 38

Text interface (DOM), 203, 209
Text only content model (DTDs), 46
third-party arc (XLink), 174
title element, 120
Title.xml file, book descriptions

(code), 55
Tomcat server Web site, 251
tools

XLink (XML Linking Language),
251

XML editors, 246
XPointer (XML Pointer

Language), 251
XSLT (Extensible Stylesheet

Language Transformations),
116, 247

ToolTip, ! (exclamation mark), 67
top-level elements (XSLT), 117
transform element, 116
transformations, 9
transforming documents (XML), 115
transversal (XLink), 174
types

of attributes in DTDs (Document
Type Definitions), 51

data, 62, 232
W3C XML Schema, 233

complex, defining, 239-240
simple, defining, 238

U
U+0021 (Unicode), 68
UKShirts.xml file (code), 137
UKShirtsToUS.xsl file (code), 140-141

unabbreviated XPath (XML Path
Language) syntax, 107

underscore (_), names, 31
Unicode, 68, 72-74
uniform resource identifiers (URIs), 23,

94-95, 116
unique attributes, 34
unparsed data, 58, 62
unparsed entities, 57, 61-62. See also

parsed entities
URIs (uniform resource identifiers), 23,

94-95, 116
USShirts.xml file (code), 136-137
USShirtToUK.xsl file (code), 137-139
UTF-8 bit or UTF-16 bit, 19, 70, 74
UTF-32 encoding form (Unicode), 74
utilities

Character Map, 67-69
MSXML Sniffer Web site, 249

V
valid XML documents, 43
validating XML processors, 42
values

of attributes, 33-35
attributeType, 50
Boolean, conversion rules, 145
CDATA, 50
default attribute, specifying, 52
defaultDeclaration, 50-51
ENTITIES, 50
ENTITY, 50
#FIXED “some ValueInQuotes,”

51
ID, 50
IDREF, 50
IDREFS, 50
#IMPLIED, 51
NMTOKEN, 50
NMTOKENS, 50
property, 208
#REQUIRED, 51
“some ValueInQuotes,” 51
of version attribute, 148-155

How can we make this index more useful? Email us at indexes@samspublishing.com

24 0672324717 index 3/3/05 12:09 PM Page 287

288 TEACH YOURSELF XML IN 10 MINUTES

variables
CLASSPATH environment, set-

ting, 225-226
locationOfInformation, unparsed

entities, 62
Path environment, setting,

225-226
vector graphics. See SVG
vector images, 163, 189
version attribute, 18, 117, 148-155
viewers

Adobe SVG Viewer, 75, 190-192
Batik, downloading, 190-192

viewing SVG (Scalable Vector
Graphics) content, 192

vocabularies
creating, 11-12
jargon, 173-174, 233

W
W3C (World Wide Web Consortium)

Candidate Recommendation, Web
site, 188

DOM (Document Object Model)
Level 2 Core or Events
Specification Web site, 242

mailing list, 244
specifications, XPointer (XML

Pointer Language), 178
SVG (Scalable Vector Graphics)

1.0 Specification Web site, 242
Web site, 241-243
XForms specification, 8
XLink (XML Linking Language)

Version 1.0 Web site, 172, 242
XML, 85-87
XML Schema, 231-240, 245
XPath (XML Path Language),

86-87
XSLT (Extensible Stylesheet

Language Transformations)
Version 1.0 Web site, 242

Web, WWW (World Wide Web), 8-9,
65

Web browsers
Internet Explorer, XLink (XML

Linking Language), 175
Mozilla 1.0, 164-166, 251

Mozilla 1.x, XLink (XML
Linking Language), 175

Netscape 6.x, XLink (XML
Linking Language), 175

windows, opening (code), 177
X-Smiles, Web site, 8, 190

Web pages, 118-122, 191
Web sites

Adobe Illustrator, 193
Adobe SVG Viewer, 75, 190-192
Apache XML, 243
Batik viewer, downloading,

190-192
content and presentation, separat-

ing, 160-161
CorelDraw, 193
DOM (Document Object Model)

Level 2 Core or Events
Specifications, 242

Fujitsu, 251
geographical mapping examples

(SVG), 192
Google, 243
Instant Saxon, 248
Jasc WebDraw, 192
JSDK (Java Software

Development Kit), downloading,
224

JVM (Java Virtual Machine),
downloading, 247

Mozilla 1.0 browser, 251
MSXML Sniffer utility, 249
Saxon, 248
SVG (Scalable Vector Graphics)

1.0 Specification, 242
SVG-Developers mailing list, 244
SVGSpider.com, 243
Tomcat server, 251
Unicode, 73
W3C (World Wide Web

Consortium), 172, 188, 241-245
WinZip, 248
X-Smiles browser, 8, 190
Xerces parser, downloading, 224
XLink (XML Linking Language),

196, 242
XLiP, 251
XML Spy, 247
XML.com, 243
XMLHack.com, 243

24 0672324717 index 3/3/05 12:09 PM Page 288

289INDEX

XMML, SVG (Scalable Vector
Graphics) Web pages, 191

XSL mailing list, 244
XSLT (Extensible Stylesheet

Language Transformations)
Version 1.0, 242

XSLTalk mailing list, 244
well-formed documents (XML), 29-39
well-formed namespaces, 99
windows, opening Web browsers

(code), 177
WinZip Web site, 248
WML (Wireless Markup Language),

116
World Wide Web Consortium. See

W3C
Writer (XML), 246
writers, XML Writer, 246
WWW (World Wide Web), 8-9, 65

X-Y-Z
X-Smiles browser, Web site, 8, 190
Xalan (XSLT), 249-251
XBRL (Extensible Business Reporting

Language), 251
Xerces parser, 224, 250
XForms specification, 8
XLink (XML Linking Language), 8

attributes, 175
BigText.css file (code), 176
CSS (Cascading Style Sheets),

controlling text appearance
(code), 176

Document3.xml file (code), 177
elements, 174-175
ending resources, 174
extended links, 172-173
HTML (Hypertext Markup

Language) hyperlinks, compar-
ing, 173

hyperlinks, 174, 196
inbound arc, 174
Internet Explorer, 175
jargon, 173-174
linking elements, 174
links, opening browser windows

(code), 177

local resources, 174
Mozilla 1.x, 175
namespace, 175
Netscape 6.x, 175
outbound arc, 174
remote resources, 174
simple links, 172-176
starting resources, 174
SVG (Scalable Vector Graphics),

178, 194-196
SVGLink.svg file (code), 194-195
third-party arc, 174
tools, 251
W3C Recommendation Web site,

172
Web browsers, 175
xlink:actuate attribute, 175
xlink:href attribute, 175
xlink:show attribute, 175
xlink:type attribute, 175
Version 1.0 Web site, 242

xlink:actuate attribute, 175
xlink:href attribute, 175
xlink:show attribute, 175
xlink:type attribute, 175
XLiP Web site, 251
XML (Extensible Markup Language),

5, 9-10
case sensitivity, 31
code, SVG (Scalable Vector

Graphics), 189
content and presentation, separat-

ing, 13
data models (W3C), 85-86
documents. See documents

(XML)
editors, 246-247
elements, adding attributes, 15
employee data (code), 80-82
end tags, 14
files, 84
hierarchical data, 83
and HTML (Hypertext Markup

Language), comparing, 12-13,
78-81

human readable, 7-8
Information Set (infoset), data

models, 87
internationalization, 69-72
loosely structured data, 83-85

How can we make this index more useful? Email us at indexes@samspublishing.com

24 0672324717 index 3/3/05 12:09 PM Page 289

290 TEACH YOURSELF XML IN 10 MINUTES

meta language, 10-12
processors, 14, 39-42, 70
Spy, 233, 247
start tags, 14
syntax rules, 10-11
valid documents, 43
vocabularies, creating, 11-12
writing, 14-16
WWW (World Wide Web), 8-9
or xml character sequences, 59,

96
XML Linking Language. See XLink
XML Path Language. See XPath
XML Pointer Language. See XPointer
XML-DEV mailing list, 244
xml-stylesheet processing instruction,

21, 161
XML.com Web site, 243
XMLHack.com Web site, 243
xmlns (namespace declarations), 96
xmlns() scheme, 185-186
xmlns=“namespaceURI” namespace

declaration, 97
XMML Web site (SVG Web pages),

191
XMMLNews.html file (code), 127-128
XMMLNews.xml file (code), 126
XMMLNews.xsl file (code), 126-127
XMMLOrder.xml file (code), 133
XMMLOrder2.xml file (code),

134-135
XMMLReports.html file (code), 125
XMMLReports.xml file (code),

122-123
XMMLReports.xsl file (code), 124
XPath (XML Path Language), 86-87,

102
ancestor axis, 105
ancestor-or-self axis, 105
attributes, 104-106, 111-112
axes, 105-108
child axis, 105
comment node, 106
count () function, 113-114
descendant axis, 105
descendant-or-self axis, 105
documents, node hierarchy,

103-104
elements, 109-110
expressions, location paths, 107

following axis, 105
following-sibling axis, 105
functions, 112
hierarchies, XML documents, 103
namespaces, 105-106
node types, 106
parent axis, 105
position () function, 113
preceding axis, 105
preceding-sibling axis, 106
processing instruction node, 106
root nodes, 86, 103-106
self axis, 105
syntax, 106-109
text node, 106
XPointer (XML Pointer

Language), 180
XPointer (XML Pointer Language), 8,

172
+ cardinality operator, 181
Anchors.html file (code), 178-179
bare names, 196
character-points, 182
definitions, referencing, 196-198
document fragments, 178-180
end-point() function, 184
end points, 183
Framework, 181-186
here() function, 184
HTML (Hypertext Markup

Language) document anchors,
178-179

mouseovers, SVG (Scalable
Vector Graphics) filters,
196-197

origin() function, 184
pointer parts, 181
points, axes, 182
range() function, 183
range-inside() function, 184
range-to() function, 184
ranges

collapsed, 183
converted, 184

Reference.svg file (code),
196-197

schemes, 181-186
shorthand forms, 196
start-point() function, 184
start points, 183

24 0672324717 index 3/3/05 12:09 PM Page 290

291INDEX

string-range() function, 183
SVG (Scalable Vector Graphics),

196-198
tools, 251
W3C (World Wide Web

Consortium) specification, 178
XPath (XML Path Language),

180
xpointer() scheme, 182-184
xsd:choice element, 239
xsd:complexType element, 237-239
xsd:element element, 239
xsd:pattern element, 237
xsd:restriction element, 237
xsd:sequence element, 239
xsd:simpleType element, 237
xsd:string element, 236
XSL mailing list Web site, 244
XSL Transformations (XSLT) Version

1.0 Web site, 242
XSLT (Extensible Stylesheet Language

Transformations). See also docu-
ments (XML)

CSS (Cascading Style Sheets),
HTML (Hypertext Markup
Language) output, 167-170

CSSInformation.html file (code),
169-170

CSSInformation.xsl file (code),
168-169

data, conditional processing or
sorting, 143-144

HTML (Hypertext Markup
Language), 118-128, 170-171

HTMLTemplate.xsl file (code),
122

Instant Saxon, 247-248
MSXML, 248-249
namespace URI, 116
purpose, 115-116
Saxon, 247-248
and style sheets, comparing, 159
stylesheet, 116-118
tools, 116, 247
top-level elements, 117
Version 1.0 Web site, 242
Xalan, 249-251
xml-stylesheet processing instruc-

tion, 161

XMMLNews.html file (code),
127-128

XMMLNews.xml file (code), 126
XMMLNews.xsl file (code),

126-127
XMMLReports.html file (code),

125
XMMLReports.xml file (code),

122-123
XMMLReports.xsl file (code),

124
XSL Transformations, 13
XSLTMessage.html file (code),

121
XSLTMessage.xml file (code),

118
XSLTMessage.xsl file (code), 119
xsl:choose element, 144, 149-152
xsl:for-each element, 155
xsl:if element, 144-148
xsl:otherwise element, 149
xsl:sort element, 152-158
xsl:template element, 144
xsl:when element, 149

XSLTalk mailing list Web site, 244
XSLTMessage.html file (code), 121
XSLTMessage.xml file (code), 118
XSLTMessage.xsl file (code), 119
xsl:apply-templates element, 120, 124,

139-141
xsl:attribute element, 140-141
xsl:attribute-set element, 118
xsl:choose element, 143-144, 149-152
xsl:copy element, 131-133, 141
xsl:copy-of element, 134
xsl:decimal-format element, 118
xsl:element element, 137-139
xsl:for-each element, sorting data, 155
xsl:if element, 143-148
xsl:import element, 117
xsl:include element, 117
xsl:key element, 118
xsl:namespace-alias element, 118
xsl:otherwise element, sorting data, 149
xsl:output element, 117
xsl:param element, 118
xsl:preserve-space element, 118
xsl:sort element, 143, 152-158
xsl:strip-space element, 118

How can we make this index more useful? Email us at indexes@samspublishing.com

24 0672324717 index 3/3/05 12:09 PM Page 291

292 TEACH YOURSELF XML IN 10 MINUTES

xsl:stylesheet element, 117
xsl:template element, 117-119, 125,

144
xsl:text element, 125
xsl:transform element, 117
xsl:value-of element, 120-121, 133,

139
xsl:variable element, 118
xsl:when element, 149

24 0672324717 index 3/3/05 12:09 PM Page 292

24 0672324717 index 3/3/05 12:09 PM Page 293

PHP
in

Newman

10 minutes is all you
need to learn how to…

• Make your website dynamic

• Manipulate strings and variables

• Process HTML forms

• Create HTML pages dynamically

• Control and filter database data

• Authenticate users at your sites

• Access the underlying file system

• Make use of cookies and sessions

• Run PHP on your own desktop from
a command line

• Configure PHP to meet your needs

• Learn sound security practices

• Discover what PEAR can do for you

• Find out how to debug your code

This book offers straightforward,
practical answers when you need
fast results. By working through
each 10-minute lesson, you’ll learn
what you need to begin to use
the PHP scripting language to
make your websites interactive
and dynamic.

Tips point out shortcuts and
solutions

Cautions help you avoid common
pitfalls

Notes provide additional
information

PHP

Te
a

ch
 You

rse
lf

10
M

in
u

te
s

in 10Minutes

Category: Web Development /PHP
Covers: PHP 5.0
User Level: Beginning–Intermediate

$14.99 USA/$19.99 CAN/£10.99 Net UK

Chris Newman

Teach
Yourself

PHP
in 10Minutes

Covers
PHP 5.0

S327627 STY PHP in 10.fs 3/4/05 2:10 PM Page 1

PHP
in 10MinutesChris Newman

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Teach
Yourself

00 0672327627 FM 3/2/05 3:47 PM Page i

Sams Teach Yourself PHP
in 10 Minutes
Copyright © 2005 by Sams Publishing
All rights reserved. No part of this book shall be reproduced,
stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent lia-
bility is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume
no responsibility for errors or omissions. Nor is any liability
assumed for damages resulting from the use of the informa-
tion contained herein.

International Standard Book Number: 0-672-32762-7

Library of Congress Catalog Card Number: 2004098028

Printed in the United States of America

First Printing: April 2005

08 07 06 05 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trade-
marks or service marks have been appropriately capitalized.
Sams Publishing cannot attest to the accuracy of this informa-
tion. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and
as accurate as possible, but no warranty or fitness is implied.
The information provided is on an “as is” basis. The author
and the publisher shall have neither liability nor responsibility
to any person or entity with respect to any loss or damages
arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when
ordered in quantity for bulk purchases or special sales. For
more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

ACQUISITIONS EDITOR

Shelley Johnston

DEVELOPMENT EDITOR

Damon Jordan

MANAGING EDITOR

Charlotte Clapp

SENIOR PROJECT
EDITOR

Matthew Purcell

COPY EDITOR

Kitty Jarrett

INDEXER

Chris Barrick

PROOFREADER

Paula Lowell

TECHNICAL EDITOR

Sara Goleman

PUBLISHING
COORDINATOR

Vanessa Evans

INTERIOR DESIGNER

Gary Adair

COVER DESIGNER

Aren Howell

PAGE LAYOUT

Susan Geiselman

00 0672327627 FM 3/2/05 3:47 PM Page ii

Contents

Introduction ..1

PART I PHP Foundations

1 Getting to Know PHP 5
PHP Basics ..5
Your First Script ..8

2 Variables 13
Understanding Variables ..13
Data Types ..17

3 Flow Control 20
Conditional Statements ..20
Loops ..26

4 Functions 30
Using Functions ..30
Arguments and Return Values ..32
Using Library Files ..36

PART II Working with Data

5 Working with Numbers 39
Arithmetic ..39
Numeric Data Types ..42
Numeric Functions ..44

00 0672327627 FM 3/2/05 3:47 PM Page iii

iv Sams Teach Yourself PHP in 10 Minutes

6 Working with Strings 47
Anatomy of a String ..47
Formatting Strings ..50
String Functions ..54

7 Working with Arrays 57
What Is an Array? ..57
Array Functions ..61
Multidimensional Arrays ..65

8 Regular Expressions 68
Introducing Regular Expressions ..68
Using ereg ..69

9 Working with Dates and Times 78
Date Formats ..78
Working with Timestamps ..80

10 Using Classes 86
Object-Oriented PHP ..86
What Is a Class? ..87
Creating and Using Objects ..88

PART III The Web Environment

11 Processing HTML Forms 93
Submitting a Form to PHP ..93
Processing a Form with PHP ..98
Creating a Form Mail Script ..101

00 0672327627 FM 3/2/05 3:47 PM Page iv

vContents

12 Generating Dynamic HTML 103
Setting Default Values ..103
Creating Form Elements ..107

13 Form Validation 113
Enforcing Required Fields ..113
Displaying Validation Warnings ..114
Enforcing Data Rules ..117
Highlighting Fields That Require Attention118

14 Cookies and Sessions 121
Cookies ..121
Sessions ..125

15 User Authentication 128
Types of Authentication ..128
Building an Authentication System ..131

16 Communicating with the Web Server 137
HTTP Headers ..137
Server Environment Variables ..142

PART IV Using Other Services from PHP

17 Filesystem Access 146
Managing Files ..146
Reading and Writing Files ..150

18 Host Program Execution 156
Executing Host Programs ..156
The Host Environment ..159
Security Considerations ..162

00 0672327627 FM 3/2/05 3:47 PM Page v

vi Sams Teach Yourself PHP in 10 Minutes

19 Using a MySQL Database 164
Using MySQL ..164
Executing SQL Statements ..166
Debugging SQL ..170

20 Database Abstraction 174
The PEAR DB Class ..174
Database Portability Issues ..181

21 Running PHP on the Command Line 185
The Command-Line Environment ..185
Writing Scripts for the Command Line ..189

22 Error Handling 194
Error Reporting ..194

PART V Configuring and Extending PHP

23 PHP Configuration 203
Configuration Settings ..203
Configuration Directives ..206
Loadable Modules ..211

24 PHP Security 214
Safe Mode ..214
Other Security Features ..218

25 Using PEAR 223
Introducing PEAR ..223
Using PEAR ..225

00 0672327627 FM 3/2/05 3:47 PM Page vi

viiContents

PART VI Appendix

A Installing PHP 230
Linux/Unix Installation ..230
Windows Installation ..234
Troubleshooting ..236

00 0672327627 FM 3/2/05 3:47 PM Page vii

About the Author
Chris Newman is a consultant programmer specializing in the develop-
ment of custom web-based database applications to a loyal international
client base.

A graduate of Keele University, Chris lives in Stoke-on-Trent, England,
where he runs Lightwood Consultancy Ltd., the company he founded in
1999 to further his interest in Internet technology. Lightwood operates
web hosting services under the DataSnake brand and is proud to be one of
the first hosting companies to offer and support SQLite in addition to PHP
as a standard feature on all accounts.

More information on Lightwood Consultancy Ltd. can be found at
www.lightwood.net, and Chris can be contacted at chris@lightwood.net.

00 0672327627 FM 3/2/05 3:47 PM Page viii

We Want to Hear from You!
As the reader of this book, you are our most important critic and commen-
tator. We value your opinion and want to know what we’re doing right,
what we could do better, what areas you’d like to see us publish in, and
any other words of wisdom you’re willing to pass our way.

You can email or write me directly to let me know what you did or didn’t
like about this book—as well as what we can do to make our books
stronger.

Please note that I cannot help you with technical problems related to the
topic of this book, and that due to the high volume of mail I receive, I
might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as
well as your name and phone or email address. I will carefully review
your comments and share them with the author and editors who worked
on the book.

Email: opensource@samspublishing.com

Mail: Mark Taber
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
For more information about this book or another Sams Publishing title,
visit our Web site, at www.samspublishing.com. Type the ISBN (exclud-
ing hyphens) or the title of a book in the Search field to find the page
you’re looking for.

00 0672327627 FM 3/2/05 3:47 PM Page ix

00 0672327627 FM 3/2/05 3:47 PM Page x

Introduction: Welcome to PHP
This book is about PHP, one of the most popular web scripting languages
around. It is a book for busy people. Each lesson takes just 10 minutes to
work through, so if you have wanted to learn PHP for a while but have
never really had the chance, don’t put it off any longer!

Who This Book Is For
This book is aimed at those who want to learn PHP, even if they don’t
have any previous programming or scripting experience. You can even use
this book to learn PHP as a first programming language if you do not
have any previous experience.

If you have some previous programming experience but have not written
for the web before, you can use this book to learn about the PHP language
and how to apply programming techniques to the web environment.

This book does not teach you HTML. Although knowledge of HTML is
not a prerequisite, having published web pages in the past will be an
advantage—even if you do not usually hand-code HTML.

How This Book Is Organized
This book is organized into five parts.

Part I: PHP Foundations
The lessons in Part I introduce the basic building blocks of the PHP lan-
guage:

• Lesson 1: Getting to Know PHP. This chapter introduces you
to what PHP is all about and gives some simple examples to
show how PHP is used inside a web page.

• Lesson 2: Variables. This chapter explains how you assign val-
ues to variables and demonstrates some simple expressions.

• Lesson 3: Flow Control. This chapter examines the conditional
and looping constructs that allow you to control the flow of a
PHP script.

• Lesson 4: Functions. This chapter explains how you can modu-
larize and reuse a frequently used section of code as a function.

01 0672327627 Intro 3/2/05 3:47 PM Page 1

2 Sams Teach Yourself PHP in 10 Minutes

Part II: Working with Data
The lessons in Part II examine in more detail the different types of data
that can be manipulated by PHP:

• Lesson 5: Working with Numbers. This chapter gives more
detailed examples of the numeric manipulation you can perform
in PHP.

• Lesson 6: Working with Strings. This chapter examines the
powerful set of string functions that PHP provides.

• Lesson 7: Working with Arrays. This chapter explains how
arrays work and examines the PHP functions that can manipu-
late this powerful data type.

• Lesson 8: Regular Expressions. This chapter shows how to
perform complex string manipulation by using powerful regular
expressions.

• Lesson 9: Working with Dates and Times. This chapter exam-
ines how to use date and time values in a PHP script.

• Lesson 10: Using Classes. This chapter introduces you to
object-oriented PHP and examines how you define and access a
class in a script.

Part III: The Web Environment
The lessons in Part III deal with using PHP specifically in the web envi-
ronment:

• Lesson 11: Processing HTML Forms. This chapter shows how
you use PHP to process user-submitted input from an HTML
form.

• Lesson 12: Generating Dynamic HTML. This chapter exam-
ines some techniques for creating HTML components on-the-fly
from PHP.

• Lesson 13: Form Validation. This chapter examines some tech-
niques for validating user-submitted input from an HTML form.

• Lesson 14: Cookies and Sessions. This chapter shows how to
pass data between pages by using PHP sessions and how to send
cookies to a user’s browser.

01 0672327627 Intro 3/2/05 3:47 PM Page 2

3Introduction

• Lesson 15: User Authentication. This chapter examines some
techniques for validating user-submitted input from an HTML
form.

• Lesson 16: Communicating with the Web Server. This chapter
looks at ways in which PHP can interact with a web server.

Part IV: Using Other Services from PHP
Part IV looks at how PHP can communicate with external programs and
services:

• Lesson 17: Filesystem Access. This chapter examines the PHP
functions that enable you to access the filesystem.

• Lesson 18: Host Program Execution. This chapter examines
the PHP functions that enable you to execute programs on the
host system.

• Lesson 19: Using a MySQL Database. This chapter shows how
to use a MySQL database for data storage and retrieval from
PHP.

• Lesson 20: Database Abstraction. This chapter explains how
you can access a database through an abstraction layer to make
scripts more portable.

• Lesson 21: Running PHP on the Command Line. This chap-
ter shows how you can use PHP as a powerful shell scripting
language.

• Lesson 22: Error Handling and Debugging. This chapter dis-
cusses some techniques for finding and fixing bugs in scripts.

Part V: Configuring and Extending PHP
The final part of the book deals with PHP administration:

• Lesson 23: PHP Configuration. This chapter explains some of
the popular configuration options that can be set at runtime to
change the behavior of PHP.

• Lesson 24: PHP Security. This chapter discusses security issues
in PHP scripts and shows how you can use Safe Mode on a
shared web server.

01 0672327627 Intro 3/2/05 3:47 PM Page 3

4 Sams Teach Yourself PHP in 10 Minutes

• Lesson 25: Using PEAR. This chapter introduces the freely
available classes that are available in the PHP Extension and
Application Repository.

Versions of Software Covered
At the time of writing, the current version of PHP is PHP 5.0.3. Unless
otherwise stated, all code examples in this book will work with PHP 4.1.0
and higher.

Conventions Used in This Book
This book uses different typefaces to differentiate between code and regu-
lar English, and also to help you identify important concepts.

Text that you type and text that should appear on your screen is presented
in monospace type.

It will look like this to mimic the way text looks on your

screen.

Placeholders for variables and expressions appear in monospace italic
font. You should replace the placeholder with the specific value it repre-
sents.

A Tip offers advice or teaches an easier way to do
something.

A Note presents interesting pieces of information
related to the surrounding discussion.

A Caution advises you about potential problems and
helps you steer clear of disaster.

01 0672327627 Intro 3/2/05 3:47 PM Page 4

LESSON 1
Getting to
Know PHP

In this lesson you will find out what PHP is all about and see what it is
able to do.

PHP Basics
There is a good chance you already know a bit about what PHP can do—
that is probably why you have picked up this book. PHP is hugely popu-
lar, and rightly so. Even if you haven’t come across an existing user
singing its praises, you’ve almost certainly used a website that runs on
PHP. This lesson clarifies what PHP does, how it works, and what it is
capable of.

PHP is a programming language that was designed for creating dynamic
websites. It slots into your web server and processes instructions con-
tained in a web page before that page is sent through to your web
browser. Certain elements of the page can therefore be generated on-the-
fly so that the page changes each time it is loaded. For instance, you can
use PHP to show the current date and time at the top of each page in your
site, as you’ll see later in this lesson.

The name PHP is a recursive acronym that stands for PHP: Hypertext
Preprocessor. It began life called PHP/FI, the “FI” part standing for
Forms Interpreter. Though the name was shortened a while back, one of
PHP’s most powerful features is how easy it becomes to process data sub-
mitted in HTML forms. PHP can also talk to various database systems,
giving you the ability to generate a web page based on a SQL query.

For example, you could enter a search keyword into a form field on a web
page, query a database with this value, and produce a page of matching

02 0672327627 CH01 3/2/05 3:47 PM Page 5

6 Lesson 1

results. You will have seen this kind of application many times before, at
virtually any online store as well as many websites that do not sell any-
thing, such as search engines.

The PHP language is flexible and fairly forgiving, making it easy to learn
even if you have not done any programming in the past. If you already
know another language, you will almost certainly find similarities here.
PHP looks like a cross between C, Perl, and Java, and if you are familiar
with any of these, you will find that you can adapt your existing program-
ming style to PHP with little effort.

Server-Side Scripting
The most important concept to learn when starting out with PHP is where
exactly it fits into the grand scheme of things in a web environment.
When you understand this, you will understand what PHP can and
cannot do.

The PHP module attaches to your web server, telling it that files with a
particular extension should be examined for PHP code. Any PHP code
found in the page is executed—with any PHP code replaced by the output
it produces—before the web page is sent to the browser.

The only time the PHP interpreter is called upon to do something is when
a web page is loaded. This could be when you click a link, submit a form,
or just type in the URL of a web page. When the web browser has fin-
ished downloading the page, PHP plays no further part until your browser
requests another page.

Because it is only possible to check the values entered in an HTML form
when the submit button is clicked, PHP cannot be used to perform

File Extensions The usual web server configuration is
that somefile.php will be interpreted by PHP, whereas
somefile.html will be passed straight through to the
web browser, without PHP getting involved.

02 0672327627 CH01 3/2/05 3:47 PM Page 6

7Getting to Know PHP

client-side validation—in other words, to check that the value entered in
one field meets certain criteria before allowing you to proceed to the next
field. Client-side validation can be done using JavaScript, a language that
runs inside the web browser itself, and JavaScript and PHP can be used
together if that is the effect you require.

The beauty of PHP is that it does not rely on the web browser at all; your
script will run the same way whatever browser you use. When writing
server-side code, you do not need to worry about JavaScript being enabled
or about compatibility with older browsers beyond the ability to display
HTML that your script generates or is embedded in.

PHP Tags
Consider the following extract from a PHP-driven web page that displays
the current date:

Today is <?php echo date(‘j F Y’);?>

The <?php tag tells PHP that everything that follows is program code
rather than HTML, until the closing ?> tag. In this example, the echo
command tells PHP to display the next item to screen; the following date
command produces a formatted version of the current date, containing the
day, month, and year.

The Statement Terminator The semicolon character
is used to indicate the end of a PHP command. In the
previous examples, there is only one command, and
the semicolon is not actually required, but it is good
practice to always include it to show that a command
is complete.

In this book PHP code appears inside tags that look like <?php ... ?>.
Other tag styles can be used, so you may come across other people’s PHP
code beginning with tags that look like <? (the short tag), <% (the ASP tag
style) or <SCRIPT LANGUAGE=”php”> (the script tag).

02 0672327627 CH01 3/2/05 3:47 PM Page 7

8 Lesson 1

Of the different tag styles that can be used, only the full <?php tag and the
script tag are always available. The others are turned off or on by using a
PHP configuration setting. We will look at the php.ini configuration file
in Lesson 23, “PHP Configuration.”

Anything that is not enclosed in PHP tags is passed straight through to the
browser, exactly as it appears in the script. Therefore, in the previous
example, the text Today is appears before the generated date when the
page is displayed.

Your First Script
Before you go any further, you need to make sure you can create and run
PHP scripts as you go through the examples in this book. This could be
on your own machine, and you can find instructions for installing PHP in
Appendix A, “Installing PHP.” Also, many web hosting companies include
PHP in their packages, and you may already have access to a suitable
piece of web space.

Go ahead and create a new file called time.php that contains Listing 1.1,
in a location that can be accessed by a PHP-enabled web server. This is a
slight variation on the date example shown previously.

LISTING 1.1 Displaying the System Date and Time
The time is
<?php echo date(‘H:i:s’);?>
and the date is
<?php echo date(‘j F Y’);?>

Standard PHP Tags It is good practice to always use
the <?php tag style so your code will run on any system
that has PHP installed, with no additional configura-
tion needed. If you are tempted to use <? as a short-
cut, know that any time you move your code to
another web server, you need to be sure it will under-
stand this tag style.

02 0672327627 CH01 3/2/05 3:47 PM Page 8

9Getting to Know PHP

When you enter the URL to this file in your web browser, you should see
the current date and time, according to the system clock on your web
server, displayed.

Running PHP Locally If you are running PHP from
your local PC, PHP code in a script will be executed
only if it is accessed through a web server that has the
PHP module enabled. If you open a local script directly
in the web browser—for instance, by double-clicking
or dragging and dropping the file into the browser—
it will be treated as HTML only.

If you entered Listing 1.1 exactly as shown, you might notice that the
actual output produced could be formatted a little better—there is no
space between the time and the word and. Any line in a script that only
contains code inside PHP tags will not take up a line of output in the gen-
erated HTML.

If you use the View Source option in your web browser, you can see the
exact output produced by your script, which should look similar to the fol-
lowing:

The time is
15:33:09and the date is
13 October 2004

If you insert a space character after ?>, that line now contains non-PHP
elements, and the output is spaced correctly.

Web Document Location If you were using a default
Apache installation in Windows, you would create
time.php in the folder C:\Program Files\Apache
Group\Apache\htdocs, and the correct URL would be
http://localhost/time.php.

02 0672327627 CH01 3/2/05 3:47 PM Page 9

10 Lesson 1

The echo Command
While PHP is great for embedding small, dynamic elements inside a web
page, in fact the whole page could consist of a set of PHP instructions to
generate the output if the entire script were enclosed in PHP tags.

The echo command is used to send output to the browser. Listing 1.1 uses
echo to display the result of the date command, which returns a string
that contains a formatted version of the current date. Listing 1.2 does the
same thing but uses a series of echo commands in a single block of PHP
code to display the date and time.

LISTING 1.2 Using echo to Send Output to the Browser
<?php
echo “The time is “;
echo date(‘H:i:s’);
echo “ and the date is “;
echo date(‘j F Y’);
?>

The non-dynamic text elements you want to output are contained in quo-
tation marks. Either double quotes (as used in Listing 1.2) or single
quotes (the same character used for an apostrophe) can be used to enclose
text strings, although you will see an important difference between the
two styles in Lesson 2, “Variables.” The following statements are equally
valid:

echo “The time is “;
echo ‘The time is ‘;

Notice that space characters are used in these statements inside the quota-
tion marks to ensure that the output from date is spaced away from the
surrounding text. In fact the output from Listing 1.2 is slightly different
from that for Listing 1.1, but in a web browser you will need to use View
Source to see the difference. The raw output from Listing 1.2 is as fol-
lows:

The time is 15:59:50 and the date is 13 October 2004

There are no line breaks in the page source produced this time. In a web
browser, the output looks just the same as for Listing 1.1 because in

02 0672327627 CH01 3/2/05 3:47 PM Page 10

11Getting to Know PHP

HTML all whitespace, including carriage returns and multiple space or
tab characters, is displayed as a single space in a rendered web page.

A newline character inside a PHP code block does not form part of the
output. Line breaks can be used to format the code in a readable way, but
several short commands could appear on the same line of code, or a long
command could span several lines—that’s why you use the semicolon to
indicate the end of a command.

Listing 1.3 is identical to Listing 1.2 except that the formatting makes this
script almost unreadable.

LISTING 1.3 A Badly Formatted Script That Displays the
Date and Time
<?php echo “The time is “; echo date(‘H:i:s’); echo
“ and the date is “
; echo date(
‘j F Y’
);
?>

Using Newlines If you wanted to send an explicit
newline character to the web browser, you could use
the character sequence \n. There are several character
sequences like this that have special meanings, and
you will see more of them in Lesson 6, “Working with
Strings.”

Comments
Another way to make sure your code remains readable is by adding com-
ments to it. A comment is a piece of free text that can appear anywhere in
a script and is completely ignored by PHP. The different comment styles
supported by PHP are shown in Table 1.1.

02 0672327627 CH01 3/2/05 3:47 PM Page 11

12 Lesson 1

TABLE 1.1 Comment Styles in PHP

Comment Description

// or # Single-line comment. Everything to the end of the
current line is ignored.

/* ... */ Single- or multiple-line comment. Everything
between /* and */ is ignored.

Listing 1.4 produces the same formatted date and time as Listings 1.1,
1.2, and 1.3, but it contains an abundance of comments. Because the com-
ments are just ignored by PHP, the output produced consists of only the
date and time.

LISTING 1.4 Using Comments in a Script
<?php
/* time.php

This script prints the current date
and time in the web browser

*/

echo “The time is “;
echo date(‘H:i:s’); // Hours, minutes, seconds

echo “ and the date is “;
echo date(‘j F Y’); // Day name, month name, year
?>

Listing 1.4 includes a header comment block that contains the filename
and a brief description, as well as inline comments that show what each
date command will produce.

Summary
In this lesson you have learned how PHP works in a web environment,
and you have seen what a simple PHP script looks like. In the next lesson
you will learn how to use variables.

02 0672327627 CH01 3/2/05 3:47 PM Page 12

LESSON 2
Variables

In this lesson you will learn how to assign values to variables in PHP and
use them in some simple expressions.

Understanding Variables
Variables—containers in which values can be stored and later retrieved—
are a fundamental building block of any programming language.

For instance, you could have a variable called number that holds the value
5 or a variable called name that holds the value Chris. The following PHP
code declares variables with those names and values:

$number = 5;
$name = “Chris”;

In PHP, a variable name is always prefixed with a dollar sign. If you
remember that, declaring a new variable is very easy: You just use an
equals symbol with the variable name on the left and the value you want
it to take on the right.

Declaring Variables Unlike in some programming
languages, in PHP variables do not need to be
declared before they can be used. You can assign a
value to a new variable name any time you want to
start using it.

Variables can be used in place of fixed values throughout the PHP lan-
guage. The following example uses echo to display the value stored in a
variable in the same way that you would display a piece of fixed text:

03 0672327627 CH02 3/2/05 3:48 PM Page 13

14 Lesson 2

$name = “Chris”;
echo “Hello, “;
echo $name;

The output produced is

Hello, Chris

Naming Variables
The more descriptive your variable names are, the more easily you will
remember what they are used for when you come back to a script several
months after you write it.

It is not usually a good idea to call your variables $a, $b, and so on. You
probably won’t remember what each letter stood for, if anything, for long.
Good variable names tell exactly what kind of value you can expect to
find stored in them (for example, $price or $name).

Variable names can contain only letters, numbers, and the underscore
character, and each must begin with a letter or underscore. Table 2.1
shows some examples of valid and invalid variable names.

TABLE 2.1 Examples of Valid and Invalid Variable Names

Valid Variable Names Invalid Variable Names

$percent $pct%

$first_name $first-name

$line_2 $2nd_line

Case-Sensitivity Variable names in PHP are case-
sensitive. For example, $name is a different variable
than $Name, and the two could store different values in
the same script.

03 0672327627 CH02 3/2/05 3:48 PM Page 14

15Variables

Expressions
When a variable assignment takes place, the value given does not have to
be a fixed value. It could be an expression—two or more values combined
using an operator to produce a result. It should be fairly obvious how the
following example works, but the following text breaks it down into its
components:

$sum = 16 + 30;
echo $sum;

The variable $sum takes the value of the expression to the right of the
equals sign. The values 16 and 30 are combined using the addition opera-
tor—the plus symbol (+)—and the result of adding the two values
together is returned. As expected, this piece of code displays the value 46.

To show that variables can be used in place of fixed values, you can per-
form the same addition operation on two variables:

$a = 16;
$b = 30;
$sum = $a + $b;
echo $sum;

The values of $a and $b are added together, and once again, the output
produced is 46.

Using Underscores Using the underscore character is
a handy way to give a variable a name that is made
up of two or more words. For example $first_name
and $date_of_birth are more readable for having
underscores in place.

Another popular convention for combining words is
to capitalize the first letter of each word—for exam-
ple, $FirstName and $DateOfBirth. If you prefer this
style, feel free to use it in your scripts but remember
that the capitalization does matter.

03 0672327627 CH02 3/2/05 3:48 PM Page 15

16 Lesson 2

Variables in Strings
You have already seen that text strings need to be enclosed in quotation
marks and learned that there is a difference between single and double
quotes.

The difference is that a dollar sign in a double-quoted string indicates that
the current value of that variable should become part of the string. In a
single-quoted string, on the other hand, the dollar sign is treated as a lit-
eral character, and no reference is made to any variables.

The following examples should help explain this. In the following exam-
ple, the value of variable $name is included in the string:

$name = “Chris”;
echo “Hello, $name”;

This code displays Hello, Chris.

In the following example, this time the dollar sign is treated as a literal,
and no variable substitution takes place:

$name = ‘Chris’;
echo ‘Hello, $name’;

This code displays Hello, $name.

Sometimes you need to indicate to PHP exactly where a variable starts
and ends. You do this by using curly brackets, or braces ({}). If you
wanted to display a weight value with a suffix to indicate pounds or
ounces, the statement might look like this:

echo “The total weight is {$weight}lb”;

If you did not use the braces around $weight, PHP would try to find the
value of $weightlb, which probably does not exist in your script.

You could do the same thing by using the concatenation operator, the
period symbol, which can be used to join two or more strings together, as
shown in the following example:

echo ‘The total weight is ‘ . $weight . ‘lb’;

03 0672327627 CH02 3/2/05 3:48 PM Page 16

17Variables

The three values—two fixed strings and the variable $weight—are simply
stuck together in the order in which they appear in the statement. Notice
that a space is included at the end of the first string because you want the
value of $weight to be joined to the word is.

If $weight has a value of 99, this statement will produce the following
output:

The total weight is 99lb

Data Types
Every variable that holds a value also has a data type that defines what
kind of value it is holding. The basic data types in PHP are shown in
Table 2.2.

TABLE 2.2 PHP Data Types

Data Type Description

Boolean A truth value; can be either TRUE or FALSE.

Integer A number value; can be a positive or negative
whole number.

Double (or float) A floating-point number value; can be any
decimal number.

String An alphanumeric value; can contain any num-
ber of ASCII characters.

When you assign a value to a variable, the data type of the variable is also
set. PHP determines the data type automatically, based on the value you
assign. If you want to check what data type PHP thinks a value is, you
can use the gettype function.

Running the following code shows that the data type of a decimal number
is double:

$value = 7.2;
echo gettype($value);

03 0672327627 CH02 3/2/05 3:48 PM Page 17

18 Lesson 2

The complementary function to gettype is settype, which allows you to
override the data type of a variable. If the stored value is not suitable to be
stored in the new type, it will be modified to the closest value possible.

The following code attempts to convert a string value into an integer:

$value = “22nd January 2005”;
settype($value, “integer”);
echo $value;

In this case, the string begins with numbers, but the whole string is not an
integer. The conversion converts everything up to the first nonnumeric
character and discards the rest, so the output produced is just the
number 22.

Type Juggling
Sometimes PHP will perform an implicit data type conversion if values
are expected to be of a particular type. This is known as type juggling.

For example, the addition operator expects to sit between two numbers.
String type values are converted to double or integer before the operation
is performed, so the following addition produces an integer result:

echo 100 + “10 inches”;

This expression adds 100 and 10, and it displays the result 110.

A similar thing happens when a string operator is used on numeric data. If
you perform a string operation on a numeric type, the numeric value is
converted to a string first. In fact, you already saw this earlier in this les-
son, with the concatenation operator—the value of $weight that was dis-
played was numeric.

Analyzing Data Types In practice, you will not use
settype and gettype very often because you will rarely
need to alter the data type of a variable. This book
covers this topic early on so that you are aware that
PHP does assign a data type to every variable.

03 0672327627 CH02 3/2/05 3:48 PM Page 18

19Variables

The result of a string operation will always be a string data type, even if it
looks like a number. The following example produces the result 69, but—
as gettype shows—$number contains a string value:

$number = 6 . 9;
echo $number;
echo gettype(6 . 9);

We will look at the powerful range of operators that are related to numeric
and string data types in PHP in Lessons 5, “Working with Numbers,” and
6, “Working with Strings.”

Variable Variables
It is possible to use the value stored in a variable as the name of another
variable. If this sounds confusing, the following example might help:

$my_age = 21;
$varname = “my_age”;
echo “The value of $varname is ${$varname}”;

The output produced is

The value of my_age is 21

Because this string is enclosed in double quotes, a dollar sign indicates
that a variable’s value should become part of the string. The construct
${$varname} indicates that the value of the variable named in $varname
should become part of the string and is known as a variable variable.

The braces around $varname are used to indicate that it should be refer-
enced first; they are required in double-quoted strings but are otherwise
optional. The following example produces the same output as the preced-
ing example, using the concatenation operator:

echo ‘The value of ‘ . $varname . ‘ is ‘ . $$varname;

Summary
In this lesson you have learned how variables work in PHP. In the next
lesson you will see how to use conditional and looping statements to con-
trol the flow of your script.

03 0672327627 CH02 3/2/05 3:48 PM Page 19

LESSON 3
Flow Control

In this lesson you will learn about the conditional and looping constructs
that allow you to control the flow of a PHP script.

In this chapter we’ll look at two types of flow control: conditional state-
ments, which tell your script to execute a section of code only if certain
criteria are met, and loops, which indicate a block of code that is to be
repeated a number of times.

Conditional Statements
A conditional statement in PHP begins with the keyword if, followed by
a condition in parentheses. The following example checks whether the
value of the variable $number is less than 10, and the echo statement dis-
plays its message only if this is the case:

$number = 5;
if ($number < 10) {

echo “$number is less than ten”;
}

The condition $number < 10 is satisfied if the value on the left of the <
symbol is smaller than the value on the right. If this condition holds true,
then the code in the following set of braces will be executed; otherwise,
the script jumps to the next statement after the closing brace.

Boolean Values Every conditional expression evalu-
ates to a Boolean value, and an if statement simply
acts on a TRUE or FALSE value to determine whether
the next block of code should be executed. Any zero
value in PHP is considered FALSE, and any nonzero
value is considered TRUE.

04 0672327627 CH03 3/2/05 3:48 PM Page 20

As it stands, the previous example will be TRUE because 5 is less than 10,
so the statement in braces is executed, and the corresponding output is
displayed. Now, if you change the initial value of $number to 10 or higher
and rerun the script, the condition fails, and no output is produced.

Braces are used in PHP to group blocks of code together. In a conditional
statement, they surround the section of code that is to be executed if the
preceding condition is true.

Brackets and Braces You will come across three types
of brackets when writing PHP scripts. The most com-
monly used terminology for each type is parentheses
(()), braces ({}), and square brackets ([]).

Braces are not required after an if statement. If they are omitted, the fol-
lowing single statement is executed if the condition is true. Any subse-
quent statements are executed, regardless of the status of the conditional.

Braces and Indentation Although how your code is
indented makes no difference to PHP, it is customary
to indent blocks of code inside braces with a few
space characters to visually separate that block from
other statements.

Even if you only want a condition or loop to apply to
one statement, it is still useful to use braces for clarity.
It is particularly important in order to keep things
readable when you’re nesting multiple constructs.

Conditional Operators
PHP allows you to perform a number of different comparisons, to check
for the equality or relative size of two values. PHP’s conditional operators
are shown in Table 3.1.

04 0672327627 CH03 3/2/05 3:48 PM Page 21

22 Lesson 3

TABLE 3.1 Conditional Operators in PHP

Operator Description

== Is equal to

=== Is identical to (is equal and is the same data type)

!= Is not equal to

!== Is not identical to

< Is less than

<= Is less than or equal to

> Is greater than

>= Is greater than or equal to

= or ==? Be careful when comparing for equality to
use a double equals symbol (==). A single = is always
an assignment operator and, unless the value assigned
is zero, your condition will always return true—and
remember that TRUE is any nonzero value. Always use
== when comparing two values to avoid headaches.

Logical Operators
You can combine multiple expressions to check two or more criteria in a
single conditional statement. For example, the following statement checks
whether the value of $number is between 5 and 10:

$number = 8;
if ($number >= 5 and $number <= 10) {

echo “$number is between five and ten”;
}

The keyword and is a logical operator, which signifies that the overall
condition will be true only if the expressions on either side are true. That
is, $number has to be both greater than or equal to 5 and less than or equal
to 10.

04 0672327627 CH03 3/2/05 3:48 PM Page 22

23Flow Control

Table 3.2 shows the logical operators that can be used in PHP.

TABLE 3.2 Logical Operators in PHP

Operator Name Description

! a NOT True if a is not true

a && b AND True if both a and b are true

a || b OR True if either a or b is true

a and b AND True if both a and b are true

a xor b XOR True if a or b is true, but not both

a or b OR True if either a or b is true

You may have noticed that there are two different ways of performing a
logical AND or OR in PHP. The difference between and and && (and
between or and ||) is the precedence used to evaluate expressions.

Table 3.2 lists the highest-precedence operators first. The following condi-
tions, which appear to do the same thing, are subtly but significantly dif-
ferent:

a or b and c
a || b and c

In the former condition, the and takes precedence and is evaluated first.
The overall condition is true if a is true or if both b and c are true.

In the latter condition, the || takes precedence, so c must be true, as must
either a or b, to satisfy the condition.

Operator Symbols Note that the logical AND and OR
operators are the double symbols && and ||, respec-
tively. These symbols, when used singularly, have a dif-
ferent meaning, as you will see in Lesson 5, “Working
with Numbers.”

04 0672327627 CH03 3/2/05 3:48 PM Page 23

24 Lesson 3

Multiple Condition Branches
By using an else clause with an if statement, you can specify an alter-
nate action to be taken if the condition is not met. The following example
tests the value of $number and displays a message that says whether it is
greater than or less than 10:

$number = 16;
if ($number < 10) {

echo “$number is less than ten”;
}
else {

echo “$number is more than ten”;
}

The else clause provides an either/or mechanism for conditional state-
ments. To add more branches to a conditional statement, the elseif key-
word can be used to add a further condition that is checked only if the
previous condition in the statement fails.

The following example uses the date function to find the current time of
day—date(“H”) gives a number between 0 and 23 that represents the
hour on the clock—and displays an appropriate greeting:

$hour = date(“H”);
if ($hour < 12) {

echo “Good morning”;
}
elseif ($hour < 17) {

echo “Good afternoon”;
}
else {

echo “Good evening”;
}

This code displays Good morning if the server time is between midnight
and 11:59, Good afternoon from midday to 4:59 p.m., and Good evening
from 5 p.m. onward.

Notice that the elseif condition only checks that $hour is less than 17 (5
p.m.). It does not need to check that the value is between 12 and 17
because the initial if condition ensures that PHP will not get as far as the
elseif if $hour is less than 12.

04 0672327627 CH03 3/2/05 3:48 PM Page 24

25Flow Control

The code in the else clause is executed if all else fails. For values of
$hour that are 17 or higher, neither the if nor the elseif condition will
be true.

elseif Versus else if In PHP you can also write
elseif as two words: else if. The way PHP interprets
this variation is slightly different, but its behavior is
exactly the same.

The switch Statement
An if statement can contain as many elseif clauses as you need, but
including many of these clauses can often create cumbersome code, and
an alternative is available. switch is a conditional statement that can have
multiple branches in a much more compact format.

The following example uses a switch statement to check $name against
two lists to see whether it belongs to a friend:

switch ($name) {
case “Damon”:
case “Shelley”:

echo “Welcome, $name, you are my friend”;
break;

case “Adolf”:
case “Saddam”:

echo “You are no friend of mine, $name”;
break;

default:
echo “I do not know who you are, $name”;

}

Each case statement defines a value for which the next block of PHP code
will be executed. If you assign your first name to $name and run this
script, you will be greeted as a friend if your name is Damon or Shelley,
and you will be told that you are not a friend if your name is either Adolf
or Saddam. If you have any other name, the script will tell you it does not
know who you are.

04 0672327627 CH03 3/2/05 3:48 PM Page 25

26 Lesson 3

There can be any number of case statements preceding the PHP code to
which they relate. If the value that is being tested by the switch statement
(in this case $name) matches any one of them, any subsequent PHP code
will be executed until a break command is reached.

Any other value for $name will cause the default code block to be exe-
cuted. As with an else clause, default is optional and supplies an action
to be taken if nothing else is appropriate.

Loops
PHP offers three types of loop constructs that all do the same thing—
repeat a section of code a number of times—in slightly different ways.

The while Loop
The while keyword takes a condition in parentheses, and the code block
that follows is repeated while that condition is true. If the condition is
false initially, the code block will not be repeated at all.

Breaking Out The break statement is important in a
switch statement. When a case statement has been
matched, any PHP code that follows will be exe-
cuted—even if there is another case statement check-
ing for a different value. This behavior can sometimes
be useful, but mostly it is not what you want—so
remember to put a break after every case.

Infinite Loops The repeating code must perform
some action that affects the condition in such a way
that the loop condition will eventually no longer be
met; otherwise, the loop will repeat forever.

04 0672327627 CH03 3/2/05 3:48 PM Page 26

27Flow Control

The following example uses a while loop to display the square numbers
from 1 to 10:

$count = 1;
while ($count <= 10) {

$square = $count * $count;
echo “$count squared is $square
”;
$count++;

}

The counter variable $count is initialized with a value of 1. The while
loop calculates the square of that number and displays it, then adds one to
the value of $count. The ++ operator adds one to the value of the variable
that precedes it.

The loop repeats while the condition $count <= 10 is true, so the first 10
numbers and their squares are displayed in turn, and then the loop ends.

The do Loop
The do loop is very similar to the while loop except that the condition
comes after the block of repeating code. Because of this variation, the
loop code is always executed at least once—even if the condition is ini-
tially false.

The following do loop is equivalent to the previous example, displaying
the numbers from 1 to 10, with their squares:

$count = 1;
do {

$square = $count * $count;
echo “$count squared is $square
”;
$count++;

} while ($count <= 10);

The for Loop
The for loop provides a compact way to create a loop. The following
example performs the same loop as the previous two examples:

for ($count = 1; $count <= 10; $count++) {
$square = $count * $count;
echo “$count squared is $square
”;

}

04 0672327627 CH03 3/2/05 3:48 PM Page 27

28 Lesson 3

As you can see, using for allows you to use much less code to do the
same thing as with while and do.

A for statement has three parts, separated by semicolons:

• The first part is an expression that is evaluated once when the
loop begins. In the preceding example, you initialized the value
of $count.

• The second part is the condition. While the condition is true, the
loop continues repeating. As with a while loop, if the condition
is false to start with, the following code block is not executed
at all.

• The third part is an expression that is evaluated once at the end
of each pass of the loop. In the previous example, $count is
incremented after each line of the output is displayed.

Nesting Conditions and Loops
So far you have only seen simple examples of conditions and loops.
However, you can nest these constructs within each other to create some
quite complex rules to control the flow of a script.

Breaking Out of a Loop
You have already learned about using the keyword break in a switch
statement. You can also use break in a loop construct to tell PHP to imme-
diately exit the loop and continue with the rest of the script.

The continue keyword is used to end the current pass of a loop. However,
unlike with break, the script jumps back to the top of the same loop and
continues execution until the loop condition fails.

Remember to Indent The more complex the flow
control in your script is, the more important it
becomes to indent your code to make it clear which
blocks of code correspond to which constructs.

04 0672327627 CH03 3/2/05 3:48 PM Page 28

29Flow Control

Summary
In this lesson you have learned how to vary the flow of your PHP script
by using conditional statements and loops. In the next lesson you will see
how to create reusable functions from blocks of PHP code.

04 0672327627 CH03 3/2/05 3:48 PM Page 29

LESSON 4
Functions

In this lesson you will learn how frequently used sections of code can be
turned into reusable functions.

Using Functions
A function is used to make a task that might consist of many lines of code
into a routine that can be called using a single instruction.

PHP contains many functions that perform a wide range of useful tasks.
Some are built in to the PHP language; others are more specialized and
are available only if certain extensions are activated when PHP is
installed.

The online PHP manual (www.php.net) is an invaluable reference. As well
as documentation for every function in the language, the manual pages are
also annotated with user-submitted tips and examples, and you can even
submit your own comments if you want.

Online Reference To quickly pull up the PHP manual
page for any function, use this shortcut:
www.php.net/function_name.

You have already used the date function to generate a string that contains
a formatted version of the current date. Let’s take a closer look at how that
example from Lesson 1, “Getting to Know PHP,” works. The example
looked like this:

echo date(‘j F Y’);

The online PHP manual gives the prototype for date as follows:

string date (string format [, int timestamp])

05 0672327627 CH04 3/2/05 3:48 PM Page 30

This means that date takes a string argument called format and, option-
ally, the integer timestamp. It returns a string value. This example sends j
F Y to the function as the format argument, but timestamp is omitted. The
echo command displays the string that is returned.

Defining Functions
In addition to the built-in functions, PHP allows you to define your own.
There are advantages to using your own function. Not only do you have to
type less when the same piece of code has to be executed several times
but a custom-defined function also makes your script easier to maintain. If
you want to change the way a task is performed, you only need to update
the program code once—in the function definition—rather than fix it
every place it appears in your script.

Prototypes Every function has a prototype that
defines how many arguments it takes, the arguments’
data types, and what value is returned. Optional argu-
ments are shown in square brackets ([]).

Modular Code Grouping tasks into functions is the
first step toward modularizing your code—something
that is especially important to keep your scripts man-
ageable as they grow in size and become more com-
plex.

The following is a simple example that shows how a function is defined
and used in PHP:

function add_tax($amount) {
$total = $amount * 1.09;
return $total;

}

$price = 16.00;
echo “Price before tax: $price
”;

05 0672327627 CH04 3/2/05 3:48 PM Page 31

32 Lesson 4

echo “Price after tax: “;
echo add_tax($price);

The function keyword defines a function called add_tax that will execute
the code block that follows. The code that makes up a function is always
contained in braces. Putting $amount in parentheses after the function
name stipulates that add_tax takes a single argument that will be stored in
a variable called $amount inside the function.

The first line of the function code is a simple calculation that multiplies
$amount by 1.09—which is equivalent to adding 9% to that value—and
assigns the result to $total. The return keyword is followed by the value
that is to be returned when the function is called from within the script.

Running this example produces the following output:

Price before tax: 16
Price after tax: 17.44

This is an example of a function that you might use in many places in a
web page; for instance, on a page that lists all the products available in an
online store, you would call this function once for each item that is dis-
played to show the after-tax price. If the rate of tax changes, you only
need to change the formula in add_tax to alter every price displayed on
that page.

Arguments and Return Values
Every function call consists of the function name followed by a list of
arguments in parentheses. If there is more than one argument, the list
items are separated with commas. Some functions do not require any
arguments at all, but a pair of parentheses is still required—even if there
are no arguments contained in them.

The built-in function phpinfo generates a web page that contains a lot of
information about the PHP module. This function does not require any
arguments, so it can be called from a script that is as simple as

<?php phpinfo();?>

05 0672327627 CH04 3/2/05 3:48 PM Page 32

33Functions

If you create this script and point a web browser at it, you will see a web
page that contains system information and configuration settings.

Returning Success or Failure
Because phpinfo generates its own output, you do not need to prefix it
with echo, but, for the same reason, you cannot assign the web page it
produces to a variable. In fact, the return value from phpinfo is the inte-
ger value 1.

The following example uses the mail function to attempt to send an email
from a PHP script. The first three arguments to mail specify the recipi-
ent’s email address, the message subject, and the message body. The
return value of mail is used in an if condition to check whether the func-
tion was successful:

if (mail(“chris@lightwood.net”,
“Hello”, “This is a test email”)) {

echo “Email was sent successfully”;
}
else {

echo “Email could not be sent”;
}

If the web server that this script is run on is not properly configured to
send email, or if there is some other error when trying to send, mail will
return zero, indicating that the email could not be sent. A nonzero value
indicates that the message was handed off to your mail server for sending.

Returning True and False Functions that do not have
an explicit return value usually use a return code to
indicate whether their operation has completed suc-
cessfully. A zero value (FALSE) indicates failure, and a
nonzero value (TRUE) indicates success.

05 0672327627 CH04 3/2/05 3:48 PM Page 33

34 Lesson 4

Default Argument Values
The mail function is an example of a function that takes multiple argu-
ments; the recipient, subject, and message body are all required. The pro-
totype for mail also specifies that this function can take an optional fourth
argument, which can contain additional mail headers.

Calling mail with too few arguments results in a warning. For instance, a
script that contains the following:

mail(“chris@lightwood.net”, “Hello”);

will produce a warning similar to this:

Warning: mail() expects at least 3 parameters, 2 given in
/home/chris/mail.php on line 3

However, the following two calls to mail are both valid:

mail(“chris@lightwood.net”, “Hello”, “This is a test email”);

mail(“chris@lightwood.net”, “Hello”, “This is a test email”,
“Cc: editor@samspublishing.com”);

To have more than one argument in your own function, you simply use a
comma-separated list of variable names in the function definition. To
make one of these arguments optional, you assign it a default value in the
argument list, the same way you would assign a value to a variable.

The following example is a variation of add_tax that takes two argu-
ments—the net amount and the tax rate to add on. $rate has a default
value of 10, so it is an optional argument:

function add_tax_rate($amount, $rate=10) {
$total = $amount * (1 + ($rate / 100));
return($total);

}

Return Values Although you will not always need to
test the return value of every function, you should be
aware that every function in PHP does return some
value.

05 0672327627 CH04 3/2/05 3:48 PM Page 34

35Functions

Using this function, the following two calls are both valid:

add_tax_rate(16);
add_tax_rate(16, 9);

The first example uses the default rate of 10%, whereas the second exam-
ple specifies a rate of 9% to be used—producing the same behavior as the
original add_tax function example.

Variable Scope
The reason values have to be passed in to functions as arguments has to
do with variable scope—the rules that determine what sections of script
are able to access which variables.

The basic rule is that any variables defined in the main body of the script
cannot be used inside a function. Likewise, any variables used inside a
function cannot be seen by the main script.

Optional Arguments All the optional arguments to a
function must appear at the end of the argument list,
with the required values passed in first. Otherwise,
PHP will not know which arguments you are passing
to the function.

Scope Variables available within a function are said
to be local variables or that their scope is local to that
function. Variables that are not local are called global
variables.

Local and global variables can have the same name
and contain different values, although it is best to try
to avoid this to make your script easier to read.

When called, add_tax calculates $total, and this is the value returned.
However, even after add_tax is called, the local variable $total is unde-
fined outside that function.

05 0672327627 CH04 3/2/05 3:48 PM Page 35

36 Lesson 4

The following piece of code attempts to display the value of a global vari-
able from inside a function:

function display_value() {
echo $value;

}

$value = 125;
display_value();

If you run this script, you will see that no output is produced because
$value has not been declared in the local scope.

To access a global variable inside a function, you must use the global
keyword at the top of the function code. Doing so overrides the scope of
that variable so that it can be read and altered within the function. The fol-
lowing code shows an example:

function change_value() {
global $value;
echo “Before: $value
”;
$value = $value * 2;

}
$value = 100;
display_value();
echo “After: $value
”;

The value of $value can now be accessed inside the function, so the out-
put produced is as follows:

Before: 100
After: 200

Using Library Files
After you have created a function that does something useful, you will
probably want to use it again in other scripts. Rather than copy the func-
tion definition into each script that needs to use it, you can use a library
file so that your function needs to be stored and maintained in only one
place.

Before you go any further, you should create a library file called tax.php
that contains both the add_tax and add_tax_rate functions but no other
PHP code.

05 0672327627 CH04 3/2/05 3:48 PM Page 36

37Functions

Including Library Files
To incorporate an external library file into another script, you use the
include keyword. The following includes tax.php so that add_tax can be
called in that script:

include “tax.php”;
$price = 95;
echo “Price before tax: $price
”;
echo “Price after tax: “;
echo add_tax($price);

Using Library Files A library file needs to enclose its
PHP code inside <?php tags just like a regular script;
otherwise, the contents will be displayed as HTML
when they are included in a script.

You can use the include_once keyword if you want to make sure that a
library file is loaded only once. If a script attempts to define the same
function a second time, an error will result. Using include_once helps to
avoid this, particularly when files are being included from other library
files. It is often useful to have a library file that includes several other
files, each containing a few functions, rather than one huge library file.

The include path Setting By default, include
searches only the current directory and a few system
locations for files to be included. If you want to
include files from another location, you can use a path
to the file.

You can extend the include path to include other
locations without a path being required by changing
the value of the include_path setting. Refer to Lesson
23, “PHP,” for more information.

05 0672327627 CH04 3/2/05 3:48 PM Page 37

38 Lesson 4

Summary
In this lesson you have learned how to use functions to modularize your
code. In the next lesson you will learn about ways to work with numeric
data in PHP.

Require The require and require_once instructions
work in a similar way to include and include_once but
have subtly different behavior. In the event of an
error, include generates a warning, but the script car-
ries on running as best it can. A failure from a require
statement causes the script to exit immediately.

05 0672327627 CH04 3/2/05 3:48 PM Page 38

LESSON 5
Working with
Numbers

In this lesson you will learn about some of the numeric manipulations you
can perform in PHP.

Arithmetic
As you would expect, PHP includes all the basic arithmetic operators. If
you have not used another programming language, the symbols used
might not all be obvious, so we’ll quickly run through the basic rules of
arithmetic in PHP.

Arithmetic Operators
Addition is performed with the plus symbol (+). This example adds 6 and
12 together and displays the result:

echo 6 + 12;

Subtraction is performed with the minus symbol (-), which is also used as
a hyphen. This example subtracts 5 from 24:

echo 24 - 5;

The minus symbol can also be used to negate a number (for example, –20).

Multiplication is performed with the asterisk symbol (*). This example dis-
plays the product of 4 and 9:

echo 4 * 9;

Division is performed with the forward slash symbol (/). This example
divides 48 by 12:

echo 48 / 12;

06 0672327627 CH05 3/2/05 3:48 PM Page 39

40 Lesson 5

Division When you divide two integers, the result is
an integer if it divides exactly. Otherwise, it is a dou-
ble. A fractional result is not rounded to an integer.

Modulus is performed by using the percent symbol (%). This example dis-
plays 3—the remainder of 21 divided by 6:

echo 21 % 6;

Modulus The modulus operator can be used to test
whether a number is odd or even by using $number %
2. The result will be 0 for all even numbers and 1 for
all odd numbers (because any odd number divided by
2 has a remainder of 1).

Incrementing and Decrementing
In PHP you can increment or decrement a number by using a double plus
(++) or double minus (--) symbol. The following statements both add one
to $number:

$number++;

++$number;

The operator can be placed on either side of a variable, and its position
determines at what point the increment takes place.

This statement subtracts one from $countdown before displaying the
result:

echo --$countdown;

However, the following statement displays the current value of
$countdown before decrementing it:

echo $countdown--;

06 0672327627 CH05 3/2/05 3:48 PM Page 40

41Working with Numbers

The increment and decrement operators are commonly used in loops. The
following is a typical for loop, using a counter to repeat a section of code
10 times:

for ($count=1; $count<=10; $count++) {
echo “Count = $count
”;

}

In this case, the code simply outputs the value of $count for each pass of
the loop.

Compound Operators
Compound operators provide a handy shortcut when you want to apply an
arithmetic operation to an existing variable. The following example uses
the compound addition operator to add six to the current value of $count:

$count += 6;

The effect of this is to take the initial value of $count, add six to it, and
then assign it back to $count. In fact, the operation is equivalent to doing
the following:

$count = $count + 6;

All the basic arithmetic operators have corresponding compound opera-
tors, as shown in Table 5.1.

TABLE 5.1 Compound Operators

Operator Equivalent To

$a += $b $a = $a + $b;

$a -= $b $a = $a - $b;

$a *= $b $a = $a * $b;

$a /= $b $a = $a / $b;

$a %= $b $a = $a % $b;

06 0672327627 CH05 3/2/05 3:48 PM Page 41

42 Lesson 5

Operator Precedence
The rules governing operator precedence specify the order in which
expressions are evaluated. For example, the following statement is
ambiguous:

echo 3 * 4 + 5;

Are 3 and 4 multiplied together, and then 5 is added to the result, giving a
total of 17? Or are 4 and 5 added together first and multiplied by 3, giving
27? Running this statement in a script will show you that in PHP, the
result is 17.

The reason is that multiplication has a higher precedence than addition, so
when these operators appear in the same expression, multiplication takes
place first, using the values that immediately surround the multiplication
operator.

To tell PHP that you explicitly want the addition to take place first, you
can use parentheses, as in the following example:

echo 3 * (4 + 5);

In this case, the result is 27.

In PHP, the precedence of arithmetic operators follows the PEMDAS rule
that you may have learned at school: parentheses, exponentiation, multi-
plication/division, and addition/subtraction.

The full operator precedence list for PHP, including many operators you
haven’t come across yet, can be found in the online manual at
www.php.net/manual/en/language.operators.php.

Numeric Data Types
You have already seen that PHP assigns a data type to each value and that
the numeric data types are integer and double, for whole numbers.

To check whether a value is either of these types, you use the is_float
and is_int functions. Likewise, to check for either numeric data type in
one operation, you can use is_numeric.

06 0672327627 CH05 3/2/05 3:48 PM Page 42

43Working with Numbers

The following example contains a condition that checks whether the value
of $number is an integer:

$number = “28”;
if (is_int($number)) {

echo “$number is an integer”;
}
else {

echo “$number is not an integer”;
}

Because the actual declaration of that variable assigns a string value—
albeit one that contains a number—the condition fails.

Although $number in the previous example is a string, PHP is flexible
enough to allow this value to be used in numeric operations. The follow-
ing example shows that a string value that contains a number can be
incremented and that the resulting value is an integer:

$number = “6”;
$number++;
echo “$number has type “ . gettype($number);

Understanding NULLs
The value NULL is a data type all to itself—a value that actually has no
value. It has no numeric value, but comparing to an integer value zero
evaluates to true:

$number = 0;
$empty=NULL;
if ($number == $empty) {

echo “The values are the same”;
}

Type Comparisons If you want to check that both
the values and data types are the same in a condition,
you use the triple equals comparison operator (===).

06 0672327627 CH05 3/2/05 3:48 PM Page 43

44 Lesson 5

Numeric Functions
Let’s take a look at some of the numeric functions available in PHP.

Rounding Numbers
There are three different PHP functions for rounding a decimal number to
an integer.

You use ceil or floor to round a number up or down to the nearest inte-
ger, respectively. For example, ceil(1.3) returns 2, whereas floor(6.8)
returns 6.

Negative Rounding Note the way that negative
numbers are rounded. The result of floor(-1.1) is
-2—the next lowest whole number numerically—not
-1. Similarly, ceil(-2.5) returns -2.

To round a value to the nearest whole number, you use round. A fractional
part under .5 will be rounded down, whereas .5 or higher will be rounded
up. For example, round(1.3) returns 1, whereas round(1.5) returns 2.

The round function can also take an optional precision argument. The fol-
lowing example displays a value rounded to two decimal places:

$score = 0.535;
echo round($score, 2);

The value displayed is 0.54; the third decimal place being 5 causes the
final digit to be rounded up.

You can also use round with a negative precision value to round an integer
to a number of significant figures, as in the following example:

$distance = 2834;
echo round($distance, -2);

06 0672327627 CH05 3/2/05 3:48 PM Page 44

45Working with Numbers

Comparisons
To find the smallest and largest of a group of numbers, you use min and
max, respectively. These functions take two or more arguments and return
the numerically lowest or highest element in the list, respectively.

This statement will display the larger of the two variables $a and $b:

echo max($a, $b);

There is no limit to the number of arguments that can be compared. The
following example finds the lowest value from a larger set of values:

echo min(6, 10, 23, 3, 88, 102, 5, 44);

Not surprisingly, the result displayed is 3.

Random Numbers
You use rand to generate a random integer, using your system’s built-in
random number generator. The rand function optionally takes two argu-
ments that specify the range of numbers from which the random number
will be picked.

The following statement picks a random number between 1 and 10 and
displays it:

echo rand(1, 10);

You can put this command in a script and run it a few times to see that the
number changes each time it is run.

There is really no such thing as a computer-generated random number. In
fact, numbers are actually picked from a very long sequence that has very

Random Limit The constant RAND_MAX contains the
highest random number value that can be generated
on your system. This value may vary between different
platforms.

06 0672327627 CH05 3/2/05 3:48 PM Page 45

46 Lesson 5

similar properties to true random numbers. To make sure you always start
from a different place in this sequence, you have to seed the random num-
ber generator by calling the srand function; no arguments are required.

Random Algorithms PHP includes another random
number generator, known as Mersenne Twister, that is
considered to produce better random results than
rand. To use this algorithm, you use the functions
mt_rand and mt_srand.

Mathematical Functions
PHP includes many mathematical functions, including trigonometry, loga-
rithms, and number base conversions. As you will rarely need to use these
in a web environment, those functions are not covered in this book.

To find out about a function that performs a specific mathematical pur-
pose, refer to the online manual at www.php.net/manual/en/ref.math.php.

Summary
In this lesson you have learned how to work with numbers. In the next
lesson you will learn all about string handling in PHP.

06 0672327627 CH05 3/2/05 3:48 PM Page 46

LESSON 6
Working with
Strings

In this lesson you will learn about some of the powerful string functions
that are included in the PHP language.

Anatomy of a String
A string is a collection of characters that is treated as a single entity. In
PHP, strings are enclosed in quotation marks, and you can declare a string
type variable by assigning it a string that is contained in either single or
double quotes.

The following examples are identical; both create a variable called
$phrase that contains the phrase shown:

$phrase = “The sky is falling”;
$phrase = ‘The sky is falling’;

Quote Characters Quotation marks in PHP do not
point in a direction. The same symbol is used to start a
string as to indicate the end. You must use two apos-
trophe characters (‘) around a single-quoted string—
do not use backtick characters (`).

Escaping Characters with Backslash
Double quotes can be used within single-quoted strings and vice versa.
For instance, these string assignments are both valid:

$phrase = “It’s time to party!”;
$phrase = ‘So I said, “OK”’;

07 0672327627 CH06 3/2/05 3:48 PM Page 47

48 Lesson 6

However, if you want to use the same character within a quoted string,
you must escape that quote by using a backslash. The following examples
demonstrate this:

$phrase = ‘It\’s time to party!”;
$phrase = “So I said, \”OK\””;

In the previous examples, if the backslash were not used, PHP would mis-
match the quotes, and an error would result.

Which style of quoting you use largely depends on personal preference
and, hopefully, a desire to create tidy code. Remember, though, as you
saw in Lesson 2, “Variables,” that a variable prefixed with a dollar sign
inside a double-quoted string is replaced with its values, whereas in a
single-quoted string, the dollar sign and variable name appear verbatim.

If you want a dollar sign to form part of a double-quoted string, you can
also escape this by using a backslash. For example, the following two
statements are equivalent:

$offer = ‘Save $10 on first purchase’;
$offer = “Save \$10 on first purchase”;

Without the backslash, the second example would attempt to find the
value of a variable called $10, which is, in fact, an illegal variable name.

The backslash character can also be used in a double-quoted string to
indicate some special values inside strings. When followed by a three-
digit number, it indicates the ASCII character with that octal value.

You can send the common nonprintable ASCII characters by using stan-
dard escape characters. A newline is \n, tab is \t, and so on. Refer to man
ascii on your system or www.ascii.cl for a comprehensive list.

Concatenation
You have already seen how strings can be joined using the period symbol
as a concatenation operator. A compound version of this operator, .=, can
be used to append a string to an existing variable.

The following example builds up a string in stages and then displays the
result:

07 0672327627 CH06 3/2/05 3:48 PM Page 48

49Working with Strings

$phrase = “I want “;
$phrase .= “to teach “;
$phrase .= “the world “;
$phrase .= “to sing”;
echo $phrase;

The phrase appears as expected. Note the use of spaces after teach and
world to ensure that the final string is correctly spaced.

Comparing Strings
You can compare string values simply by using the standard comparison
operators. To check whether two strings are equal, you use the double
equals (==) sign:

if ($password == “letmein”)
echo “You have a guessable password”;

The equality operator, when applied to strings, performs a case-sensitive
comparison. In the previous example, any other capitalization of
$password, such as LetMeIn, would not pass this test.

The inequality operators—<, <=, >, and >=—perform a comparison based
on the ASCII values of the individual characters in the strings. The fol-
lowing condition could be used to divide people into two groups, based
on their last name—those with names beginning A–M and those begin-
ning N–Z:

if ($last_name < “N”)
echo “You are in group 1”;

else
echo “You are in group 2”;

ASCII Values Because string comparisons are done on
their underlying ASCII values, all lowercase letters
have higher values than their equivalent uppercase
letters. Letters a–z have values 97–122, whereas A–Z
occupy values 65–90.

07 0672327627 CH06 3/2/05 3:48 PM Page 49

50 Lesson 6

Formatting Strings
PHP provides a powerful way of creating formatted strings, using the
printf and sprintf functions. If you have used this function in C, these
will be quite familiar to you, although the syntax in PHP is a little
different.

Using printf
You use printf to display a formatted string. At its very simplest, printf
takes a single string argument and behaves the same as echo:

printf(“Hello, world”);

The power of printf, however, lies in its ability to substitute values into
placeholders in a string. Placeholders are identified by the percent charac-
ter (%), followed by a format specification character.

The following example uses the simple format specifier %f to represent a
float number.

$price = 5.99;
printf(“The price is %f”, $price);

The second argument to printf is substituted in place of %f, so the fol-
lowing output is produced:

The price is 5.99

There is actually no limit to the number of substitution arguments in a
printf statement, as long as there are an equivalent number of placehold-
ers in the string to be displayed. The following example demonstrates this
by adding in a string item:

$item = “The Origin of Species”;
$price = 5.99;
printf(“The price of %s is %f”, $item, $price);

Table 6.1 shows the format characters that can be used with the printf
function in PHP to indicate different types of values.

07 0672327627 CH06 3/2/05 3:48 PM Page 50

51Working with Strings

TABLE 6.1 printf Format Characters

Character Meaning

b A binary (base 2) number

c The ASCII character with the numeric value of the
argument

d A signed decimal (base 10) integer

e A number displayed in scientific notation (for example,
2.6e+3)

u An unsigned decimal integer

f A floating-point number

o An octal (base 8) number

s A string

x A hexadecimal (base 16) number with lowercase letters

X A hexadecimal (base 16) number with uppercase letters

Suppose you use the %d format specifier instead of %f to display the value
of $price:

$price = 5.99;
printf(“As a decimal, the price is %d”, $price);

In this case, PHP will treat the argument passed as an integer, so only the
whole part of the value will be displayed. The output produced is as fol-
lows.

As a decimal, the price is 5

Decimals The %d format string represents a decimal
integer, with decimal referring to base 10 numbers
and not decimal points. There are different format
specifiers to display numbers in base 16 (hex, %x), base
8 (octal, %o), and base 2 (binary, %b).

07 0672327627 CH06 3/2/05 3:48 PM Page 51

52 Lesson 6

Format Codes
A format specifier can also include optional elements to specify the
padding, alignment, width, and precision of the value to be displayed.
This allows you to carry out some very powerful formatting.

The width specifier indicates how many characters the formatted value
should occupy in the displayed string and appears between the percent
sign and the type specifier. For instance, the following example ensures
that the name displayed takes up exactly 10 characters:

$name1 = “Tom”;
$name2 = “Dick”;
$name3 = “Harry”;
echo “<PRE>”;
printf(“%10s \n”, $name1);
printf(“%10s \n”, $name2);
printf(“%10s \n”, $name3);
echo “</PRE>”;

Padding These examples use <PRE> tags to make sure
that multiple spaces used for padding are displayed
onscreen. Usually a web browser will treat multiple
adjacent whitespace characters as a single space.

String padding is not used very often in creating
dynamic web pages. However, it is useful when you’re
producing plain-text output, such as generated email
text, in PHP.

If you run this example through a web browser, you will see that each
name displayed is indented from the left of the screen by the correct num-
ber of characters to make each name right-aligned with the others.

The default behavior is to right-align to the given width. However, you
can reverse this by using the minus symbol as an alignment specifier. To
left-align the strings in the previous example, you would use the format
specifier %-10s. Although visibly this would not appear any different from
simply using %s, the strings would be padded on the right with spaces to a
length of 10 characters.

07 0672327627 CH06 3/2/05 3:48 PM Page 52

53Working with Strings

You can change the padding character from a space to any other character
by placing that character before the width value, prefixed with a single
quotation mark. The following example ensures that a five-digit order
number is always displayed padded with zeros if necessary:

$order = 201;
printf(“Order number: %’05d”, $order);

The output produced is as follows:

Order number: 00201

The precision specifier is used with a floating-point number to specify the
number of decimal places to display. The most common usage is with cur-
rency values, to ensure that the two cent digits always appear, even in a
whole dollar amount.

The precision value follows the optional width specifier and is indicated
by a period followed by the number of decimal places to display. The fol-
lowing example uses %.2f to display a currency value with no width spec-
ifier:

$price = 6;
printf(“The price is %.2f”, $price);

The price is correctly formatted as follows:

The price is 6.00

Float Widths With floats, the width specifier indi-
cates only the width of the number before the deci-
mal point. For example, %6.2f will actually be nine
characters long, with the period and two decimal
places.

Using sprintf
The sprintf function is used to assign formatted strings to variables. The
syntax is the same as for printf, but rather than being output as the
result, the formatted value is returned by the function as a string.

07 0672327627 CH06 3/2/05 3:48 PM Page 53

54 Lesson 6

For example, to assign a formatted price value to a new variable, you
could do the following:

$new_price = sprintf(“%.2f”, $price);

All the format specifier rules that apply to printf also apply to sprintf.

String Functions
Let’s take a look at some of the other string functions available in PHP.
The full list of string functions can be found in the online manual, at
www.php.net/manual/en/ref.strings.php.

Capitalization
You can switch the capitalization of a string to all uppercase or all lower-
case by using strtoupper or strtolower, respectively.

The following example demonstrates the effect this has on a mixed-case
string:

$phrase = “I love PHP”;
echo strtoupper($phrase) . “
”;
echo strtolower($phrase) . “
”;

The result displayed is as follows:

I LOVE PHP
i love php

If you wanted to functions capitalize only the first character of a string,
you use ucfirst:

$phrase = “welcome to the jungle”;
echo $ucfirst($phrase);

You can also capitalize the first letter of each word—which is useful for
names—by using ucwords:

$phrase = “green bay packers”;
echo ucwords($phrase);

07 0672327627 CH06 3/2/05 3:48 PM Page 54

55Working with Strings

Neither ucfirst nor ucwords affects characters in the string that are
already in uppercase, so if you want to make sure that all the other char-
acters are lowercase, you must combine these functions with strtolower,
as in the following example:

$name = “CHRIS NEWMAN”;
echo ucwords(strtolower($name));

Dissecting a String
The substr function allows you to extract a substring by specifying a start
position within the string and a length argument. The following example
shows this in action:

$phrase = “I love PHP”;
echo substr($phrase, 3, 5);

This call to substr returns the portion of $phrase from position 3 with a
length of 5 characters. Note that the position value begins at zero, not one,
so the actual substring displayed is ove P.

If the length argument is omitted, the value returned is the substring from
the position given to the end of the string. The following statement pro-
duces love PHP for $phrase:

echo substr($phrase, 2);

If the position argument is negative, substr counts from the end of the
string. For example, the following statement displays the last three charac-
ters of the string—in this case, PHP:

echo substr($phrase, -3);

If you need to know how long a string is, you use the strlen function:

echo strlen($phrase);

To find the position of a character or a string within another string, you
can use strpos. The first argument is often known as the haystack, and
the second as the needle, to indicate their relationship.

07 0672327627 CH06 3/2/05 3:48 PM Page 55

56 Lesson 6

The following example displays the position of the @ character in an email
address:

$email = “chris@lightwood.net”;
echo strpos($email, “@”);

String Positions Remember that the character posi-
tions in a string are numbered from the left, starting
from zero. Position 1 is actually the second character
in the string. When strpos finds a match at the begin-
ning of the string compared, the return value is zero,
but when no match is found, the return value is FALSE.

You must check the type of the return value to deter-
mine this difference. For instance, the condition
strpos($a, $b) === 0 holds true only when $b
matches $a at the first character.

The strstr function extracts a portion of a string from the position at
which a character or string appears up to the end of the string. This is a
convenience function that saves your using a combination of strpos and
substr.

The following two statements are equivalent:

$domain = strstr($email, “@”);

$domain = strstr($email, strpos($email, “@”));

Summary
In this lesson you have learned how to work with strings in PHP. In the
next lesson you will examine how regular expressions are used to perform
pattern matching on strings.

07 0672327627 CH06 3/2/05 3:48 PM Page 56

LESSON 7
Working
with Arrays

In this lesson you will learn how to use arrays in PHP to store and
retrieve indexed data.

What Is an Array?
An array is a variable type that can store and index a set of values. An
array is useful when the data you want to store has something in common
or is logically grouped into a set.

Creating and Accessing Arrays
Suppose you wanted to store the average temperature for each month of
the year. Using single-value variables—also known as scalar variables—
you would need 12 different variables—$temp_jan, $temp_feb, and so
on—to store the values. By using an array, you can use a single variable
name to group the values together and let an index key indicate which
month each value refers to.

The following PHP statement declares an array called $temps and assigns
it 12 values that represent the temperatures for January through
December:

$temps = array(38, 40, 49, 60, 70, 79,
84, 83, 76, 65, 54, 42);

The array $temps that is created contains 12 values that are indexed with
numeric key values from 0 to 11. To reference an indexed value from an
array, you suffix the variable name with the index key. To display March’s
temperature, for example, you would use the following:

echo $temps[2];

08 0672327627 CH07 3/2/05 3:49 PM Page 57

58 Lesson 7

The square brackets syntax can also be used to assign values to array ele-
ments. To set a new value for November, for instance, you could use the
following:

$temps[10] = 56;

Index Numbers Because index values begin at zero
by default, the value for March—the third month—is
contained in the second element of the array.

The array Function The array function is a shortcut
function that quickly builds an array from a supplied
list of values, rather than adding each element in
turn.

If you omit the index number when assigning an array element, the next
highest index number will automatically be used. Starting with an empty
array $temps, the following code would begin to build the same array as
before:

$temps[] = 38;
$temps[] = 40;
$temps[] = 49;
...

In this example, the value 38 would be assigned to $temps[0], 40 to
$temps[1], and so on. If you want to make sure that these assignments
begin with $temps[0], it’s a good idea to initialize the array first to make
sure there is no existing data in that array. You can initialize the $temps
array with the following command:

$temps = array();

08 0672327627 CH07 3/2/05 3:49 PM Page 58

59Working with Arrays

Outputting the Contents of an Array
PHP includes a handy function, print_r, that can be used to recursively
output all the values stored in an array. The following script defines the
array of temperature values and then displays its contents onscreen:

$temps = array(38, 40, 49, 60, 70, 79,
84, 83, 76, 65, 54, 42);

print “<PRE>”;
print_r($temps);
print “</PRE>”;

The <PRE> tags are needed around print_r because the output generated
is text formatted with spaces and newlines. The output from this example
is as follows:

Array
(

[0] => 38
[1] => 40
[2] => 49
[3] => 60
[4] => 70
[5] => 79
[6] => 84
[7] => 83
[8] => 76
[9] => 65
[10] => 54
[11] => 42

)

print_r The print_r function can be very useful
when you’re developing scripts, although you will
never use it as part of a live website. If you are ever
unsure about what is going on in an array, using
print_r can often shed light on the problem very
quickly.

08 0672327627 CH07 3/2/05 3:49 PM Page 59

60 Lesson 7

Looping Through an Array
You can easily replicate the way print_r loops through every element in
an array by using a loop construct to perform another action for each
value in the array.

By using a while loop, you can find all the index keys and their values
from an array—similar to using the print_r function—as follows:

while (list($key, $value) = each($temps)) {
echo “Key $key has value $val
”;

}

For each element in the array, the index key value will be stored in $key
and the value in $value.

PHP also provides another construct for traversing arrays in a loop, using
a foreach construct. Whether you use a while or foreach loop is a matter
of preference; you should use whichever you find easiest to read.

The foreach loop equivalent to the previous example is as follows:

foreach($temps as $key => $value) {
...

}

Loops You may have realized that with the $temps
example, a for loop counting from 0 to 11 could also
be used to find the value of every element in the
array. However, although that technique would work
in this situation, the keys in an array may not always
be sequential and, as you will see in the next section,
may not even be numeric.

Associative Arrays
The array examples so far in this chapter have used numeric keys. An
associative array allows you to use textual keys so that the indexes can be
more descriptive.

08 0672327627 CH07 3/2/05 3:49 PM Page 60

61Working with Arrays

To assign a value to an array by using an associative key and to reference
that value, you simply use a textual key name enclosed in quotes, as in the
following examples:

$temps[“jan”] = 38;
echo $temps[“jan”];

To define the complete array of average monthly temperatures in this way,
you can use the array function as before, but you indicate the key value
as well as each element. You use the => symbol to show the relationship
between a key and its value:

$temps = array(“jan” => 38, “feb” => 40, “mar” => 49,
“apr” => 60, “may” => 70, “jun” => 79,
“jul” => 84, “aug” => 83, “sep” => 76,
“oct” => 65, “nov” => 54, “dec” => 42);

The elements in an associative array are stored in the order in which they
are defined (you will learn about sorting arrays later in this lesson), and
traversing this array in a loop will find the elements in the order defined.
You can call print_r on the array to verify this. The first few lines of out-
put are as follows:

Array
(

[jan] => 38
[feb] => 40
[mar] => 49

...

Array Functions
You have already seen the array function used to generate an array from
a list of values. Now let’s take a look at some of the other functions PHP
provides for manipulating arrays.

There are many more array functions in PHP than this book can cover. If
you need to perform a complex array operation that you have not learned
about, refer to the online documentation at www.php.net/ref.array.

08 0672327627 CH07 3/2/05 3:49 PM Page 61

62 Lesson 7

Sorting
To sort the values in an array, you use the sort function or one of its
derivatives, as in the following example:

sort($temps);

Sorting Functions sort and other related functions
take a single array argument and sort that array. The
sorted array is not returned; the return value indicates
success or failure.

Sorting the original $temps array with sort arranges the values into
numeric order, but the key values are also renumbered. After you perform
the sort, index 0 of the array will contain the lowest value from the array,
and there is no way of telling which value corresponds to each month.

You can use asort to sort an array while maintaining the key associations,
whether it is an associative array or numerically indexed. After you sort
$temps, index 0 will still contain January’s average temperature, but if you
loop through the array, the elements will be retrieved in sorted order.

Using the associative array $temps as an example, the following code dis-
plays the months and their average temperatures, from coldest to hottest:

$temps = array(“jan” => 38, “feb” => 40, “mar” => 49,
“apr” => 60, “may” => 70, “jun” => 79,
“jul” => 84, “aug” => 83, “sep” => 76,
“oct” => 65, “nov” => 54, “dec” => 42);

asort($temps);
foreach($temps as $month => $temp) {

print “$month: $temp
\n”;
}

It is also possible to sort an array on the keys rather than on the element
values, by using ksort. Using ksort on the associative $temps array
arranges the elements alphabetically on the month name keys. Therefore,
when you loop through the sorted array, the first value fetched would be
$temps[“apr”], followed by $temps[“aug”], and so on.

08 0672327627 CH07 3/2/05 3:49 PM Page 62

63Working with Arrays

To reverse the sort order for any of these functions, you use rsort in
place of sort. The reverse of asort is arsort, and the reverse of ksort is
krsort. To reverse the order of an array as it stands without sorting, you
simply use array_reverse.

Randomizing an Array
As well as sorting the values of an array into order, PHP provides func-
tions so that you can easily randomize elements in an array.

The shuffle function works in a similar way to the sorting functions: It
takes a single array argument and shuffles the elements in that array into a
random order. As with sort, the key associations are lost, and the shuffled
values will always be indexed numerically.

Set Functions
By treating an array as a set of values, you can perform set arithmetic by
using PHP’s array functions.

To combine the values from different arrays (a union operation), you use
the array_merge function with two or more array arguments, as in the fol-
lowing example:

$union = array_merge($array1, $array2, $array3, ...);

A new array is returned that contains all the elements from the listed
arrays. In this example, the $union array will contain all the elements in
$array1, followed by all the elements in $array2, and so on.

To remove duplicate values from any array, you use array_unique so that
if two different index keys refer to the same value, only one will be kept.

The array_intersect function performs an intersection on two arrays.
The following example produces a new array, $intersect, that contains
all the elements from $array1 that are also present in $array2:

$intersect = array_intersect($array1, $array2);

08 0672327627 CH07 3/2/05 3:49 PM Page 63

64 Lesson 7

To find the difference between two sets, you can use the array_diff func-
tion. The following example returns the array $diff, which contains only
elements from $array1 that are not present in $array2:

$diff = array_diff($array1, $array2);

Looking Inside Arrays
The count function returns the number of elements in an array. It takes a
single array argument. For example, the following statement shows that
there are 12 values in the $temps array:

echo count($temps);

To find out whether a value exists within an array without having to write
a loop to search through every value, you can use in_array or
array_search. The first argument is the value to search for, and the sec-
ond is the array to look inside:

if (in_array(“PHP”, $languages)) {
...

}

The difference between these functions is the return value. If the value
exists within the array, array_search returns the corresponding key,
whereas in_array returns only a Boolean result.

Needle in a Haystack Somewhat confusingly, the
order of the needle and haystack arguments to
in_array and array_search is opposite that of string
functions, such as strpos and strstr.

To check whether a particular key exists in an array, you use
array_key_exists. The following example determines whether the
December value of $temps has been set:

if (array_key_exists(“dec”, $temps)) {
...

}

08 0672327627 CH07 3/2/05 3:49 PM Page 64

65Working with Arrays

Serializing
The serialize function creates a textual representation of the data an
array holds. This is a powerful feature that gives you the ability to easily
write the contents of a PHP array to a database or file.

Lessons 17, “Filesystem Access,” and 19, “Using a MySQL Database,”
deal with the specifics of filesystem and database storage. For now let’s
just take a look at how serialization of an array works.

Calling serialize with an array argument returns a string that represents
the keys and values in that array, in a structured format. You can then
decode that string by using the unserialize function to return the origi-
nal array.

The serialized string that represents the associative array $temps is as fol-
lows:

a:12:{s:3:”jan”;i:38;s:3:”feb”;i:40;s:3:”mar”;i:49;
s:3:”apr”;i:60; s:3:”may”;i:70;s:3:”jun”;
i:79;s:3:”jul”;i:84;s:3:”aug”;i:83;s:3:”sep”;
si:76;s:3:”oct”;i:65;s:3:”nov”;i:54;s:3:”dec”;i:42;}

You can probably figure out how this string is structured, and the only
argument you would ever pass to unserialize is the result of a serialize
operation—there is no point in trying to construct it yourself.

Multidimensional Arrays
It is possible—and often very useful—to use arrays to store two-dimen-
sional or even multidimensional data.

Accessing Two-Dimensional Data
In fact, a two-dimensional array is an array of arrays. Suppose you were
to use an array to store the average monthly temperature, by year, using
two key dimensions—the month and the year. You might display the aver-
age temperature from February 1995 as follows:

echo $temps[1995][“feb”];

08 0672327627 CH07 3/2/05 3:49 PM Page 65

66 Lesson 7

Because $temps is an array of arrays, $temps[1995] is an array of temper-
atures, indexed by month, and you can reference its elements by adding
the key name in square brackets.

Defining a Multidimensional Array
Defining a multidimensional array is fairly straightforward, as long as you
remember that what you are working with is actually an array that con-
tains more arrays.

You can initialize values by using references to the individual elements, as
follows:

$temps[1995][“feb”] = 41;

You can also define multidimensional arrays by nesting the array function
in the appropriate places. The following example defines the first few
months for three years (the full array would clearly be much larger than
this):

$temps = array (
1995 => array (“jan” => 36, “feb” => 42, “mar” => 51),
1996 => array (“jan” => 37, “feb” => 42, “mar” => 49),
1997 => array (“jan” => 34, “feb” => 40, “mar” => 50));

The print_r function can follow as many dimensions as an array con-
tains, and the formatted output will be indented to make each level
of the hierarchy readable. The following is the output from the three-
dimensional $temps array just defined:

Array
(

[1995] => Array
(

[jan] => 36
[feb] => 42
[mar] => 51

)

[1996] => Array
(

[jan] => 37
[feb] => 42

08 0672327627 CH07 3/2/05 3:49 PM Page 66

67Working with Arrays

[mar] => 49
)

[1997] => Array
(

[jan] => 34
[feb] => 40
[mar] => 50

)

)

Summary
In this lesson you have learned how to create arrays of data and manipu-
late them. The next lesson examines how regular expressions are used to
perform pattern matching on strings.

08 0672327627 CH07 3/2/05 3:49 PM Page 67

LESSON 8
Regular
Expressions

In this lesson you will learn about advanced string manipulation using
regular expressions. You will see how to use regular expressions to vali-
date a string and to perform a search-and-replace operation.

Introducing Regular Expressions
Using regular expressions—sometimes known as regex—is a powerful
and concise way of writing a rule that identifies a particular string format.
Because they can express quite complex rules in only a few characters, if
you have not come across them before, regular expressions can look very
confusing indeed.

At its very simplest, a regular expression can be just a character string,
where the expression matches any string that contains those characters in
sequence. At a more advanced level, a regular expression can identify
detailed patterns of characters within a string and break a string into com-
ponents based on those patterns.

Types of Regular Expression
PHP supports two different types of regular expressions: the POSIX-
extended syntax—which is examined in this lesson—and the Perl-
Compatible Regular Expression (PCRE). Both types perform the same
function, using a different syntax, and there is really no need to know how
to use both types. If you are already familiar with Perl, you may find it
easier to use the PCRE functions than to learn the POSIX syntax.

Documentation for PCRE can be found online at www.php.net/manual/
en/ref.pcre.php.

09 0672327627 CH08 3/2/05 3:49 PM Page 68

Using ereg
The ereg function in PHP is used to test a string against a regular expres-
sion. Using a very simple regex, the following example checks whether
$phrase contains the substring PHP:

$phrase = “I love PHP”;
if (ereg(“PHP”, $phrase)) {

echo “The expression matches”;
}

If you run this script through your web browser, you will see that the
expression does indeed match $phrase.

Regular expressions are case-sensitive, so if the expression were in lower-
case, this example would not find a match. To perform a non-case-
sensitive regex comparison, you can use eregi:

if (eregi(“php”, $phrase)) {
echo “The expression matches”;

}

Testing Sets of Characters
As well as checking that a sequence of characters appears in a string, you
can test for a set of characters by enclosing them in square brackets. You
simply list all the characters you want to test, and the expression matches
if any one of them occurs.

The following example is actually equivalent to the use of eregi shown
earlier in this lesson:

Performance The regular expressions you have seen
so far perform basic string matching that can also be
performed by the functions you learned about in
Lesson 6, “Working with Strings,” such as strstr. In
general, a script will perform better if you use string
functions in place of ereg for simple string compar-
isons.

09 0672327627 CH08 3/2/05 3:49 PM Page 69

70 Lesson 8

if (ereg(“[Pp][Hh][Pp]”, $phrase)) {
echo “The expression matches”;

}

This expression checks for either an uppercase or lowercase P, followed
by an uppercase or lowercase H, followed by an uppercase or lower-
case P.

You can also specify a range of characters by using a hyphen between two
letters or numbers. For example, [A-Z] would match any uppercase letter,
and [0-4] would match any number between zero and four.

The following condition is true only if $phrase contains at least one
uppercase letter:

if (ereg(“[A-Z]”, $phrase)) ...

The ^ symbol can be used to negate a set so that the regular expression
specifies that the string must not contain a set of characters. The following
condition is true only if $phrase contains at least one non-numeric char-
acter:

if (ereg(“[^0-9]”, $phrase)) ...

Common Character Classes
You can use a number of sets of characters when using regex. To test for
all alphanumeric characters, you would need a regular expression that
looks like this:

[A-Za-z0-9]

The character class that represents the same set of characters can be repre-
sented in a much clearer fashion:

[[:alnum:]]

The [: and :] characters indicate that the expression contains the name of
a character class. The available classes are shown in Table 8.1.

09 0672327627 CH08 3/2/05 3:49 PM Page 70

71Regular Expressions

TABLE 8.1 Character Classes for Use in Regular Expressions

Class Name Description

alnum All alphanumeric characters, A–Z, a–z, and 0–9

alpha All letters, A–Z and a–z

digit All digits, 0–9

lower All lowercase characters, a–z

print All printable characters, including space

punct All punctuation characters—any printable character
that is not a space or alnum

space All whitespace characters, including tabs and new-
lines

upper All uppercase letters, A–Z

Testing for Position
All the expressions you have seen so far find a match if that expression
appears anywhere within the compared string. You can also test for posi-
tion within a string in a regular expression.

The ^ character, when not part of a character class, indicates the start of
the string, and $ indicates the end of the string. You could use the follow-
ing conditions to check whether $phrase begins or ends with an alpha-
betic character, respectively:

if (ereg(“^[a-z]”, $phrase)) ...

if (ereg(“[a-z]$”, $phrase)) ...

If you want to check that a string contains only a particular pattern, you
can sandwich that pattern between ^ and $. For example, the following
condition checks that $number contains only a single numeric digit:

if (ereg(“^[[:digit:]]$”, $number) ...

09 0672327627 CH08 3/2/05 3:49 PM Page 71

72 Lesson 8

Wildcard Matching
The dot or period (.) character in a regular expression is a wildcard—it
matches any character at all. For example, the following condition
matches any four-letter word that contains a double o:

if (ereg(“^.oo.$”, $word)) ...

The ^ and $ characters indicate the start and end of the string, and each
dot can be any character. This expression would match the words book
and tool, but not buck or stool.

The Dollar Sign If you want to look for a literal $
character in a regular expression, you must delimit the
character as \$ so that it is not treated as the end-of-
line indicator.

When your expression is in double quotes, you must
use \\$ to double-delimit the character; otherwise, the
$ sign may be interpreted as the start of a variable
identifier.

Wildcards A regular expression that simply contains
a dot matches any string that contains at least one
character. You must use the ^ and $ characters to indi-
cate length limits on the expression.

Repeating Patterns
You have now seen how to test for a particular character or for a set or
class of characters within a string, as well as how to use the wildcard
character to define a wide range of patterns in a regular expression. Along
with these, you can use another set of characters to indicate where a pat-
tern can or must be repeated a number of times within a string.

09 0672327627 CH08 3/2/05 3:49 PM Page 72

73Regular Expressions

You can use an asterisk (*) to indicate that the preceding item can appear
zero or more times in the string, and you can use a plus (+) symbol to
ensure that the item appears at least once.

The following examples, which use the * and + characters, are very simi-
lar to one another. They both match a string of any length that contains
only alphanumeric characters. However, the first condition also matches
an empty string because the asterisk denotes zero or more occurrences of
[[:alnum::]]:

if (ereg(“^[[:alnum:]]*$”, $phrase)) ...

if (ereg(“^[[:alnum:]]+$”, $phrase)) ...

To denote a group of matching characters that should repeat, you use
parentheses around them. For example, the following condition matches a
string of any even length that contains alternating letters and numbers:

if (ereg(“^([[:alpha:]][[:digit:]])+$”, $string)) ...

This example uses the plus symbol to indicate that the letter/number
sequence could repeat one or more times. To specify a fixed number of
times to repeat, the number can be given in braces. A single number or a
comma-separated range can be given, as in the following example:

if (ereg(“^([[:alpha:]][[:digit:]]){2,3}$”, $string)) ...

This expression would match four or six character strings that contain
alternating letters and numbers. However, a single letter and number or a
longer combination would not match.

The question mark (?) character indicates that the preceding item may
appear either once or not at all. The same behavior could be achieved by
using {0,1} to specify the number of times to repeat a pattern.

Some Practical Examples
You use regex mostly to validate user input in scripts, to make sure that a
value entered is acceptable. The following are some practical examples of
using regular expressions.

09 0672327627 CH08 3/2/05 3:49 PM Page 73

74 Lesson 8

Zip Codes
If you have a customer’s zip code stored in $zip, you might want to check
that it has a valid format. A U.S. zip code always consists of five numeric
digits, and it can optionally be followed by a hyphen and four more digits.
The following condition validates a zip code in this format:

if (ereg(“^[[:digit:]]{5}(-[[:digit:]]{4})?$”, $zip)) ...

The first part of this regular expression ensures that $zip begins with five
numeric digits. The second part is in parentheses and followed by a ques-
tion mark, indicating that this part is optional. The second part is defined
as a hyphen character followed by four digits.

Regardless of whether the second part appears, the $ symbol indicates the
end of the string, so there can be no other characters other than those
allowed by the expression if this condition is to be satisfied. Therefore,
this condition matches a zip code that looks like either 90210 or 90210-
1234.

Telephone Numbers
You might want to enforce the format of a telephone number to ensure
that it looks like (555)555-5555. There are no optional parts to this for-
mat. However, because the parentheses characters have a special meaning
for regex, they have to be escaped with a backslash.

The following condition validates a telephone number in this format:

if (ereg(“^\([[:digit:]]{3}\)[[:digit:]]{3}-[[:digit:]]{4}$”,
$telephone)) ...

Email Addresses
You need to consider many variables when validating an email address. At
the very simplest level, an email address for a .com domain name looks
like somename@somedomain.com.

However, there are many variations, including top-level domain names
that are two characters, such as .ca, or four characters, such as .info.

09 0672327627 CH08 3/2/05 3:49 PM Page 74

75Regular Expressions

Some country-specific domains have a two-part extension, such as .co.uk
or .com.au.

As you can see, a regular expression rule to validate an email address
needs to be quite forgiving. However, by making some general assump-
tions about the format of an email address, you can still create a rule that
rejects many badly formed addresses.

There are two main parts to an email address, and they are separated by
an @ symbol. The characters that can appear to the left of the @ sym-
bol—usually the recipient’s mailbox name—can be alphanumeric and can
contain certain symbols.

Let’s assume that the mailbox part of an email address can consist of any
characters except for the @ symbol itself and can be any length. Rather
than try to list all the acceptable characters you can think of—for
instance, should you allow an apostrophe in an email address?—it is usu-
ally good enough to enforce that email address can contain only one @
character and that anything up to that character is a valid mailbox name.

For the regex rule, you can define that the domain part of an email
address consists of two or more parts, separated by dots. You can also
assume that the last part may only be between two and four characters in
length, which is sufficient for all top-level domain names currently in use.

The set of characters that can be used in parts of the domain is more
restrictive than the mailbox name—only lowercase alphanumeric charac-
ters and a hyphen can be used.

Taking these assumptions into consideration, you can come up with the
following condition to test the validity of an email address:

if (ereg(“^[^@]+@([a-z0-9\-]+\.)+[a-z]{2,4}$”, $email)) ...

This regular expression breaks down as follows: any number of characters
followed by an @ symbol, followed by one or more parts consisting of
only lowercase letters, numbers, or a hyphen. Each of those parts ends
with a dot, and the final part must be between two and four letters in
length.

09 0672327627 CH08 3/2/05 3:49 PM Page 75

76 Lesson 8

Breaking a String into Components
You have used parentheses to group together parts of a regular expression
to indicate a repeating pattern. You can also use parentheses to indicate
subparts of an expression, and ereg allows you to break a pattern into
components based on the parentheses.

When an optional third argument is passed to ereg, that variable is
assigned an array of values that correspond to the parts of the pattern
identified by the parentheses in the regular expression.

Let’s use the email address regular expression as an example. The follow-
ing code includes three sets of parentheses to isolate the mailbox name,
domain name (apart from the extension), and domain extension:

$email = “chris@lightwood.net”;
if (ereg(“^([^@]+)@([a-z\-]+\.)+([a-z]{2,4})$”,

$email, $match)) {
echo “Mailbox: “ . $match[1] . “
”;
echo “Domain name: “ . $match[2] . “
”;
echo “Domain type: “ . $match[3] . “
”;

}
else {

echo “Email address is invalid”;
}

If you run this script in a web browser, you get output similar to the fol-
lowing:

Mailbox: chris
Domain name: lightwood.
Domain type: net

How Far to Go This expression could be even further
refined. For instance, a domain name cannot begin
with a hyphen and has a maximum length of 63 char-
acters. However, for the purpose of catching mistyped
email addresses, this expression is more than
sufficient.

09 0672327627 CH08 3/2/05 3:49 PM Page 76

77Regular Expressions

Note that the first key of $match refers to the first pattern found. The array
keys are numbered from zero, as usual; however, $match[0] contains the
entire matched pattern.

Searching and Replacing
You can use regular expressions to perform search and replace operations
on a string with the ereg_replace function. Its three arguments are a
regex search pattern, the replacement string, and the string to replace into.
The modified string is returned.

str_replace If you want to perform a simple string
replace operation that does not require a regular
expression, you can use str_replace instead of
ereg_replace. str_replace is more efficient because
PHP does not even have to consider that you might be
looking for a regular expression.

For example, to blank out a telephone number before displaying a string,
you could use the following:

echo ereg_replace(
“\([[:digit:]]{3}\)[[:digit:]]{3}-[[:digit:]]{4}$”,

“(XXX)XXX-XXXX”, $string);

Just like you can use eregi in place of ereg, to perform a non-case-
sensitive search and replace using regex, you can use eregi_replace.

Summary
In this lesson you have learned the basics of regular expressions. If you
want to find out more, you can refer to Sams Teach Yourself Regular
Expressions in 10 Minutes by Ben Forta.

In the next lesson you will learn how to handle date and time values
in PHP.

09 0672327627 CH08 3/2/05 3:49 PM Page 77

LESSON 9
Working with
Dates and
Times

In this lesson you will learn how to store, display, and manipulate date
and time values in PHP.

Date Formats
PHP does not have a native date data type, so in order to store date values
in a script, you must first decide on the best way to store these values.

Do-It-Yourself Date Formats
Although you often see dates written in a structured format, such as
05/03/1974 or 2001-12-31, these are not ideal formats for working with
date values. However, the latter of these two is more suitable than the first
because the order of its components is from most significant (the year) to
the least significant (the day), so values can be compared using the usual
PHP operators.

As a string, 2002-01-01 is greater than 2001-12-31, but because compar-
isons are performed more efficiently on numbers than on strings, this
could be written better as just 20020201, where the format is YYYYMMDD.
This format can be extended to include a time portion—again, with the
most significant elements first—as YYYYMMDDHHMMSS, for example.

However, date arithmetic with this format is nearly impossible. While you
can add one to 20040501, for instance, and find the next day in that
month, simply adding one to 20030531 would result in a nonsense date of
May 32.

10 0672327627 CH09 3/2/05 3:49 PM Page 78

Unix Timestamp Format
The Unix timestamp format is an integer representation of a date and
time. It is a value that counts the number of seconds since midnight on
January 1, 1970.

The Unix Epoch A timestamp with integer value zero
represents precisely midnight, Greenwich Mean Time
(GMT), on January 1, 1970. This date is known as the
Unix Epoch.

Right now, we have a 10-digit date and time timestamp. To find the cur-
rent timestamp, you use the time function:

echo time();

The Unix timestamp format is useful because it is very easy to perform
calculations on because you know that the value always represents a num-
ber of seconds. For example, you can just add 3,600 to a timestamp value
to increase the time by one hour or add 86,400 to add one day—because
there are 3,600 seconds in an hour and 86,400 seconds in a day.

One drawback, however, is that the Unix timestamp format cannot handle
dates prior to 1970. Although some systems may be able to use a negative
timestamp value to count backward from the Epoch, this behavior cannot
be relied on.

Timestamps are good for representing contemporary date values, but they
may not always be suitable for handling dates of birth or dates of histori-
cal significance. You should consider what values you will be working
with when deciding whether a timestamp is the correct format to use.

Timestamp Limitations The maximum value of a
Unix timestamp depends on the system’s architecture.
Most systems use a 32-bit integer to store a time-
stamp, making the latest time it can represent 3:14am
on January 19, 2038.

10 0672327627 CH09 3/2/05 3:49 PM Page 79

80 Lesson 9

Working with Timestamps
There are times when using your own date format is beneficial, but in
most cases a timestamp is the best choice. Let’s look at how PHP interacts
with the timestamp date format.

Formatting Dates
In Lesson 1, “Getting to Know PHP,” you used the date function to dis-
play the current date by passing a format string as the argument, such as
in the following example:

echo date(“j F Y H:i:s”);

The date displayed looks something like this:

12 November 2004 10:23:55

The optional second argument to date is a timestamp value of the date
that you want to display. For example, to display the date when a time-
stamp first requires a 10-digit number, you could use the following:

echo date(“j F Y H:I:s”, 1000000000);

The list of format codes for the date function is shown in Table 9.1.

TABLE 9.1 Format Codes for date

Code Description

a Lowercase am or pm

A Uppercase AM or PM

d Two-digit day of month, 01–31

D Three-letter day name, Mon–Sun

F Full month name, January–December

g 12-hour hour with no leading zero, 1–12

G 24-hour hour with no leading zero, 0–23

h 12-hour hour with leading zero, 01–12

10 0672327627 CH09 3/2/05 3:49 PM Page 80

81Working with Dates and Times

H 24-hour hour with leading zero, 00–23

I Minutes with leading zero, 00–59

j Day of month with no leading zero, 1–31

l Full day name, Monday–Sunday

m Month number with leading zeros, 01–12

M Three letter month name, Jan–Dec

n Month number with no leading zeros, 1–12

s Seconds with leading zero, 00–59

S Ordinal suffix for day of month, st, nd, rd, or th

w Number of day of week, 0–6, where 0 is Sunday

W Week number, 0–53

y Two-digit year number

Y Four-digit year number

z Day of year, 0–365

Creating Timestamps
Don’t worry; you don’t have to count from January 1, 1970, each time
you want to calculate a timestamp. The PHP function mktime returns a
timestamp based on given date and time values.

The arguments, in order, are the hour, minute, second, month, day, and
year. The following example would assign $timestamp the timestamp
value for 8 a.m. on December 25, 2001:

$timestamp = mktime(8, 0, 0, 12, 25, 2001);

The Unix timestamp format counts from January 1, 1970, at midnight
GMT. The mktime function returns a timestamp relative to the time zone

Code Description

10 0672327627 CH09 3/2/05 3:49 PM Page 81

82 Lesson 9

in which your system operates. For instance, mktime would return a time-
stamp value 3,600 higher when running on a web server in Texas than on
a machine in New York with the same arguments.

Daylight Saving Time If you are only concerned with
the date part of a timestamp, the first three argu-
ments to mktime only matter if they are close to mid-
night at a time of the year when daylight saving time
is a factor.

For instance, when the clocks are moved back one
hour, that day is only 23 hours long. Adding 86,400
seconds to a timestamp that represents midnight on
that day will actually move the day part of the time-
stamp forward two days. You can use midday instead
of midnight as the time element to avoid these issues.

The mktime function is forgiving if you supply it with nonsense argu-
ments, such as a day of the month that doesn’t exist. For instance, if you
try to calculate a timestamp for February 29 in a non-leap year, the value
returned will actually represent March 1, as the following statement con-
firms:

echo date(“d/m/Y”, mktime(12, 0, 0, 2, 29, 2003));

You can exploit this behavior as a way of performing date and time arith-
metic. Consider the following example, which calculates and displays the
date and time 37 hours after midday on December 30, 2001:

$time = mktime(12 + 37, 0, 0, 12, 30, 2001);
echo date(“d/m/Y H:i:s”, $time);

Greenwich Mean Time To obtain timestamp values
that are always relative to GMT—the time in London
when there is no daylight saving time adjustment—
you use gmmktime instead of mktime.

10 0672327627 CH09 3/2/05 3:49 PM Page 82

83Working with Dates and Times

By simply adding a constant to one of the arguments in mktime, you can
shift the timestamp value returned by that amount. The date and time dis-
play as follows:

01/01/2002 01:00:00

The value returned in this example has correctly shifted the day, month,
year, and hour values, taking into account the number of days in
December and that December is the last month of the year.

Converting Other Date Formats to Timestamps
If you have a date stored in a format like DD-MM-YYYY, it’s a fairly simple
process to convert this to a timestamp by breaking up the string around
the hyphen character. The explode function takes a delimiter argument
and a string and returns an array that contains each part of the string that
was separated by the given delimiter.

The following example breaks a date in this format into its components
and builds a timestamp from those values:

$date = “03-05-1974”;
$parts = explode(“/”, $date);
$timestamp = mktime(12, 0, 0,

$parts[1], $parts[0], $parts[2]);

For many date formats, there is an even easier way to create a time-
stamp—using the function strtotime. The following examples all display
the same valid timestamp from a string date value:

$timestamp = strtotime(“3 May 04”);
$timestamp = strtotime(“3rd May 2004”);
$timestamp = strtotime(“May 3, 2004”);
$timestamp = strtotime(“3-may-04”);
$timestamp = strtotime(“2004-05-03”);
$timestamp = strtotime(“05/03/2004”);

Note that in the last examples, the date format given is MM/DD/YYYY, not
DD/MM/YYYY. You can find the complete list of formats that are acceptable
to strtotime at www.gnu.org/software/tar/manual/html_chapter/
tar_7.html.

10 0672327627 CH09 3/2/05 3:49 PM Page 83

84 Lesson 9

Getting Information About a Timestamp
You can use the date function to return part or all of the date that a time-
stamp represents as a formatted string, but PHP also provides the getdate
function, which returns useful values from a timestamp.

Taking a single timestamp argument, getdate returns an associative array
that contains the indexes shown in Table 9.2.

TABLE 9.2 Key Elements Returned by getdate

Key Description

seconds Seconds, 0–59

minutes Minutes, 0–59

hours Hours, 0–23

mday Day of the month, 0–31

wday Day of the week, 0–6, where 0 is Sunday

yday Day of the year, 0–365

mon Month number, 0–12

year Four-digit year number

weekday Full day name, Sunday–Saturday

month Full month name, January–December

The following example uses getdate to determine whether the current
date falls on a weekday or weekend:

$now = getdate();
switch ($now[wday]) {

case 0: // Sunday
case 6: // Saturday

echo “It’s the weekend”;
break;

default: echo “It’s a weekday”;
}

10 0672327627 CH09 3/2/05 3:49 PM Page 84

85Working with Dates and Times

Note that when getdate is called without a timestamp argument, it returns
an array that contains the elements in Table 9.2 for the current time.

Summary
In this lesson you have learned how to store and manipulate date and time
values in PHP. In the next lesson you will learn about classes in PHP, and
you will discover how to use third-party library classes that you down-
load.

10 0672327627 CH09 3/2/05 3:49 PM Page 85

LESSON 10
Using Classes

In this lesson you will learn the basics of object-oriented PHP. You will
see how a class is defined and how you can access methods and proper-
ties from third-party classes.

Object-Oriented PHP
PHP can, if you want, be written in an object-oriented (OO) fashion.
In PHP5, the OO functionality of the language has been enhanced
considerably.

If you are familiar with other OO languages, such as C++ or Java, you
may prefer the OO approach to programming PHP, whereas if you are
used to other procedural languages, you may not want to use objects at
all. There are, after all, many ways to solve the same problem.

If you are new to programming as well as to PHP, you probably have no
strong feelings either way just yet. It’s certainly true that OO concepts are
easier to grasp if you have no programming experience at all than if you
have a background in a procedural language, but even so OO methods are
not something that can be taught in a ten-minute lesson in this book!

The aim of this lesson is to introduce how a class is created and refer-
enced in PHP so that if you have a preference for using objects, you can
begin to develop scripts by using OO methods. Most importantly, how-
ever, you will be able to pick up and use some of the many freely avail-
able third-party class libraries that are available for PHP from resources
such as those at www.phpclasses.org, and those that are part of PEAR,
which you will learn about in Lesson 25, “Using PEAR.”

11 0672327627 CH10 3/2/05 3:49 PM Page 86

What Is a Class?
A class is the template structure that defines an object. It can contain
functions—also known as class methods—and variables—also known as
class properties or attributes.

Each class consists of a set of PHP statements that define how to perform
a task or set of tasks that you want to repeat frequently. The class can con-
tain private methods, which are only used internally to perform the class’s
functions, and public methods, which you can use to interface with the
class.

A good class hides its inner workings and includes only the public meth-
ods that are required to provide a simple interface to its functionality. If
you bundle complex blocks of programming into a class, any script that
uses that class does not need to worry about exactly how a particular
operation is performed. All that is required is knowledge of the class’s
public methods.

Because there are many freely available third-party classes for PHP, in
many situations, you need not waste time implementing a feature in PHP
that is already freely available.

When to Use Classes
At first, there may not appear to be any real advantage in using a class
over using functions that have been modularized into an include file. OO
is not necessarily a better approach to programming; rather, it is a differ-
ent way of thinking. Whether you choose to develop your own classes is a
matter of preference.

One of the advantages of OO programming is that it can allow your code
to scale into very large projects easily. In OO programming, a class can
inherit the properties of another and extend it; this means that functional-
ity that has already been developed can be reused and adapted to fit a par-
ticular situation. This is called inheritance, and it is a key feature of OO
development.

11 0672327627 CH10 3/2/05 3:49 PM Page 87

88 Lesson 10

When you have completed this book, if you are interested in learning
more about OO programming, take a look at Sams Teach Yourself
Object-Oriented Programming in 21 Days by Anthony Sintes.

What a Class Looks Like
A class is a grouping of various functions and variables—and that is
exactly how it looks when written in PHP. A class definition looks very
similar to a function definition; it begins with the keyword class and an
identifier, followed by the class definition, contained in a pair of curly
brackets ({}).

The following is a trivial example of a class to show how a class looks.
This example contains just one property, myValue, and one method,
myMethod (which does nothing):

class myClass {
var $myValue;

function myMethod() {
return 0;

}
}

If you are already familiar with OO programming and want to get a head
start with OO PHP, you can refer to the online documentation at
www.php.net/manual/en/language.oop5.php.

Creating and Using Objects
To create an instance of an object from a class, you use the new keyword
in PHP, as follows:

$myObject = new myClass;

In this example, myClass is the name of a class that must be defined in the
script—usually in an include file—and $myObject becomes a myClass
object.

11 0672327627 CH10 3/2/05 3:49 PM Page 88

89Using Classes

Methods and Properties
The methods and properties defined in myClass can be referenced for
$myObject. The following are generic examples:

$myObject->myValue = “555-1234”;
$myObject->myMethod();

The arrow symbol (->)—made up of a hyphen and greater-than symbol—
indicates a method or property of the given object. To reference the cur-
rent object within the class definition, you use the special name $this.

The following example defines myClass with a method that references one
of the object properties:

class myClass {
var $myValue = “Jelly”;

function myMethod() {
echo “myValue is “ . $this->myValue . “
”;

}
}

$myObject = new myClass;
$myObject->myMethod();
$myObject->myValue = “Custard”;
$myObject->myMethod();

This example makes two separate calls to myMethod. The first time it dis-
plays the default value of myValue; an assignment within the class speci-
fies a default value for a property. The second call comes after that
property has had a new value assigned. The class uses $this to reference
its own property and does not care, or even know, that in the script its
name is $myObject.

If the class includes a special method known as a constructor, arguments
can be supplied in parentheses when an object is created, and those values

Multiple Objects You can use the same class many
times in the same script by simply creating new
instances from that class but with new object names.

11 0672327627 CH10 3/2/05 3:49 PM Page 89

90 Lesson 10

are later passed to the constructor function. This is usually done to initial-
ize a set of properties for each object instance, and it looks similar to the
following:

$myObject = new myClass($var1, $var2);

Using a Third-Party Class
The best way to learn how to work with classes is to use one. Let’s take a
look at a popular third-party class written by Manuel Lemos, which pro-
vides a comprehensive way to validate email addresses. You can download
this class from www.phpclasses.org/browse/file/28.html and save the file
locally as email_validation.php.

Manuel’s class validates an email address not only by checking that its
format is correct but also by performing a domain name lookup to ensure
that it can be delivered. It even connects to the remote mail server to make
sure the given mailbox actually exists.

Domain Lookups If you are following this example
on a Windows-based web server, you need to down-
load an additional file, getmxrr.php, to add a suitable
domain name lookup function to PHP. You can down-
load this file from www.phpclasses.org/browse/file/
2080.html.

The email_validation.php script defines a class called email_
validation_class, so you first need to create a new instance of a valida-
tor object called $validator, as follows:

$validator = new email_validation_class;

You can set a number of properties for your new class. Some are required
in order for the class to work properly, and others allow you to change the
default behavior.

Each object instance requires you to set the properties that contain the
mailbox and domain parts of a real email address, which is the address

11 0672327627 CH10 3/2/05 3:49 PM Page 90

91Using Classes

that will be given to the remote mail server when checking a mailbox.
There are no default values for these properties; they always have to be
set as follows:

$validator->localuser = “chris”;
$validator->localhost = “lightwood.net”;

The optional timeout property defines how many seconds to wait when
connected to a remote mail server before giving up. Setting the debug
property causes the text of the communication with the remote server to
be displayed onscreen. You never need to do this, though, unless you are
interested in what is going on. The following statements define a timeout
of 10 seconds and turn on debug output:

$validator->timeout = 10;
$validator->debug = TRUE;

The full list of adjustable properties for a validator object is shown in
Table 10.1.

TABLE 10.1 Properties of an email_validation_class
Object

Property Description

timeout Indicates the number of seconds before timing out
when connecting to a destination mail server

data_timeout Indicates the number of seconds before timing out
while data is exchanged with the mail server; if
zero, takes the value of timeout

localuser Indicates the user part of the email address of the
sending user

localhost Indicates the domain part of the email address of
the sending user

debug Indicates whether to output the text of the commu-
nication with the mail server

html_debug Indicates whether the debug output should be for-
matted as an HTML page

11 0672327627 CH10 3/2/05 3:49 PM Page 91

92 Lesson 10

The methods in email_validation_class are mostly private; you cannot
call them directly, but the internal code is made up of a set of functions. If
you examine email_validation.php, you will see function definitions,
including Tokenize, GetLine, and VerifyResultLines, but none of these
are useful outside the object itself.

The only public method in a validator object is named ValidateEmailBox,
and when called, it initiates the email address validation of a string argu-
ment. The following example shows how ValidateEmailBox is called:

$email = “chris@datasnake.co.uk”;
if ($validator->ValidateEmailBox($email)) {

echo “$email is a valid email address”;
}
else {

echo “$email could not be validated”;
}

The return value from ValidateEmailBox indicates whether the validation
check is successful. If you have turned on the debug attribute, you will
also see output similar to the following, in addition to the output from the
script:

Resolving host name “mail.datasnake.co.uk”...
Connecting to host address “217.158.68.125”...
Connected.
S 220 mail.datasnake.co.uk ESMTP
C HELO lightwood.net
S 250 mail.datasnake.co.uk
C MAIL FROM: <chris@lightwood.net>
S 250 ok
C RCPT TO: <chris@datasnake.co.uk>
S 250 ok
C DATA
S 354 go ahead
This host states that the address is valid.
Disconnected.

Summary
In this lesson you have learned about OO PHP and seen how to use
classes in your own scripts. In the next lesson you will learn how PHP can
interact with HTML forms.

11 0672327627 CH10 3/2/05 3:49 PM Page 92

LESSON 11
Processing
HTML Forms

The reason that PHP came into existence was to provide a simple way of
processing user-submitted data in HTML forms. In this lesson you will
learn how data entered in each type of form input is made available in a
PHP script.

Submitting a Form to PHP
In case you are not familiar with HTML forms at all, let’s begin by look-
ing over what is involved in creating a web page that can collect informa-
tion from a user and submit it to a web script.

The <FORM> Tag
The HTML <FORM> tag indicates an area of a web page that, when it con-
tains text-entry fields or other form input elements, submits the values
entered by a user to a particular URL.

The ACTION attribute in a <FORM> tag indicates the location of the script
that the values are to be passed to. It can be a location relative to the cur-
rent page or a full URL that begins with http://.

The METHOD attribute indicates the way in which the user’s web browser
will bundle up the data to be sent. Two methods, GET and POST, vary visi-
bly only slightly. Form data submitted using the GET method is tagged on
to the end of the URL, whereas the POST method sends the data to the web
server without its being visible.

12 0672327627 CH11 3/2/05 3:49 PM Page 93

94 Lesson 11

In most situations where you are using an HTML form, the POST method
is preferable. It is not only better aesthetically—because the submitted
values are not revealed in the script URL—but there is no limit on the
amount of data that can be submitted in this way. The amount of data that
can be submitted by using the GET method is limited by the maximum
URL length that a web browser can handle (the limit in Internet Explorer
is 2,048 characters) and the HTTP version on the server (HTTP/1.0 must
allow at least 256 characters, whereas HTTP/1.1 must allow at least
2,048).

The <INPUT> Tag
The <INPUT> tag is used to add one of several types of form input to a
web page. The type of input item is specified in the TYPE attribute, and the
simplest type is a TEXT input item.

To create a TEXT input item that is suitable for entering a user’s email
address, you could use the following HTML:

<INPUT TYPE=”TEXT” NAME=”name” SIZE=”30” VALUE=””>

In this HTML, you supply an empty VALUE attribute because you do not
want to supply a default value for the input; however, the VALUE attribute
can be omitted.

The GET Method You have probably seen URLs with
GET method data attached, even if you didn’t know
that’s what was going on. If you’ve ever use the
search box at a website and the page address has
come back with ?search=yourword, it submitted the
form by using the GET method.

Field Lengths The display size of a field does not
affect how PHP handles the submitted values. This
input has a display size of 30 characters but no
MAXLENGTH attribute is set, so users with unusually long
names can still type beyond the length of the field.

12 0672327627 CH11 3/2/05 3:49 PM Page 94

95Processing HTML Forms

The CHECKBOX input type creates an input item that has only two possible
values: on and off. Check boxes are useful for true/false values, and you
could use the following HTML to create a check box with which the user
could indicate whether he minds us contacting him by email:

<INPUT TYPE=”CHECKBOX” NAME=”may_contact” VALUE=”Y” CHECKED>

In this case, the CHECKED attribute indicates that the check box should be
checked automatically when the page loads.

The RADIO type is similar to a check box, but instead of a true/false value,
a radio button group can contain several values, of which only one can be
selected at a time.

To create a radio button group that can be used to gather the user’s gen-
der, you could use the following:

<INPUT TYPE=”radio” NAME=”gender” VALUE=”m”> Male
<INPUT TYPE=”radio” NAME=”gender” VALUE=”f”> Female

Naming Radio Buttons The NAME attribute deter-
mines the grouping of radio buttons. Only one selec-
tion can be made for each radio button group,
although you can have several radio button groups on
a page if you want. In this example, both buttons
have the same name, gender.

To indicate that one of the buttons in a radio button group should be pre-
selected, you can use the CHECKED attribute. For instance, if you are creat-
ing a website that will appeal primarily to women, you can pre-select the
female option, as follows:

<INPUT TYPE=”radio” NAME=”gender” VALUE=”m”> Male
<INPUT TYPE=”radio” NAME=”gender” VALUE=”f” CHECKED> Female

The final input type that you will learn about is the SUBMIT button. This is
the button you click to send the contents of a form to the script specified
in the form’s METHOD attribute. The label on the button is specified in the

12 0672327627 CH11 3/2/05 3:49 PM Page 95

96 Lesson 11

VALUE attribute, so the following HTML would create a submit button
labeled Send comments:

<INPUT TYPE=SUBMIT VALUE=”Send comments”>

A submit button can also have a NAME attribute, although this is rarely
used. You will see later in this lesson how this affects the values sent
to PHP.

The <TEXTAREA> Tag
The <TEXTAREA> tag is used to create a multiple-line text input item. In
many respects, it behaves just like a TEXT type input tag, but the way it is
formed in HTML is slightly different.

Because the initial value in a text area could span many lines, it is not
given in a VALUE attribute. Instead, the starting value appears between a
pair of tags, as follows:

<TEXTAREA ROWS=4 COLS=50 NAME=”comments”>
Enter your comments here
</TEXTAREA>

PHP is not concerned with what type of input a value comes from; the
difference between a text area and text input is an HTML issue only.

The <SELECT> Tag
The final form item we will look at is the <SELECT> item, correctly known
as a menu but more commonly called a drop-down list.

The most common use of a menu is to prompt for a single selection from
a predefined list of values. The following example builds a drop-down list
of possible places that visitors may have heard about your website:

<SELECT NAME=”referrer”>
<OPTION VALUE=”search”>Internet Search Engine</OPTION>
<OPTION VALUE=”tv”>TV Advertisement</OPTION>
<OPTION VALUE=”billboard”>Billboard</OPTION>
<OPTION SELECTED VALUE=”other”>Other</OPTION>
</SELECT>

12 0672327627 CH11 3/2/05 3:49 PM Page 96

97Processing HTML Forms

In this case, the SELECTED attribute makes “Other” the default selection,
even though it appears at the top of the list. If no item has the SELECTED
attribute, the first option in the list is selected by default.

Putting It All Together
By putting all these form elements together and adding some label text
and a little formatting, you can create a simple comments submission
form that you can then process in PHP, as shown in Listing 11.1.

LISTING 11.1 A Web Form for Submitting User Comments
<FORM ACTION=”send_comments.php” METHOD=POST>
<TABLE>
<TR>

<TD>Your name:</TD>
<TD><INPUT TYPE=”TEXT” NAME=”name” SIZE=30></TD>

</TR>
<TR>

<TD>Your email:</TD>
<TD><INPUT TYPE=”TEXT” NAME=”email” SIZE=30></TD>

</TR>
<TR>

<TD>Your gender:</TD>
<TD><INPUT TYPE=”RADIO” NAME=”gender” VALUE=”m”> Male

<INPUT TYPE=”RADIO” NAME=”gender” VALUE=”f”> Female
</TD>

</TR>
<TR>

<TD>How you found us</TD>
<TD>

<SELECT NAME=”referrer”>
<OPTION VALUE=”search”>Internet Search Engine</OPTION>
<OPTION VALUE=”tv”>TV Advertisement</OPTION>
<OPTION VALUE=”billboard”>Billboard</OPTION>
<OPTION SELECTED VALUE=”other”>Other</OPTION>
</SELECT>

</TD>
</TR>
<TR>

<TD>May we email you?</TD>
<TD><INPUT TYPE=”CHECKBOX” NAME=”may_contact”

continues

12 0672327627 CH11 3/2/05 3:49 PM Page 97

98 Lesson 11

VALUE=”Y” CHECKED></TD>
</TR>
<TR>

<TD>Comments</TD>
<TD><TEXTAREA ROWS=4 COLS=50

NAME=”comments”>Enter your comments here
</TEXTAREA></TD>

</TR>

</TABLE>

<INPUT TYPE=”SUBMIT” VALUE=”Send comments”>
</FORM>

Processing a Form with PHP
Now let’s look at how each type of item in a form is handled by PHP after
the submit button is clicked.

Accessing Form Values
Form values are made available in PHP by using some special array struc-
tures. The arrays $_GET and $_POST contain values submitted using the
GET and POST methods, respectively. A hybrid array, $_REQUEST, contains
the contents of both of these arrays, as well as the values from $_COOKIE,
which you will use in Lesson 14, “Cookies and Sessions.”

LISTING 11.1 Continued

Super-globals The system-generated arrays that have
names beginning with an underscore character are
known as super-globals because they can be refer-
enced from anywhere in a PHP script, regardless of
scope. For instance, you do not need to explicitly
declare $_POST as global to access its elements within a
function.

12 0672327627 CH11 3/2/05 3:49 PM Page 98

99Processing HTML Forms

Accessing the values from form items is fairly intuitive: The form item
names become the element keys in $_GET or $_POST, and each value in the
array is the value of the corresponding element when it was submitted.

For example, the email address submitted by comments.html will be
$_POST[“email”], and the comments text will be $_POST[“comments”].

For CHECKBOX and RADIO input types, the VALUE attribute determines the
value seen by PHP. If the check box named may_contact is checked, then
the array element $_POST[“may_contact”] has the value Y. If it is not
checked, this element simply does not exist in the array; you should use
isset to check whether a check box is checked.

Default Check Box Values If you do not specify a
VALUE attribute for a check box item, its value in PHP
when checked is on.

The radio group gender causes $_POST[“gender”] to contain the value m
or f, depending on which value is selected and, as with a check box, if no
value is selected, the array element does not exist.

The simplest way to see all the submitted data from a form is to use a call
to print_r to dump out the contents of $_POST, as follows:

echo “<PRE>”;
print_r($_POST);
echo “</PRE>”;

This is a useful debugging technique if you want to see exactly what data
is being passed to a script from a form. If you create send_comments.php,
containing just these lines, the output shows you the value of each form
element in turn. The following is sample output:

Array
(

[name] => Chris Newman
[email] => chris@lightwood.net
[gender] => m

12 0672327627 CH11 3/2/05 3:49 PM Page 99

100 Lesson 11

[referrer] => search
[may_contact] => Y
[comments] => This is my favorite website ever

)

Even the value of a submit button can be seen by PHP if the button is
given a name and the button is clicked when the form is submitted. The
following form has two buttons with different names, so that you can use
PHP to determine which button was actually clicked:

<FORM ACTION=”button.php” METHOD=POST>
<INPUT TYPE=”SUBMIT” NAME=”button1” VALUE=”Button 1”>
<INPUT TYPE=”SUBMIT” NAME=”button2” VALUE=”Button 2”>
</FORM>

In button.php, you could use a condition similar to the following to see
which button is clicked:

if (isset($_POST[“button1”])) {
echo “You clicked button 1”;

}
elseif (isset($_POST[“button2”])) {

echo “You clicked button 2”;
}
else {

echo “I don’t know which button you clicked!”;
}

The VALUE attribute of a submit button determines what label appears on
the button itself, but that value is also the value that is passed to PHP
when the button is clicked.

Submit Buttons Many modern web browsers submit
a form when you press the Enter key when focused on
any of the input fields. Even if there is only one sub-
mit button on a form, its value is not sent to PHP
unless it is actually clicked with the mouse.

Hidden Inputs
One other type of form input is available, and it can be used to pass val-
ues between scripts without their being visible on the web page itself.

12 0672327627 CH11 3/2/05 3:49 PM Page 100

101Processing HTML Forms

The HIDDEN type takes NAME and VALUE attributes, as usual, but it simply
acts a placeholder for that value.

The following hidden input is passed to the PHP script when the form is
submitted, and $_POST[“secret”] contains the value from the form:

<INPUT TYPE=”HIDDEN” NAME=”secret” VALUE=”this is a secret”>

Be aware, however, that HIDDEN attribute inputs are not secure for trans-
mitting passwords and other sensitive data. Although they do not appear
on the web page, if you view the page source, you can still see hidden
values in the HTML code.

Creating a Form Mail Script
The desired result from the comments form you’ve been working with in
this lesson is to provide a way of sending user-submitted comments by
email to the owner of a website. Now you’ll learn how to put together a
form handler script to create this component for a website.

The mail Function
PHP’s mail function sends an email message, using your system’s mailer
program. On Linux/Unix systems, the sendmail utility is used to put a
message into the outbound queue. On Windows machines, it usually sends
via SMTP, and the name of the relay server must be defined in php.ini
for this to work properly. Lesson 23, “PHP Configuration,” looks at con-
figuration issues in more detail.

The three required arguments to mail are the recipient’s email address, the
message subject, and the message body. An optional fourth argument can
contain additional mail headers to be sent; this is useful for setting the
From: address or adding a Cc: recipient.

The script send_comments.php in Listing 11.2 takes the data sent from the
comments form and sends it on to the owner of the website by email.

This script performs a loop through all the elements in $_POST and builds
up the string $body, which becomes the body text of the email message.
Note that \n characters are used to separate lines in the output because a
plain-text email is created, which means no HTML formatting is required.

12 0672327627 CH11 3/2/05 3:49 PM Page 101

102 Lesson 11

LISTING 11.2 send_comments.php
<?php

$body = “These comments were sent via the website\n\n”;

foreach($_POST as $field => $value) {
$body .= sprintf(“%s = %s\n”, $field, $value);

}

mail(“owner@website.com”, “Comments sent via website”, $body,
‘From: “WebComments” <comments@website.com>’);

?>
<H1>Thank You</H1>
Your comments have been sent!

The email sent to the site owner should look something like the following:

The following comments were submitted via the website

name = Chris Newman
email = chris@lightwood.net
gender = m
referrer = search
may_contact = Y
comments = This is my favorite website ever

The format of this email is very rough because each line is generated
automatically. Of course, if you prefer, you could spend much longer cre-
ating a nicely formatted email; for instance, you could replace the coded
values of gender and referrer with their full descriptions.

Summary
In this lesson you have learned how to process user-submitted data from
HTML forms. In the next lesson you will learn how to use PHP to create
HTML form items such as menus and radio button groups on-the-fly.

12 0672327627 CH11 3/2/05 3:49 PM Page 102

LESSON 12
Generating
Dynamic
HTML

In this lesson you will learn how to create elements of an HTML form by
using PHP. These techniques enable you to specify default values for input
items and create dynamic drop-down menus or radio button groups based
on data in a script.

Setting Default Values
Let’s begin with some simple examples that embed PHP within form ele-
ments to set the default values of some items when the page is loaded.

Default Input Values
The default value of a text input is given in the VALUE attribute. This value
displays in the field when the page is loaded, and, unless it is overtyped,
the same value is sent to the PHP processing script when the form is sub-
mitted.

Consider a shopping cart page for an online store, where customers are
given the opportunity to change the quantity of each item in their cart
before finalizing the order. The current quantity of each line item would
be displayed in a small text input box and could be overtyped, and then
the user would be able to click a button to refresh the contents of the cart.
Listing 12.1 is a very simple example of this, for a store that sells only
one product but allows you to choose the quantity to buy.

13 0672327627 CH12 3/2/05 3:50 PM Page 103

104 Lesson 12

LISTING 12.1 Defaulting the Value of a Text Input Field
<?php
if(isset($_POST[“quantity”]))

$quantity = settype($_POST[“quantity”], “integer”);
else

$quantity = 1;

$item_price = 5.99;
printf(“%d x item = $%.2f”,

$quantity, $quantity * $item_price);
?>
<FORM ACTION=”buy.php” METHOD=POST>
Update quantity:
<INPUT NAME=”quantity” SIZE=2
VALUE=”<?php echo $quantity;?>”>

<INPUT TYPE=SUBMIT VALUE=”Change quantity”>
</FORM>

First of all, you set an overall default value for $quantity of 1, so that the
first time the page is loaded, this is the quantity displayed in the field and
used to calculate the total price. Then, inside the VALUE tag, you run a sin-
gle PHP statement to echo the value of $quantity. If a quantity value is
posted to the form, then that value is used instead.

This script should be called buy.php so that the form posts to itself when
submitted. If you change the quantity value and press the submit button,
the script calculates the new total price. Also, the quantity input field
defaults to the value you just entered when the page reloads.

Checking a Check Box
The CHECKED attribute determines whether a check box is on or off by
default when a page loads. Using PHP, you can embed a condition within
the <INPUT> tag to determine whether to include the CHECKED attribute on
a check box:

<INPUT TYPE=”CHECKBOX”
NAME=”mybox” <?php if(condition) echo “CHECKED”;?>>

The way this looks can be confusing, particularly because two > symbols
appear at the end of the tag—one to close the PHP section and one to
close the <INPUT> tag. In fact, the position of the CHECKED attribute is not

13 0672327627 CH12 3/2/05 3:50 PM Page 104

105Generating Dynamic HTML

important, so depending on your preference, you can move it around for
readability:

<INPUT <?php if(condition) echo “CHECKED”;?>
TYPE=”CHECKBOX” NAME=”mybox”>

Closing PHP Tags When embedding small chunks of
PHP, you should always try to include the closing ?>
tag as soon as possible. If you miss this closing tag,
PHP attempts to interpret the subsequent HTML as
PHP and is likely to come up with some interesting
error messages!

Spacing can be very important when you’re using PHP within HTML. In
the previous example, if there is not a space on either side of the PHP
statement and the condition is true, the actual HTML produced is as fol-
lows:

<INPUT CHECKEDTYPE=”CHECKBOX” NAME=”mybox”>

Because CHECKEDTYPE is not recognized as part of the <INPUT> tag, your
browser is likely to display this as a text input box, not a check box! It’s
always better to have too much space around dynamic elements in HTML
tags than to risk not having enough.

Selecting a Radio Button Group Item
The CHECKED attribute is also used to specify which item in a radio button
group should be selected by default. For example, an online store may
offer three shipping options, with each having a different cost. To make
sure the customer always chooses a shipping option, one of the selections
would be picked by default, with the option to change it if desired (a
radio button cannot be deselected except when another button in the same
group is selected):

<INPUT TYPE=”RADIO” CHECKED
NAME=”shipping” VALUE=”economy”> Economy

<INPUT TYPE=”RADIO” NAME=”shipping” VALUE=”express”> Standard
<INPUT TYPE=”RADIO” NAME=”shipping” VALUE=”express”> Express

13 0672327627 CH12 3/2/05 3:50 PM Page 105

106 Lesson 12

To dynamically assign the CHECKED attribute to one of the items in the
radio button group, each one must contain a condition that checks the cur-
rent value of $shipping against the value that corresponds to that item.
Listing 12.2 gives an example.

LISTING 12.2 Selecting a Default Radio Button Group Item
<?php
if (!isset($shipping))

$shipping = “economy”;

echo “Your order will be sent via $shipping shipping”;
?>
<FORM ACTION=”shipping.php” METHOD=POST>

<INPUT TYPE=”RADIO” NAME=”shipping” VALUE=”economy”
<?php if ($shipping == “economy”) echo “CHECKED”;?>> Economy

<INPUT TYPE=”RADIO” NAME=”shipping” VALUE=”standard”
<?php if ($shipping == “standard”) echo “CHECKED”;?>>

Standard

<INPUT TYPE=”RADIO” NAME=”shipping” VALUE=”express”
<?php if ($shipping == “express”) echo “CHECKED”;?>> Express

<INPUT TYPE=”SUBMIT” VALUE=”Change shipping option”>
</FORM>

Notice how cumbersome this is, even for a short radio button group of
just three items. Later in this lesson you will learn how to create radio
button groups on-the-fly so that larger radio button groups can be man-
aged in a much more elegant way.

Defaulting a Selection in a Menu
The SELECTED attribute in an <OPTION> tag specifies which item is to be
selected by default. If no item has the SELECTED attribute, the first item in
the list is shown by default.

Using PHP to display the SELECTED attribute against the appropriate
option is just as cumbersome as picking the selected item in a radio button

13 0672327627 CH12 3/2/05 3:50 PM Page 106

107Generating Dynamic HTML

group, and the same technique applies. Listing 12.3 shown the same
example of shipping rates as in Listing 12.2, using a drop-down menu
instead of a radio button group.

LISTING 12.3 Selecting a Default Item from a Menu
<?php
if (!isset($shipping))

$shipping = “economy”;

echo “Your order will be sent via $shipping shipping”;
?>
<FORM ACTION=”shipping.php” METHOD=POST>
<SELECT NAME=”shipping”>
<OPTION <?php if ($shipping == “economy”) echo “SELECTED”;?>

VALUE=”economy”>Economy</OPTION>
<OPTION <?php if ($shipping == “standard”) echo “SELECTED”;?>

VALUE=”standard”>Standard</OPTION>
<OPTION <?php if ($shipping == “express”) echo “SELECTED”;?>

VALUE=”express”>Express</OPTION>
<INPUT TYPE=”SUBMIT” VALUE=”Change shipping option”>
</FORM>

As with a radio button group, using a function to generate on-the-fly
menus allows you to work with much larger option lists and still
dynamically select a chosen option.

Creating Form Elements
Now let’s look at how some of the items in an HTML form can be gener-
ated by using custom PHP functions. This type of modularization means
that you can use a function over and over again whenever you need to
include the same type of item on a form.

Creating a Dynamic Radio Button Group
A modular routine to generate a radio button group requires three pieces
of information: the name of the group, a list of values, and a list of labels.
You can use an associative array to pass the values and labels to the func-
tion in one go.

13 0672327627 CH12 3/2/05 3:50 PM Page 107

108 Lesson 12

Say you want to be able to generate the HTML for a radio button group
by using simple code similar to the following:

$options = array(“economy” => “Economy”,
“standard” => “Standard”,
“express” => “Express”);

$default = “economy”;
$html = generate_radio_group(“shipping”, $options, $default);

As you can see, this is the kind of function you are likely to use again and
again when creating HTML forms, and it is very useful to build up a tool-
box of similar functions to make it easy to perform common tasks. Here’s
how the generate_radio_group function might be implemented:

function generate_radio_group($name, $options, $default=””) {
$name = htmlentities($name);
foreach($options as $value => $label) {

$value = htmlentities($value);
$html .= “<INPUT TYPE=\”RADIO\” “;
if ($value == $default)

$html .= “CHECKED “;
$html .= “NAME=\”$name\” VALUE=\”$value\”>”;
$html .= $label . “
”;

}
return($html);

}

At the heart of the function is a loop through $options that generates
each <INPUT> tag in turn, giving each tag the same NAME attribute but a
different VALUE attribute. The label text is placed next to each button, and
in this sample function, the only formatting is to place a
 tag between
each button in the group. You could format the options in a table or in any
other way you see fit.

At each step of the loop, the script compares the current value of $value
with the passed-in $default value. If they match, the CHECKED attribute is
included in the generated HTML. Again, spacing is important here; note
that the space after CHECKED is added to the HTML string.

The $default argument is specified as optional. If generate_
radio_group is called with only two arguments, none of the radio buttons
will be selected by default.

13 0672327627 CH12 3/2/05 3:50 PM Page 108

109Generating Dynamic HTML

Creating a Dynamic Menu
The process for creating a drop-down menu is very similar to that for cre-
ating a radio button group. Again, a loop is required—this time to gener-
ate an <OPTION> tag for each option in turn. The function also needs to
include the <SELECT> and </SELECT> tags around the option list. The func-
tion generate_menu would look like this:

function generate_menu($name, $options, $default=””) {

$html = “<SELECT NAME=\”$name\”>”;
foreach($options as $value => $label) {

$html .= “<OPTION “;
if ($value == $default)

$html .= “SELECTED “;
$html .= “VALUE=\”$value\”>$label</OPTION>”;

}
$html .= “</SELECT>”;
return($html);

}

The string returned by this function contains the entire HTML code to
produce a drop-down menu that contains the supplied options. You might
prefer to have the function return only the option tags and place your own
<SELECT> tags around them; this would allow you to easily add a
JavaScript onChange event on the menu, for instance.

Multiple Selection Items
When used with the MULTIPLE attribute, the <SELECT> form item allows a
user to choose multiple options from a menu, usually by holding the Ctrl

HTML Entities The htmlentities function is used to
replace certain characters in a string with correspond-
ing HTML entities. Because the values of $name and
$value are output inside another HTML tag, the
htmlentities function is important to ensure that
there are no characters in those strings that could
break the tag.

13 0672327627 CH12 3/2/05 3:50 PM Page 109

110 Lesson 12

key while clicking the options. To handle more than one selection in PHP,
the input name must be an array. Then when the form is posted, the ele-
ments in the array contain the values of each selected item in turn.

For example, if you create a multiple-selection menu by using the follow-
ing HTML and submit it to a PHP script that contains just a print_r
instruction, you see that $_POST[“colors”] is an array that contains one
element for each option selected:

<SELECT MULTIPLE NAME=”colors[]”>
<OPTION VALUE=”red”>Red</OPTION>
<OPTION VALUE=”white”>White</OPTION>
<OPTION VALUE=”blue”>Blue</OPTION>
</SELECT>

With all three of the options selected, $_POST[“colors”] contains three
elements with numeric indices 0 to 2, having values red, white, and blue,
respectively.

The same principle applies to any type of form input. If more than one
item exists with the same name but the name ends with a pair of square
brackets, an array is created in PHP with that name, containing elements
for each of those items’ values.

This is most useful when you’re implementing a multiple-selection input
using check boxes. Rather than having to give each check box a unique
name, you can give each the name of an array. The array created when the
form is submitted contains an element for each item checked.

The final example in this lesson involves the function generate_
checkboxes, which creates a set of check boxes with the same name that
can be used as an alternative to <SELECT MULTIPLE> to implement a multi-
ple-option selection in an HTML form. The function, along with a simple
example of its usage, is shown in Listing 12.4

LISTING 12.4 Creating a Multiple-Option Selection Using
Check Boxes
<?php

function generate_checkboxes($name,
$options, $default=array()) {

13 0672327627 CH12 3/2/05 3:50 PM Page 110

111Generating Dynamic HTML

if (!is_array($default))
$default = array();

foreach($options as $value => $label) {
$html .= “<INPUT TYPE=CHECKBOX “;
if (in_array($value, $default))

$html .= “CHECKED “;
$html .= “NAME=\”{$name}[]\” VALUE=\”$value\”>”;
$html .= $label . “
”;

}
return($html);

}

$options = array(“movies” => “Going to the movies”,
“music” => “Listening to music”,
“sport” => “Playing or watching sports”,
“travel” => “Traveling”);

$html = generate_checkboxes(“interests”,
$options, $interests);

?>
<H1>Please select your interests</H1>
<FORM ACTION=”interests.php” METHOD=POST>
<?php print $html;?>
<INPUT TYPE=SUBMIT VALUE=”Continue”>
</FORM>

In the function generate_checkboxes, the $default argument is an array
rather than a single value; after all, more than one of the options might be
selected by default. The array passed in as $default can be exactly the
same array that is submitted to PHP by the HTML that this function
creates.

To find out whether each check box should have the CHECKED attribute,
in_array is called to see whether the current option name is in the list of
default values. If $value appears anywhere in $default, the check box
will be checked when the page loads.

Listing 12.4 shows this function in action, using a section of a web page
that asks a user about her interests. She can select any number of items
from the list, and, in this example, the script submits to itself with the
options remaining checked so that the user can change her mind if she
wants to.

13 0672327627 CH12 3/2/05 3:50 PM Page 111

112 Lesson 12

In the array $interests created in PHP, each element is a key name from
$options. If you want to find the label that corresponds to each selected
option, you can reference the corresponding element from $options.

Summary
In this lesson you have learned how to generate HTML components on-
the-fly and learned some techniques for creating dynamic form input
objects. In the next lesson you will learn how to perform validation on an
HTML form.

13 0672327627 CH12 3/2/05 3:50 PM Page 112

LESSON 13
Form
Validation

In this lesson you will learn some techniques for validating form input in
a user-friendly way.

The principles of validating user-submitted input are fairly straightfor-
ward: Just check each item in $_POST in turn and make sure it matches a
set of criteria. However, making sure the user is able to correct any mis-
takes and resubmit the form with a minimum of fuss presents a bit more
of a challenge.

Enforcing Required Fields
The most basic type of form validation is to enforce that a particular field
must contain a value. In the case of a text input that is submitted with no
value entered, the element in $_POST is still created, but it contains an
empty value. Therefore, you cannot use isset to check whether a value
was entered; you must check the actual value of the element, either by
comparing it to an empty string or by using the following, more compact
syntax with the Boolean NOT operator:

if (!$_POST[“fieldname”]) { ... }

Because each field on the form creates an element in $_POST, if every
field requires a value to be entered, you could use a simple loop to check
that there are no empty values in the array:

foreach($_POST as $field => $value) {
if (!$value) {

$err .= “$field is a required field
”;
}

}
if ($err) {

14 0672327627 CH13 3/2/05 3:50 PM Page 113

114 Lesson 13

echo $err;
echo “Press the back button to fix these errors”;

}
else {

// Continue with script
}

Rather than exit as soon as an empty field is found, this script builds up
an error string, $err. After the validation is done, the contents of $err are
displayed if there are any errors. If there are no errors, $err is empty, and
script execution continues with the else clause.

Validation Warnings Always show all the warning
messages that relate to the submitted data straight
away. You should give your users the opportunity to
correct their errors all at one time.

One obvious limitation of this approach is that you cannot pick which
fields require a value; every posted field must have been completed. You
could improve upon this by supplying a list of required fields in the script,
and by using an associative array, you can also provide a label for each
field to display in the warning message:

$required = array(“first_name” => “First name”,
“email” => “Email address”,
“telephone” => “Telephone number”);

foreach($required as $field => $label) {
if (!$_POST[$field]) {

$err .= “$label is a required field
”;
}

}

Displaying Validation Warnings
Another issue to consider is where to send the user when validation fails.
So far we have assumed that a form submits to a processing script, and
when one or more validation errors are found, the form prompts the user
to use his or her browser’s Back button to fix the errors.

14 0672327627 CH13 3/2/05 3:50 PM Page 114

115Form Validation

Not only does this create one more step for the user to take in order to
complete the form—and in an online store, you want as few obstacles
between a customer and a completed order as possible—it can also some-
times cause the data in the form fields to be lost when Back is clicked.

Whether the Back button causes data to be lost usually depends on the
cache settings, either on the web server, in the user’s browser, or at the
user’s Internet service provider. In many cases there is no problem.
However, most notably when a PHP session has been started, no-cache
headers are automatically sent to the browser, which causes data in form
fields to be reset to their original values when you click the Back button.
You will learn more about PHP sessions in Lesson 14, “Cookies and
Sessions.”

A good technique is to have the form and processing script in the same
file and have the form submit to itself. This way, if there are errors, they
can be displayed on the same page as the form itself, and the previously
entered values can be automatically defaulted into the form.

Listing 13.1 shows a fairly complete example of a registration form,
register.php. The name and email address fields are required, but the
telephone number is optional.

LISTING 13.1 A Sample Registration Form with Required
Fields
<?php

$required = array(“name” => “Your Name”,
“email” => “Email Address”);

foreach($required as $field => $label) {
if (!$_POST[$field]) {

$err .= “$label is a required field
”;
}

}

if ($err) {
echo $err;

?>
<FORM ACTION=”register.php” METHOD=POST>

14 0672327627 CH13 3/2/05 3:50 PM Page 115

116 Lesson 13

<TABLE BORDER=0>
<TR>

<TD>Your Name</TD>
<TD><INPUT TYPE=TEXT SIZE=30 NAME=”name”

VALUE=”<?php echo $_POST[“name”];?>”></TD>
</TR>
<TR>

<TD>Email Address</TD>
<TD><INPUT TYPE=TEXT SIZE=30 NAME=”email”

VALUE=”<?php echo $_POST[“email”];?>”></TD>
</TR>
<TR>

<TD>Telephone</TD>
<TD><INPUT TYPE=TEXT SIZE=12 NAME=”telephone”

VALUE=”<?php echo $_POST[“telephone”];?>”></TD>
</TR>
</TABLE>
<INPUT TYPE=SUBMIT VALUE=”Register”>
</FORM>

<?php
}
else {

echo “Thank you for registering”;
}
?>

Note that the warning messages in this example appears even if the form
has not yet been submitted. This could be improved by also checking for
the existence of the $_POST array in the script by using is_array, but the
check for $err would also need to look for $_POST; otherwise, the form
would never be displayed.

The condition that checks $err spans the HTML form and, even though
the PHP tags are closed around this chunk of HTML, the form is dis-
played only if that condition is true.

In this example, after the form has been completed successfully, only a
simple message is displayed. This is where you would do any processing
based on the submitted data, such as storing it to a database, which you
will learn about in Lesson 19, “Using a MySQL Database.” Alternatively,

LISTING 13.1 Continued

14 0672327627 CH13 3/2/05 3:50 PM Page 116

117Form Validation

the script could force the browser to redirect the user to another page
automatically by using a Location HTTP header, as follows:

header(“Location: newpage.php”);

Enforcing Data Rules
You will often want to ensure not only that data is entered into required
fields but that the quality of the data is good enough before proceeding.
For instance, you might want to check that an email address or a phone
number has the right format, using the rules developed in Lesson 8,
“Regular Expressions.” You could also enforce a minimum length on a
field to make sure a user cannot just enter an x in each field to continue to
the next page.

Because each field will probably have a different validation rule, you can-
not enforce data rules in a loop; you must instead write a rule for each
field to be checked. However, when used in conjunction with the check
for empty fields in a loop from the previous examples, you should also
check that the value has been entered before doing any further validation.
Otherwise, the warning message will first tell a user that a field is
required and then also that it has been entered in the wrong format!

The following rules could be added to Listing 13.1 after the required
fields check to enforce suitable values for email address and telephone
number:

if ($_POST[“email”] &&
!ereg(“^[^@]+@([a-z0-9\-]+\.)+[a-z]{2,4}$”,

$_POST[“email”]))
$err .= “Email address format was incorrect
”;

if ($_POST[“telephone”] &&
!ereg(“^\([[:digit:]]{3}\)[[:digit:]]{3}-[[:digit:]]{4}$”,

$_POST[“telephone”]))
$err .= “Telephone must be in format (555)555-5555
”;

Because these additional rules add new messages to $err if an error is
found, the rest of the script remains unchanged.

14 0672327627 CH13 3/2/05 3:50 PM Page 117

118 Lesson 13

Highlighting Fields That
Require Attention
Rather than bombard the user with a list of warning messages, it’s more
user-friendly to highlight the fields in the form that require attention.

The technique to use here is very similar to the previous example, but
rather than append each warning message to $err, you should give each
field its own warning text. If you use an array of warnings, it’s simple to
see whether the form has been successfully validated by counting the ele-
ments in $warnings.

You write each rule to add an element to $warnings if validation of that
field fails, as shown in the following example:

if (!ereg(“^[^@]+@([a-z\-]+\.)+[a-z]{2,4}$”,
$_POST[“email”]))

$warnings[“email”] = “Invalid Format”;

Then in the form itself, you can display this warning text next to the cor-
responding field:

<TR>
<TD>Email Address</TD>
<TD><INPUT TYPE=TEXT SIZE=30 NAME=”email”

VALUE=”<?php echo $_POST[“email”];?>”></TD>
<TD><?php echo $warnings[“email”];?></TD>

</TR>

Listing 13.2 shows a revised register.php file that uses this technique to
highlight missing or invalid field values.

LISTING 13.2 Form Validation Using Inline Warnings
<?php

$required = array(“name” => “Your Name”,
“email” => “Email Address”);

foreach($required as $field => $label) {
if (!$_POST[$field]) {

$warnings[$field] = “Required”;

14 0672327627 CH13 3/2/05 3:50 PM Page 118

119Form Validation

}
}

if ($_POST[“email”] &&
!ereg(“^[^@]+@([a-z\-]+\.)+[a-z]{2,4}$”, $_POST[“email”]))

$warnings[“email”] = “Invalid email”;

if ($_POST[“telephone”] &&
!ereg(“^\([[:digit:]]{3}\)[[:digit:]]{3}-[[:digit:]]{4}$”,

$_POST[“telephone”]))
$warnings[“telephone”] = “Must be (555)555-5555”;

if (count($warnings) > 0) {

?>
<FORM ACTION=”register.php” METHOD=POST>
<TABLE BORDER=0>
<TR>

<TD>Your Name</TD>
<TD><INPUT TYPE=TEXT SIZE=30 NAME=”name”

VALUE=”<?php echo $_POST[“name”];?>”></TD>
<TD><?php echo $warnings[“name”];?></TD>

</TR>
<TR>

<TD>Email Address</TD>
<TD><INPUT TYPE=TEXT SIZE=30 NAME=”email”

VALUE=”<?php echo $_POST[“email”];?>”></TD>
<TD><?php echo $warnings[“email”];?></TD>

</TR>
<TR>

<TD>Telephone</TD>
<TD><INPUT TYPE=TEXT SIZE=12 NAME=”telephone”

VALUE=”<?php echo $_POST[“telephone”];?>”></TD>
<TD><?php echo $warnings[“telephone”];?></TD>

</TR>
</TABLE>
<INPUT TYPE=SUBMIT VALUE=”Register”>
</FORM>

<?php
}
else {

echo “Thank you for registering”;
}
?>

14 0672327627 CH13 3/2/05 3:50 PM Page 119

120 Lesson 13

The first loop assigns the warning text “Required” to any required field
that is left blank. Each of the individual validation rules has its own warn-
ing text.

How you highlight a field that requires attention is up to your imagination
and creativity with HTML. For instance, by checking for the presence of
an element in $warnings for each field, you could change the style of the
input box to a shaded background, like so:

<INPUT TYPE=TEXT SIZE=30 NAME=”email”
<?php if ($warnings[“email”]) echo “STYLE=\”shaded\””;?>
VALUE=”<?php echo $_POST[“email”];?>”>

Summary
In this lesson you have learned how to validate user input from HTML
forms and how to present the form back to the user so that he or she can
correct any errors. In the next lesson you will learn about cookies and ses-
sions in PHP.

14 0672327627 CH13 3/2/05 3:50 PM Page 120

LESSON 14
Cookies and
Sessions

This lesson examines two ways of passing data between pages of a web-
site without requiring a form submission from one page to another: using
cookies and using sessions.

Cookies
Cookies are small pieces of information that are stored in your web
browser. They typically contain data that is used to identify you when you
look at a website so that site can be customized for each visitor.

Rather than having to pass data to a script by using a form or as values in
the query string, cookies are sent back to your scripts automatically by
your web browser. Even if you go off and browse to another website, their
values are remembered when you return.

For example, if you have to log in to access a particular website, you may
be able to let a cookie remember your username so you do not have to
type it each time you go back; in this case, you only have to enter your
password. Or on a community site, your browser might record the date
you last visited in a cookie, so that any forum messages posted since you
last visited can be highlighted as new.

Cookie Ingredients
Each cookie consists of a name and a value, just like regular variables in
PHP. The instruction to create a cookie in your web browser is sent as an
HTTP header before a web page is transmitted; when your web browser
sees this header, it takes the appropriate action.

15 0672327627 CH14 3/2/05 3:50 PM Page 121

122 Lesson 14

The HTTP headers that create cookies are the same, regardless of whether
they are generated by PHP or any other means of interfacing with your
web server. The header used to set a cookie called email might look like
this:

Set-Cookie: email=chris@lightwood.net

HTTP Headers You will never see an actual HTTP
header in your web browser. We will look at how dif-
ferent types of HTTP headers are sent in PHP in Lesson
16, “Communicating with the Web Server.”

A cookie also has an expiration date; some cookies last only as long as
your web browser is open and are kept in your computer’s memory,
whereas others have a fixed expiration date in the future and are saved to
your hard disk. The HTTP header to set the email cookie that will expire
at the end of 2005 would look like this:

Set-Cookie: email=chris@lightwood.net;
expires=Sat, 31-Dec-2005 23:59:59 GMT

If no expires attribute is sent in the Set-Cookie header, the cookie will
be destroyed when the web browser is closed.

The other attributes that can be set are the domain name and the path by
which a browser will send back a cookie. When you make any subsequent
visit to a page for which you have a cookie set, its name and value are
sent to the web server.

The default behavior is to send a cookie back to any page on the same
domain that it was set from. By setting the domain and path, you can tell
the cookie to be sent back to other subdomains or only to scripts in a cer-
tain part of the site.

The following header creates an email cookie that is sent back to any sub-
domain of lightwood.net, as long as the page requested is in the /scripts
subdirectory:

Set-Cookie: email=chris@lightwood.net; domain=.lightwood.net;
path=/scripts

15 0672327627 CH14 3/2/05 3:50 PM Page 122

123Cookies and Sessions

Accessing Cookies
The $_COOKIE super-global array in PHP contains all the cookies that have
been sent to the current script. Cookies are sent back to the web server in
an HTTP header, and PHP builds the $_COOKIE array based on this infor-
mation.

You can access cookies in the same way that you reference posted form
data. For example, the following statement displays the current value of
the email cookie:

echo $_COOKIE[“email”];

If you ever feel that your cookies are getting in a bit of a mess, you can
just create a script to dump them all out to screen so you can see what’s
going on. It is as simple as this:

echo “<PRE>”;
print_r($_COOKIES);
echo “</PRE>”;

Making Cookies with PHP
Although you have now seen how to create cookies by using HTTP head-
ers, you will probably not use this method again because PHP contains a
function that makes cookie setting much easier:

setcookie(“email”, “chris@lightwood.net”, time() + 3600);

Subdomains You can only set the domain attribute of
a cookie to a variant of the domain from which the
cookie was originally set, or to .yourdomain.com to
indicate all subdomains.

This is a security measure to prevent some websites
from being able to confuse others. For example, you
cannot set a cookie that would be sent back to
www.php.net from any website that is not hosted at
php.net.

15 0672327627 CH14 3/2/05 3:50 PM Page 123

124 Lesson 14

Rather than the strictly formatted textual date shown in the header exam-
ple earlier in this lesson, you specify the expiration date in setcookie as a
Unix timestamp. This makes it easy to set a cookie that lasts for a fixed
amount of time or until a date and time in the future.

Expiration Times The expiration argument specifies
the latest date and time that a stored cookie will be
transmitted. As time comparison is performed on the
local computer, the actual expiration of cookies is
determined by the local system clock and, if that clock
is incorrect, is beyond your control.

The next two optional arguments are used to specify the domain and path
for the cookie. If you want to set a domain and path but not an expiration
time, you use NULL for the third argument:

setcookie(“email”, “chris@lightwood.net”, NULL,
“.lightwood.net”, “/scripts”);

The final optional argument to setcookie is a flag that tells the browser to
send the cookie back to the server only over an SSL encrypted connec-
tion—in other words, only for web pages with addresses that begin
https://.

Password Cookies As handy as it may be to have a
password stored in a cookie so that you can be auto-
matically logged in to a website when you revisit it,
this is very dangerous, even when the secure flag is
set.

Cookies are stored in plain text and can be viewed
simply by looking in the correct place on your hard
disk. Malicious spyware programs exist that try to
steal your passwords by searching through your
cookies!

15 0672327627 CH14 3/2/05 3:50 PM Page 124

125Cookies and Sessions

Deleting Cookies
There is no unsetcookie function to tell the web browser to delete a
cookie. To stop a cookie value from being sent back to the web server,
you use setcookie with an empty value and an expiration date that has
already passed.

The following example unsets the email cookie by using an expiration
value that is one hour ago:

setcookie(“email”, “”, time() – 3600);

Sessions
Sessions are very similar to cookies in that they can be used for passing
values between pages of a website. Rather than storing the values in each
web browser, however, the values are stored on the web server, and a sin-
gle identity cookie is used to tell PHP which set of values corresponds to
the current user.

Because much less data is sent back and forth between the web server and
browser, sessions are more efficient than cookies when larger amounts of
data are stored.

Creating a Session
To initialize a new session in a PHP script, you use the session_start
function. You can use an optional argument to specify a session name, but
usually this is not required. Every script on your site that starts the same
session will be able to access the same set of session variables.

Overwriting Cookies When unsetting a cookie or
when overwriting an existing cookie with a new
value, you must make sure the domain, path, and
ssl-only arguments are exactly the same as when the
cookie was originally created.

15 0672327627 CH14 3/2/05 3:50 PM Page 125

126 Lesson 14

The call to session_start to create a new session is as simple as the fol-
lowing:

session_start();

The $_SESSION super-global array is used to store and retrieve session
variables. Unlike the other super-globals you have encountered so far, you
can assign values directly to $_SESSION, after which they are available to
any script that shares the session.

Consider the script in Listing 14.1, which maintains two session vari-
ables—a count of the number of times you have viewed the page and the
timestamp of the last visit.

LISTING 14.1 Using Session Variables to Track Visits to a
Page
<?php

session_start();

if ($_SESSION[“last_visit”]) {
echo “Date of last visit: “;
echo date(“j F Y, H:i:s”, $_SESSION[“last_visit”]);
echo “
”;
echo “Total visits: “.$_SESSION[“num_visits”];

}
else

echo “This is your first visit”;

$_SESSION[“last_visit”] = time();
$_SESSION[“num_visits”]++;
?>

Each time the page is loaded, the old values are displayed and the new
values set. Notice that if you surf to other websites and then come back,
these values are remembered, but if you close your web browser and
come back, the values are reset.

15 0672327627 CH14 3/2/05 3:50 PM Page 126

127Cookies and Sessions

Using Session Variables
One of the advantages of session variables over cookies is their ability to
use PHP’s data types. Cookie values are always simple text values, but a
session variable can take any value that a regular PHP variable can.

For instance, to store a list of items in a cookie, you would have to create
an array and pass it to serialize to store. By using a session variable,
you can create an array directly and store that data structure in the ses-
sion.

The example in Listing 14.2 uses an array stored in the session to retain a
list of values entered through a form. This is a fairly trivial example, but it
demonstrates the flexibility you have when using session variables.

LISTING 14.2 Using Arrays as Session Variables
<?php

session_start();

if (isset($_POST[“word”]))
$_SESSION[“words”][] = $_POST[“word”];

if (is_array($_SESSION[“words”])) {
foreach($_SESSION[“words”] as $word) {

echo $word . “
”;
}

}

?>
<FORM ACTION=”list.php” METHOD=POST>
Enter a word: <INPUT SIZE=”10” NAME=”word”>
<INPUT TYPE=SUBMIT VALUE=”Add word to list”>
</FORM>

Summary
In this lesson you have learned how to set cookies from PHP and how to
use PHP’s session management to store values within a browser session.
In the next lesson you will use these techniques to create a user authenti-
cation system using PHP.

15 0672327627 CH14 3/2/05 3:50 PM Page 127

LESSON 15
User
Authentication

In this lesson you will build a user authentication process that can be
used to protect certain pages of your website by using a password.

Types of Authentication
Chances are you have needed to log in to a website in the past, so you
should be aware of how the process of authentication works from a user’s
point of view. Generally speaking, you are asked to enter a username—
sometimes your email address—and a password.

There are actually two ways that a website can authenticate a user,
though: using basic HTTP authentication and using session-based authen-
tication. The following sections clarify the differences between these two
methods.

Basic HTTP Authentication
Basic HTTP authentication can be performed by web server, without hav-
ing anything to do with PHP script. The example in this section assumes
that you are using Apache web server; for other web servers, you should
refer to your documentation.

Authentication is usually done on a per-directory basis but can be set up
to apply to individual files if required. By using an .htaccess file on your
website, you can specify for that directory a custom configuration that
instructs the web server to require a login before proceeding. A typical set
of configuration directives would look like this:

AuthType Basic
AuthName “Protected Website”

16 0672327627 CH15 3/2/05 3:50 PM Page 128

AuthUserFile /home/yourname/htpasswd
require valid-user

AuthUserFile points to the location of a password file that is created by
using the htpasswd program. To create a new password file, you would
run a command like the following:

$ htpasswd –c /home/yourname/htpasswd chris
New password:
Re-type new password:

You have to enter the new password twice, after which an entry is added
to the password file given. The entry consists of the username and an
encrypted version of the password, separated with a colon character.
However, you should never need to work with this file directly. A typical
password file entry might look like this:

chris:XNiv7qSUTFPU6
damon:ZxxE2PTEXeVNU
shelley:SVzAEtxMLEAls
vanessa:cX/t1Pv2oQfrY

When you try to access a file in the protected directory, your web browser
pops up a window that asks for a username and password, and the page
requested loads only after you have entered the correct information.

The require valid-user directive instructs the web server to show the
page to any authenticated user. You might want to grant access to only
certain users, which you can do with the require user directive:

require user chris damon shelley

Basic HTTP authentication also allows you to set up user groups to give
access to particular sections of the site only to certain users. You can then

Password Files You should use the –c switch only
when you want to create a new file. The htpasswd pro-
gram does not ask whether you want to overwrite an
existing file. Running htpasswd without the –c option
on an existing password file adds a user.

16 0672327627 CH15 3/2/05 3:50 PM Page 129

130 Lesson 15

use the require group directive to specify access to one or more user
groups.

The following groups file, usually named htgroups, divides the users in
the password file into two groups:

boys: chris damon
girls: shelley vanessa

To give access only to the boys group, you could use the following
.htaccess file:

AuthType Basic
AuthName “Boys Only”
AuthUserFile /home/yourname/htpasswd
AuthGroupFile /home/yourname/htgroup
require group boys

Although it is fairly easy to set up and reasonably flexible, basic HTTP
authentication has some drawbacks. First, you cannot change the look and
feel of the pop-up login box. If you want to customize the process at all,
you cannot use this method. Furthermore, the password file is stored on
the server’s filesystem, and updating it from a script may be problematic;
you will learn more about these issues when dealing with reading and
writing to files in Lesson 17, “Filesystem Access.”

Apache Add-ons Several third-party modules for the
Apache web server—such as mod_auth_mysql and
mod_auth_sqlite—allow you to use basic HTTP authen-
tication with password information stored in a data-
base. Check with your web host to see whether these
modules are installed.

Session-Based Authentication
To provide a completely customizable login process for your website, you
must implement it yourself, and doing so in PHP requires using session
variables.

16 0672327627 CH15 3/2/05 3:50 PM Page 130

131User Authentication

In a nutshell, once a user is logged in, the browser’s session contains
enough information to convince the scripts on the website that you are
allowed to view a page. Users log in by using a form on your site where
they enter their username and password. You can set up the layout and
flow of the login process any way you see fit.

One fairly significant difference from basic HTTP authentication is that
the instruction to check the validity of a user’s session appears in the
script itself, not in a per-directory configuration file.

Building an Authentication System
The rest of this lesson walks you through building an authentication
mechanism using PHP sessions.

How the System Works
There are two main components of the authentication system you’re going
to build now. First, you need a login processor that checks the validity of
the username and password entered in the form. You also need a piece of
code that can be put at the top of each script to check the session and
make sure the user is authenticated before continuing.

Protecting HTML If your website includes plain HTML
files that contain no PHP, you need to add PHP code
to them to prevent them from being viewable to an
anonymous user. You also need to change their file
extension to .php.

Login Forms You need to make sure you always use
the POST method for login forms. Submitting a user-
name and password by using the GET method causes
these values to appear in the URL of the next page for
anyone to see!

16 0672327627 CH15 3/2/05 3:50 PM Page 131

132 Lesson 15

You should split off the session-checking code into an include file,
auth.inc, so that it is simple to protect a page by simply putting the fol-
lowing statement at the top of the script:

include “auth.inc”;

You can use a single session variable to store the username of the logged-
in user. If the variable contains a username, that user is logged in; logging
a user out is as simple as deleting this session variable. As long as nobody
else shares the domain on which your website is hosted and could create a
conflicting session, this is adequately secure. Knowing this, auth.inc can
really be as simple as the following:

session_start();
if (!isset($_SESSION[“auth_username”])) {

echo “You must be logged in to view this page”;
exit;

}

Here you simply display a message and exit the script if the user is not
logged in. You will see later on how you can improve this for usability,
but you need to create the login process itself first.

Authenticating a Login
The login form, at its heart, needs to contain just two fields—username

and password—and a submit button. As long as these are present, the
form’s layout is up to you. For now, you can keep it fairly plain, in a sim-
ple table layout. Listing 15.1 shown the basic login form.

LISTING 15.1 A Basic Login Form
<FORM ACTION=”login.php” METHOD=”POST”>
<TABLE BORDER=0>
<TR>

<TD>Username:</TD>
<TD><INPUT TYPE=”TEXT” SIZE=10 NAME=”username”></TD>

</TR>
<TR>

<TD>Password:</TD>
<TD><INPUT TYPE=”PASSWORD” SIZE=10 NAME=”password”></TD>

</TR>
</TABLE>

16 0672327627 CH15 3/2/05 3:50 PM Page 132

133User Authentication

<INPUT TYPE=SUBMIT VALUE=”Log in”>
</FORM>

The form handler script, login.php, needs to check the submitted user-
name and password values against the list of valid users. In most cases,
you would check the values against a user database. You will learn about
database access in PHP in Lessons 19, “Using a MySQL Database,” and
20, “Database Abstraction,” and for now you can just use a simple array
of users who are permitted to use the site. Listing 15.2 shows how to do
this.

LISTING 15.2 A Login Processor Script
<?php

session_start();

$passwords = array(“chris” => “letmein”,
“damon” => “thisisme”,
“shelley” => “mypassword”,
“vanessa” => “opensesame”);

if (!$_POST[“username”] or !$_POST[“password”]) {
echo “You must enter your username and password”;
exit;

}

if ($_POST[“password”] == $passwords[$_POST[“username”]]) {
echo “Login successful”;
$_SESSION[“auth_username”] = $_POST[“username”];

}
else {

echo “Login incorrect”;
}
?>

Password Fields The PASSWORD type input works
exactly the same way as a TEXT type, but the charac-
ters entered are obscured as they are typed. The only
restriction on a password field is that it cannot be
given a VALUE attribute for a default value.

16 0672327627 CH15 3/2/05 3:50 PM Page 133

134 Lesson 15

First, an associative array of passwords is built, using the usernames as
keys. The script first checks that both the username and password have
been entered and exits immediately if that information is missing.

Then the submitted password is compared to the array element whose key
is the submitted username. If the two passwords match, the user is logged
in, and the auth_username session variable is initialized. Otherwise, a
message is displayed that the login failed.

After a user’s session has been validated, he or she can view a protected
page without auth.inc interrupting the script’s progress.

Encrypting Passwords
In the previous example, the passwords are stored in plain text. You prob-
ably suspected that this is not particularly secure; anyone who can view
the source code of this script can see the passwords for every user.

Prying Eyes Even if your server security is airtight,
can you be sure that nobody is looking over your
shoulder? You should always try to prevent unen-
crypted passwords from being displayed onscreen.

The crypt function in PHP provides a simple but effective one-way
encryption algorithm. The same kind of encryption is used by htpasswd
and even Unix system passwords. To encrypt a password, you pass the
password to crypt, along with $salt—another string around which the
encryption is based:

$crypt_password = crypt($password, $salt);

Although the encrypted string cannot be decoded back to the original
password, every time you run crypt on the same password with the same
salt, the result is the same. Knowing this, you can store only the
encrypted version of the password and compare it to the freshly encrypted
user input.

16 0672327627 CH15 3/2/05 3:50 PM Page 134

135User Authentication

How a string encoded using crypt looks may vary between different web
servers as a system-level encryption library is used. Encrypted passwords
are not guaranteed to be portable between different systems. The revised
login.php file is shown in Listing 15.3, but be aware that the encrypted
passwords shown may not be valid for your system.

LISTING 15.3 A Login Processor Script with Encrypted
Passwords
<?php

session_start();

$passwords = array(“chris” => “ZXsDiRf.VBlWQ”,
“damon” => “bQLXBRzdBci7M”,
“shelley” => “KkTH39mVsoclc”,
“vanessa” => “69SvRIB9QVukk”);

if (!$_POST[“username”] or !$_POST[“password”]) {
echo “You must enter your username and password”;
exit;

}

$salt = substr($passwords[$_POST[“username”]], 0, 2);
if (crypt($_POST[“password”], $salt)

== $passwords[$_POST[“username”]]) {
echo “Login successful”;
$_SESSION[“auth_username”] = $_POST[“username”];

}
else {

echo “Login incorrect”;
}

?>

Salts If you do not specify a salt, a random one is
chosen so subsequent calls to crypt will product differ-
ent results. A two-character salt, as used by Unix
password files and htpasswd, is sufficient.

16 0672327627 CH15 3/2/05 3:50 PM Page 135

136 Lesson 15

The salt is always found in the first two characters of the encrypted
string, so you assign these two characters to $salt to use in the call to
crypt. Other than this, the process is identical to using plain-text pass-
words.

Usability Considerations
The mechanism you have implemented so far is fairly crude. Any login
error results in a message being displayed and the script ending. Even
when a login is successful, the flow ends, and the user needs to revisit a
protected page directly.

The ideal login mechanism interrupts a hit to a protected web page and
displays its login form. Then, after successfully authenticating, it forwards
the user to the page he or she was originally trying to access.

One way to add this enhancement is to check the name of the script that
the user attempted to access in auth.inc; the script name and the query
string, if there was one, can be found in $_SERVER[“REQUEST_URI”]. The
login form would then be displayed by auth.inc itself, rather than being
a separate page.

If you add the following hidden input to the login form, the login proces-
sor itself will know which script the user came from, and then you can
send the user back to the page he or she was trying to access.

<INPUT TYPE=”HIDDEN” NAME=”destination”
VALUE=”<?php print $_SERVER[“REQUEST_URI”];?>”>

When authentication is successful, rather than print a message to screen,
you can forward the user to his or her destination by using the following
statement:

header(“Location: $_POST[“destination”]);

Summary
In this lesson you have learned ways to protect web pages by using two
different authentication methods, including one that is a feature of HTTP.
In the next lesson you will see how other HTTP features can be accessed
from PHP.

16 0672327627 CH15 3/2/05 3:50 PM Page 136

LESSON 16
Communicating
with the Web
Server

This lesson looks at ways in which PHP can interact with a web server.

HTTP Headers
Every page downloaded from a web server is a result of an exchange of
HTTP dialogue. The web browser sends a set of instructions to indicate
which page it wants to view, and the server responds with a response that
indicates the success of the request, along with various other information
that is not displayed directly on the web page.

The following HTTP headers show some of the information that is sent
along with a typical web page from a PHP-enabled web server:

HTTP/1.1 200 OK
Date: Tue, 14 Dec 2004 21:17:28 GMT
Server: Apache/1.3.29 (Unix) mod_gzip/1.3.26.1a PHP/4.3.9

mod_ssl/2.8.16 OpenSSL/0.9.7c
X-Powered-By: PHP/4.3.9
Connection: close
Content-Type: text/html; charset=iso-8859-1

Sending Custom Headers
The PHP function to send a custom HTTP header is header. Let’s start by
sending a header that does nothing. Any header that begins with X is con-
sidered to be for information only; for example, the X-Powered-By header

17 0672327627 CH16 3/2/05 3:50 PM Page 137

138 Lesson 16

shows that PHP is enabled. To stamp your name in the HTTP headers in
your script, you could use the following:

header(“X-PHP-Author: Chris Newman <chris@lightwood.net>”);

Of course, there is no reason you should want to send a header like this,
other than extreme vanity. A regular user browsing the website would
never even see this header!

You have already seen how cookies are sent to a web browser by using
the setcookie function. You have also seen that what happens when this
function is called is that a Set-Cookie HTTP header is actually sent. The
following two PHP statements are therefore equivalent:

setcookie(“mycookie”, “somevalue”);
header(“Set-Cookie: mycookie=somevalue”);

Redirection Headers
The header you will send most often is almost certain to be Location,
which instructs the web browser to redirect to another URL. You can use
this header to change the flow of a website according to events in script.
Causing the user’s browser to forward to another page is as simple as this:

header(“Location: anotherpage.php”);

You can use either a relative or absolute URL in the Location header, so
you could even forward the user to another domain, like so:

header(“Location: http://www.somedomain.com/newpage.php”);

When a Location header has been sent, you should halt the script imme-
diately, using exit, to make sure that no further output is sent to the
browser.

Checking Whether Headers Have Been Sent
As soon as PHP hits the first piece of non-header output in a script, it
makes sure all the necessary headers have been sent to the web browser
and begins to work on the page itself. All the HTTP headers must be sent
at once and must be sent before any of the web page output.

17 0672327627 CH16 3/2/05 3:50 PM Page 138

139Communicating with the Web Server

If the headers have already been sent for a script and you attempt to send
another, PHP gives an error like this:

Warning: Cannot modify header information - headers already
sent by (output started at /home/chris/ public_html/
header.php:4)in /home/chris/ public_html/header.php on line 5

In the case of a Location header, you don’t need to display anything on
the page because the browser goes straight to the new URL. However, you
still need to be careful to avoid any HTML output, and particularly white-
space, before the script begins; even a single carriage return before the
opening <?php tag will prevent you from being able to send custom HTTP
headers.

PHP provides the function headers_sent, which you can use to detect
whether the HTTP headers have already been sent in that script. The func-
tion returns TRUE if headers have been sent and FALSE if it is not too late
to send additional custom headers.

The following condition makes sure the headers have not been sent before
attempting to perform a redirection:

if (!headers_sent()) {
header(“Location: newpage.php”);

}

Of course, your script would still need to do something else if this condi-
tion failed.

Two optional arguments to headers_sent allow you to find out the script
name and line number where the headers were sent. This is useful if your
script is giving an error but you think that the headers have not been sent
at that point.

Listing 16.1 attempts to perform a redirect by using a Location header,
but if it fails, it displays the reason and an alternative way to get to the
destination page. If you run this on your web server, you should add some
whitespace or HTML at the top of the script, outside the <?php tags, to
make sure the headers are sent prematurely.

17 0672327627 CH16 3/2/05 3:50 PM Page 139

140 Lesson 16

LISTING 16.1 Checking Whether Headers Have Been Sent
<?php
$destination = “http://www.lightwood.net/”;
if (!headers_sent($filename, $line)) {

header(“Location: $location”);
}
else {

echo “Headers were sent in line $line of $filename
”;
echo “Click here to continue”;

}
?>

Displaying HTTP Headers
If you want to see which HTTP headers have been or will be sent, you use
the headers_list function, which is available in PHP version 5 and
above. This function returns an array that contains one header per ele-
ment.

You can perform a loop on the array returned to grab each value in turn.
However, in many cases, all you want to do is see the headers that are
being output to check them over, and in this case, passing the array to
print_r does the trick:

print_r(headers_list());

You need to make sure to put <PRE> tags around this for readability. The
following is typical output:

Array
(

[0] => X-Powered-By: PHP/5.0.2
[1] => Set-Cookie: mycookie=somevalue
[2] => Content-type: text/html

)

Changing Cache Settings
You can use HTTP headers to change the cache settings for a web page,
to determine whether a page is completely refreshed each time it is loaded
or whether the user’s browser—or his or her ISP—will keep a local copy
for a period of time to save downloading it from your website again.

17 0672327627 CH16 3/2/05 3:50 PM Page 140

141Communicating with the Web Server

You use the Cache-Control header to specify what caching scheme to
use for a page. The primary control values for this header are shown in
Table 16.1.

TABLE 16.1 Primary Cache-Control Settings

Value Description

public May be stored in any web cache.

private May be saved to the browser’s cache but may not be
stored in a shared web cache.

no-cache May not be stored in any cache between the web
server and browser.

Usually the reason for overriding the default cache settings is to make
sure that a page is fully refreshed every time it is visited.

In most cases, web caches detect that a PHP-generated page with chang-
ing content needs to be refreshed frequently, but to make absolutely sure
that all your up-to-the-minute content is being displayed correctly around
the world, you might want to give it a helping hand.

To make absolutely sure your page will not be cached, using the following
statements, which send a number of headers, is generally considered to be
the definitive way to prevent caching of any kind:

header(“Cache-Control: no-store, no-cache, must-revalidate”);
header(“Cache-Control: post-check=0, pre-check=0”, false);
header(“Expires: Mon, 26 Jul 1997 05:00:00 GMT”);
header(“Last-Modified: “. gmdate(“D, d M Y H:i:s”) . “ GMT”);

A few different headers are used here. Two Cache-Control headers are
sent, including a no-cache instruction. You can find more information on
the other, less common, Cache-Control settings at www.w3.org/
Protocols/rfc2616/rfc2616-sec14.html#sec14.9.

The Expires header tells the browser when a document goes out of date.
If you send a historic date in this header, the document will always be
considered to be old and need to be refreshed the next time it is viewed.

17 0672327627 CH16 3/2/05 3:50 PM Page 141

142 Lesson 16

The Last-Modified header tells the browser how recently the document
was modified. When you use the date function, this header always sends
the current date, so the browser always thinks it has only just been modi-
fied and requests a new copy of the page in full.

Session Cache Control When a PHP session is started,
no-cache headers are automatically sent, along with
the other HTTP headers that establish the session. You
can use a different cache setting by using the
session_cache_limiter function, with one of the val-
ues in Table 16.1 as an argument.

Server Environment Variables
Now let’s look at the information that PHP allows you to find out from
your web server.

The $_SERVER super-global array contains a number of elements that give
information about the web server environment during the current page
request. To see the full list within the context of a script, you execute this
statement at any time:

print_r($_SERVER);

The examples in this section are common to most web servers. However,
some servers may not support all the values shown or may use different
names. You can always refer to the output from the previous statement to
check which values are available in your script.

Script Information
The name of the current script can be found in
$_SERVER[“SCRIPT_NAME”]. Knowing this name can be useful if you want
to create a form that submits to itself but whose filename you might want
to change in the future. You could use the following tag:

<FORM ACTION=”<?php print $_SERVER[“SCRIPT_NAME”];?>”
METHOD=POST>

17 0672327627 CH16 3/2/05 3:50 PM Page 142

143Communicating with the Web Server

Similar to SCRIPT_NAME is the REQUEST_URI element, which contains the
full uniform resource identifier of the page request. This consists of the
full path to the current script, including the question mark and values in
the query string, if there are any. The query string is not included as part
of the SCRIPT_NAME element, but you can access it on its own as
$_SERVER[“QUERY_STRING”].

If you want to find the domain name under which a script is running, you
can look at $_SERVER[“HTTP_HOST”]. Your web server might be set up
with several alias domains, and this provides a way to see which domain
name a visitor is viewing your pages on.

User Information
The HTTP_USER_AGENT element contains a string that identifies the user’s
web browser software and operating system. It might look like one of the
following:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)
Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.5)

Gecko/20041107 Firefox/1.0
Lynx/2.8.5dev.7 libwww-FM/2.14 SSL-MM/1.4.1 OpenSSL/0.9.7a

These three examples correspond to Internet Explorer, Mozilla Firefox,
and Lynx, respectively. Notice that both Internet Explorer and Firefox
report themselves as Mozilla browsers, so to find out specifically which
program a user has, you have to look further into the string.

The following condition can be used to produce different output for
Internet Explorer than for Firefox:

if (strstr($_SERVER[“HTTP_USER_AGENT”], “MSIE”)) {
echo “You are using Internet Explorer”;

}
elseif (strstr($_SERVER[“HTTP_USER_AGENT”], “Firefox”)) {

echo “You are using Firefox”;
}
else {

echo “You are using some other web browser”;
}

You may need to use this occasionally because of differences in the
browsers’ implementations of DHTML or JavaScript.

17 0672327627 CH16 3/2/05 3:50 PM Page 143

144 Lesson 16

The REMOTE_ADDR attribute contains the IP address that the hit to the web
server came from. It should either be the IP address of the user’s com-
puter or the user’s ISP’s web cache. You might want to use the remote IP
address for logging or security.

If the REMOTE_ADDR value is a web cache, the element HTTP_X_
FORWARDED_FOR is also present, and it contains the IP address of the user’s
computer.

If the user has logged in by using basic HTTP authentication, you can
also find out his or her username by looking at the value in
$_SESSION[“REMOTE_USER”].

Server Information
Other elements in $_SERVER allow you to access various values related to
the web server configuration.

For instance, $_SERVER[“SERVER_NAME”] corresponds to the ServerName
Apache directive. This is the primary name of this web server, but not
necessarily the domain name the scripts are being accessed from; it might
not be the same as $_SERVER[“HTTP_HOST”]. Similarly,
$_SESSION[“SERVER_ADMIN”] holds the webmaster’s email address that is
set in the ServerAdmin directive.

The SERVER_ADDR and SERVER_PORT elements contain the IP address and
port number of the machine the web server is running on. Checking
$_SERVER[“REQUEST_METHOD”] reveals whether a GET or POST method was
used to pass values to the script.

Finally, if you are working on a shared web host or someone else’s web
server and want to see what web server software version that person is
running, you can check $_SERVER[“SERVER_SOFTWARE”]. This value is the
same as the one transmitted in the Server header at the beginning of this
lesson, and it is similar to the following:

Apache/1.3.29 (Unix) mod_gzip/1.3.26.1a PHP/4.3.9
mod_ssl/2.8.16 OpenSSL/0.9.7c

17 0672327627 CH16 3/2/05 3:50 PM Page 144

145Communicating with the Web Server

Summary
In this lesson you have learned how to communicate with a web server. In
the next lesson you will learn about filesystem access using PHP.

17 0672327627 CH16 3/2/05 3:50 PM Page 145

LESSON 17
Filesystem
Access

In this lesson you will learn how to access a web server’s filesystem by
using PHP and how to read and write files from within a script.

Managing Files
Let’s examine how PHP allows you to work with files stored on a web
server’s hard disk.

File Permissions
Before you can perform any filesystem access from PHP, you have to con-
sider the permission settings for the files you want to work with. This sec-
tion deals primarily with the file permissions system on Unix/Linux
systems, but the same considerations apply to all platforms.

Usually your web server will be running under either the apache or
nobody username, yet your web documents and PHP scripts will be owned
by your actual system user. Unless the web server user has permissions to
access your files, any access attempts will fail.

To grant to all users read-only access to a file, you use the chmod com-
mand, which sets the read flag (r) on the file for all users other than the
current one (o):

$ chmod o+r filename

You can also set global read/write permissions on a file by using chmod as
follows:

$ chmod o+rw filename

Refer to man chmod for full details and more examples.

18 0672327627 CH17 3/2/05 3:51 PM Page 146

If a file has global permissions, the web server will be able to access it.
However, any other user on your system will also have full access to these
files. In some situations you might prefer to change the ownership on a
file to the apache user rather than grant global write access. The superuser
does this by using the chown command:

chown apache filename

The PHP function chmod can also be used to alter file permissions. It takes
two arguments: a filename and a mode. The mode argument can be either
the string type, such as o+rw, or the numeric type, such as 0644, as long as
the number is prefixed with a zero.

Getting Information About a File
PHP provides a wide range of functions for getting information about a
file on your system. The simplest, and one you may use often, is
file_exists, which simply tells you whether there is a file with the given
name argument. The file_exists function returns true if any item on
the filesystem has the given name, even if it is a directory or a special file
type. The argument may contain a path, as shown here:

if (file_exists(“/home/chris/myfile”)) {
echo “The file exists”;

}
else {

echo “The file does not exist”;
}

Using chmod If you are familiar with the system com-
mand chmod, you may be used to giving a three-digit
number as the mode argument. When run from the
shell, chmod assumes that an octal value is given,
whether or not it is prefixed with a zero; for example,
chmod 644 is the same as chmod 0644. In PHP, however,
the leading zero is always required in the argument to
chmod.

18 0672327627 CH17 3/2/05 3:51 PM Page 147

148 Lesson 17

A number of other functions allow you to test certain attributes of a file.
These are shown in Table 17.1.

TABLE 17.1 Functions for Testing Attributes of a File

Function Description

is_executable Checks whether the file has the executable attribute.

is_readable Checks whether the file is readable.

is_writeable Checks whether the file is writeable.

is_link Checks for a symbolic link.

is_file Checks for a real file, not a link.

Yet other functions return information about the file itself. These are
shown in Table 17.2.

TABLE 17.2 Functions That Find Information About a File

Function Description

fileatime Checks the time of the last file access, as a Unix
timestamp.

filectime Checks the time of file inode creation.

filemtime Checks the time of the last modification to the
file.

fileowner Checks the user ID of the file owner.

filegroup Checks the group ID of the file.

fileinode Checks the inode number of the file.

fileperms Checks the file’s permission settings as an octal
value (for example, 0644).

filesize Checks the size of the file in bytes.

filetype Checks the type of the file (fifo, char, dir,
block, link, or file).

18 0672327627 CH17 3/2/05 3:51 PM Page 148

149Filesystem Access

Moving and Copying Files
Assuming that you have permission to do so, you can perform a file copy,
move, or delete operation from PHP. The functions for these actions are
copy, rename, and unlink, respectively.

The copy and rename functions take two arguments—the source and desti-
nation filenames—whereas unlink takes a single filename.

File Paths You should be particularly careful when
performing file operations from PHP, particularly
when deleting. You need to always make sure you
know what the current working directory is, or give a
full path to the target file.

Working with Filenames
The functions basename and dirname provide an easy way to dissect a
string into a filename and path, respectively. You might use these func-
tions to find out the base filename when a full path is given or to find the
pathname if you want a file created with other files in the same place as a
known filename.

The basename function returns everything from the last slash character in
the string to the end, whereas dirname returns the portion of the string
before this slash.

The realpath function takes a pathname argument and returns its
absolute pathname. Any symbolic links in the path are resolved to their
actual location on disk, and any references to the current or parent direc-
tory using . or .. are removed.

If you want to write to a temporary file, you can use the tempnam function
to generate a unique temporary filename. It takes two arguments—a
directory name and a filename prefix. The prefix argument is required but
can be an empty string. The following statement generates a temporary
filename in /tmp with no prefix:

$filename = tempnam(“/tmp”, “”);

18 0672327627 CH17 3/2/05 3:51 PM Page 149

150 Lesson 17

Reading and Writing Files
Now let’s see how to read and write files from PHP.

Simple Methods for Reading and Writing Files
PHP provides some simple, high-level functions that can open a file and
grab its contents or write data to a file in a single operation.

To read the contents of a file into a string variable, you use
file_get_contents. The argument is a filename, which can contain a rel-
ative or absolute path. The following statement reads a file called
file.txt into the variable $data:

$data = file_get_contents(“file.txt”);

An optional second Boolean argument can be set to true to search the
include path for the given filename. You will see how to configure the
include path in Lesson 23, “PHP Configuration.”

The function file_put_contents simply dumps the contents of a variable
to a local file. Its arguments are the filename to write to and the data to
write. The following statement writes the value of $data to file.txt:

file_put_contents(“file.txt”, $data);

Lower-Level File Access
The functions file_get_contents and file_put_contents are high-level
functions that perform a number of steps that can be done individually
with lower-level PHP functions. Although in many cases reading the
entire contents of a file or writing data to a file is the task you will want
to perform, PHP provides a flexible way to interface with the filesystem.

All file access begins with a file handler, which is established with the
fopen function. The arguments to fopen are a filename and the mode in
which to open the file. The available modes are shown in Table 17.3.

18 0672327627 CH17 3/2/05 3:51 PM Page 150

151Filesystem Access

TABLE 17.3 File Mode Arguments to fopen

Mode Description

r Opens for reading only from the beginning of the file.

r+ Opens for reading and writing from the beginning of the
file.

w Opens for writing only; overwrites the old file if one
already exists.

w+ Opens for writing and reading; overwrites the old file if
one already exists.

a Opens for writing only and appends new data to the end
of the file.

a+ Opens for reading and writing at the end of the file.

Each file handler points to a position in the file. You can see from Table
17.3 that when a file is opened by using fopen, the handler always points
to either the beginning or the end of the file. As you read or write using
that handler, its pointer location moves, and subsequent actions take place
from that point in the file.

Let’s look at an example where you read the contents of a file a few bytes
at a time. By calling fopen with the r mode argument, you create a read-
only file handler that initially points to the start of that file.

The fread function reads a fixed number of bytes from a file handler. Its
arguments are the file handler and the number of bytes to read. By per-
forming this action in a loop, you can eventually read the entire contents
of a file:

$fp = fopen(“file.txt”, “r”);
while ($chunk = fread($fp, 100)) {

echo $chunk;
}

This is a very compact statement that checks that fread has succeeded on
each pass of the loop. When there is no more data to read, fread returns

18 0672327627 CH17 3/2/05 3:51 PM Page 151

152 Lesson 17

FALSE. In fact, by using this loop to output the file to screen, you cannot
tell from the result that it was actually done in smaller chunks.

An alternative to fread is fgets, which reads a line of the file at a time.
The size argument to fgets has been optional since PHP 4.3 but is shown
in these examples for completeness. No more data is read after a carriage
return is reached in the file or the specified number of bytes has been
read, whichever is sooner.

The following example uses fgets in a loop, assuming that no line in the
file is more than 100 characters wide:

$fp = fopen(“file.txt”, “r”);
while ($line = fgets($fp, 100)) {

echo $line;
}

Chopping Strings Each line read by fgets ends with
a newline character. If you want to exclude the new-
line, you can use the rtrim function on the string to
remove it along with any trailing whitespace charac-
ters.

When you are finished with a file pointer, you should free up its resources
by calling the fclose function:

fclose($fp);

Random Access to Files
The file pointer does not have to be moved sequentially through a file; it
can be reassigned to any position while the file handle is still open.

To find the current location of the file pointer, you use ftell. An integer
is returned—the number of bytes from the start of the file:

$filepos = ftell($fp);

18 0672327627 CH17 3/2/05 3:51 PM Page 152

153Filesystem Access

To send the file pointer to a specific location, you use the fseek function.
The following statement places the file pointer 100 bytes from the start,
using the file handler $fp:

fseek($fp, 100);

Most often you just want to return the file pointer to the beginning of the
file. You could set fseek to position zero, or you could just use the built-
in function rewind:

rewind($fp);

Writing to a File Pointer
The complementary functions to fgets and fread to perform write opera-
tions on a file pointer are fputs and fwrite. These functions are actually
identical to one another, with the newline character treated just like any
other character as they are written to the file.

The following example opens a file and writes to it the current time:

$fp = fopen(“time.txt”, “w”);
fwrite($fp, “Data written at “.date(“H:i:s”));
fclose($fp);

Remember that the apache user needs to have write permissions on the
directory in order to create a new file.

If you examine the new time.txt file, you will see that it does indeed
contain the current time.

Working with Data Files
One of the reasons you might need to access the filesystem from PHP is
to load data from a structured file format into your script. One of the easi-
est file formats to use is comma-separated values (CSV).

Although it would appear to be fairly easy to read a line of the file at a
time and call explode to break up the line where each comma appears,
this would not work where data elements in the CSV file contain commas.
If you export data from a spreadsheet, columns containing commas are

18 0672327627 CH17 3/2/05 3:51 PM Page 153

154 Lesson 17

usually enclosed in quotes, so you need quite a complex rule to manipu-
late the data successfully.

Fortunately, PHP includes the function fgetcsv. It works in a similar way
to fgets, except that an array is returned, containing one element for each
comma-separated value in the list. The size argument to fgetcsv is
optional as of PHP 5.

Often the first line of a CSV file contains the column headings. If you
know that this is the case, you should discard the file line before process-
ing the data file. The following example reads a comma-separated data
file and dumps each record to screen by using print_r:

$fp = fopen(“data.csv”, “r”);
while ($record = fgetcsv($fp, 1000)) {

echo $chunk;
}

Reading CSV Files The fgetcsv function requires a
line length argument, just like fgets. In the previous
example, this has an arbitrary value of 1000, but you
should ensure that whatever value you use is larger
than the longest line in your data file.

You can also write data to a CSV file without having to manually encode
the format. The fputcsv function takes a file handle and an array argu-
ment and writes a comma-separated list of the elements in the array.

The optional third and fourth arguments to fputcsv allow you to specify
an alternate delimiter and enclosure characters, respectively; the defaults
are the comma and double quote characters.

Working with URLs
A powerful feature of PHP is its ability to deal with remote documents in
the same way it deals with local files. It is possible to open a file handle
or use the high-level filesystem access functions with a URL argument to
read a web page from a PHP script.

18 0672327627 CH17 3/2/05 3:51 PM Page 154

155Filesystem Access

The following statements are both valid:

$page = file_get_contents(“http://www.samspublishing.com/”);
$fp = fopen(“http://www.samspublishing.com/”, “r”);

You cannot write to an HTTP URL by using file_put_contents or
fputs, however.

Working with Directories
Similarly to the way that fopen generates a file handle for accessing the
contents of a file, you can create a directory handle to view the contents
of a directory by using the opendir function.

There are just three calls that can be performed on a directory handle—
readdir, rewinddir, and closedir—each of which takes a single
resource argument.

Each call to readdir returns the next file from the directory. The order in
which files are returned is the order in which they are stored by the
filesystem and cannot be changed. The special items . and .. (the current
working directory and its parent) are always returned.

You use rewinddir to reset the directory handle to the beginning of the
file list at any time, and you close the handle with closedir when you are
finished with it.

To find the name of the current working directory, you use getcwd. No
arguments are required, and the full path to the current directory is
returned. To change directory, you use chdir with a relative or absolute
path.

Summary
In this lesson you have learned ways to read and write files on a web
server’s hard disk. In the next lesson you will learn how to execute local
host commands from PHP.

18 0672327627 CH17 3/2/05 3:51 PM Page 155

LESSON 18
Host Program
Execution

In this lesson you will see how PHP allows you to execute programs on a
host system and handle any output that is produced.

Executing Host Programs
PHP can call an external program that resides on a web server in a num-
ber of different ways. Let’s look at them in the following sections.

The passthru Function
The simplest way to run a host command and display the output to screen
is by using the passthru function. The command passed in as an argu-
ment is executed on the web server, and any resulting output is sent to the
browser.

The following is a simple example that works on both Unix/Linux and
Windows systems:

passthru(“hostname”);

The command hostname is executed on the host system, and its output is
displayed. The hostname command finds the system’s hostname and dis-
plays it.

An optional second argument to passthru allows you to find the com-
mand’s exit code. This is often useful if you want to find out whether a
command succeeded—all programs should return an exit code of zero on
successful completion—or to perform a test on a command that could
have several return values.

19 0672327627 CH18 3/2/05 3:51 PM Page 156

The most common nonzero return values are 1 for a nonspecific error and
127, which means that the command you attempted to run could not be
found. Other error codes specific to a particular program are usually docu-
mented.

The following example makes a system call to the hostname command
and takes an action, depending on its return code:

passthru(“hostname”, $return);
switch ($return) {

case 0: echo “Command completed successfully”;
break;

case 127: echo “Command could not be found”;
break;

default: echo “Command failed with code $return”;
}

Using Backticks
The backtick (`) character is a handy shortcut that can be used to indicate
a system command for execution on the web server itself. A string con-
tained between two backticks is executed, and the response produced by
the host system is returned.

The following is equivalent to the passthru example, but it uses the back-
tick syntax:

echo `hostname`;

With backticks you are able to assign the result of a host command to a
variable, as shown in the following statement:

$hostname = `hostname`;

Command Output Only the standard output stream
is displayed in the web browser window, so you must
redirect the stderr stream if you want to see warnings
and errors produced by the host command.

For instance, you can use passthru(“cmd 2>&1”) on a
Unix server with the Bourne shell.

19 0672327627 CH18 3/2/05 3:51 PM Page 157

158 Lesson 18

In fact, the backtick characters can be used anywhere in a PHP script.
They immediately interrupt program execution to call the host command,
with the resulting values replaced into the script. The following example
shows that the result of a host command can even be used within a condi-
tion:

if (chop(`hostname`) == “hal9000”) {
echo “Good evening, Dave”;

}

Because the result from hostname ends with a carriage return—so that the
output when run in a command shell looks tidy—the previous example
uses chop to make sure that only non-whitespace characters are compared.

Exit Codes There is no way to obtain an exit code
when using backticks. Instead, you should use the exec
function, which works just like passthru but returns
the command output as a string. The optional second
argument can be used to grab the exit code.

Building Command Strings
Commands are passed as arguments to passthru or exec or are simply
strings contained in backticks. Therefore, you can build up a command
string by using variables or in stages if you want.

Variable substitution takes place within a double-quoted command string,
but if the string is enclosed in single quotes, any identifier prefixed with a
dollar sign is treated as a shell variable.

Perhaps the strangest looking statement in PHP is one where you execute
a command stored in a string by using backticks. This looks as follows:

`$cmd`;

The variable $cmd could contain any system command and, if you really
don’t care what the output from the command is, this is valid.

Note, however, that the terminating semicolon is required. A closing back-
tick closes the host command but does not terminate a PHP statement.

19 0672327627 CH18 3/2/05 3:51 PM Page 158

159Host Program Execution

The Host Environment
Now let’s look at how PHP interacts with the web server’s host environ-
ment.

Detecting the Host Platform
Because different types of systems have different sets of host commands
available, if you are writing a script that could potentially be executed on
different platforms, it’s useful to detect what kind of web server is being
used.

The constant PHP_OS contains a string that represents the operating sys-
tem. The most common reason for checking this is to find out whether a
script is running on a Windows platform—after all, most Unix-like sys-
tems, and even Mac OS, behave in a very similar way.

The value of PHP_OS on a Windows web server could be Windows, WINNT,
or WIN32, and in the future, other values may come into existence.
Therefore, to test for a Windows platform, you should perform a non-
case-sensitive comparison on the first three characters of the string. The
following condition shows just one of the ways you can do this:

if (strtoupper(substr(PHP_OS, 0, 3)) == “WIN”) { ... }

Darwin Be cautious to check only that the value of
PHP_OS begins with WIN, as modern versions of Mac OS
report themselves as Darwin.

Environment Variables
The $_ENV super-global contains an element for each environment vari-
able present. Environment variables are values from the underlying oper-
ating system, and those available to PHP are from the environment in
which PHP and your web server is running.

The PATH environment variable provides your system with a list of loca-
tions to search for an executable program. Each location is checked in

19 0672327627 CH18 3/2/05 3:51 PM Page 159

160 Lesson 18

turn until the program is found or there are no more locations left to try,
when an error occurs.

Finding the current value of the path is as simple as using the following
statement:

echo $_ENV[“PATH”];

On a Unix/Linux system it may look like the following:

/bin:/usr/bin:/usr/X11R6/bin:/home/chris/bin

On a Windows system, however, it may look like this:

C:\WINDOWS\system32;C:\WINDOWS

Notice that the format is considerably different for the different operating
systems. The Unix/Linux version uses colons to separate the locations and
forward slashes in pathnames, and the Windows version uses semicolons
and backslashes. For this reason, PHP provides the host-specific constants
DIRECTORY_SEPARATOR and PATH_SEPARATOR, which enable you to find the
appropriate symbols to use for each of these.

In many cases, resetting the PATH value is specific to the underlying plat-
form; for instance, even if you use the correct PATH_SEPARATOR constant,
C:/WINDOWS will not exist on a Linux server. However, this allows you to
add the current working directory, or one relative to it, to the path fairly
easily.

The following example adds the directory bin, relative to the current loca-
tion, to the start of the system path:

$newpath = getcwd() . DIRECTORY_SEPARATOR . “bin” .
PATH_SEPARATOR . $_ENV[“PATH”];

putenv(“PATH=$newpath”);

The putenv function takes a single argument in which an environment
variable is assigned its new value. This change is not permanent, and the
new value is remembered only until the script ends.

19 0672327627 CH18 3/2/05 3:51 PM Page 160

161Host Program Execution

Time Zones
The TZ environment variable contains the server’s time zone setting. By
overriding this value, you can display the time in another part of the world
without needing to know the correct offset or perform any date arithmetic.

Most major cities or regions of the world have a value for TZ that is easy
to remember or work out (for instance, Europe/London, US/Pacific). It
can also be a value relative to Greenwich Mean Time or some other com-
mon time zone, such as GMT-8 or EST. On most systems, you can find the
available time zones by looking at the items in /usr/share/zoneinfo.

The script in Listing 18.1 displays the current time in several locations
around the globe.

LISTING 18.1 Using the TZ Environment Variable to Change
Time Zone
<?php
$now = time();
$original_tz = $_ENV[“TZ”];

echo “The time now is “ . date(“H:i:s”, $now) . “
”;

putenv(“TZ=US/Pacific”);
echo “The time on the US West Coast is “ .

date(“H:i:s”, $now) . “
”;

putenv(“TZ=Europe/Paris”);
echo “The time in France is “ . date(“H:i:s”, $now) . “
”;

putenv(“TZ=Australia/Sydney”);
echo “The time in Sydney is “ . date(“H:i:s”, $now) . “
”;

putenv(“TZ=Asia/Tokyo”);
echo “The time in Tokyo is “ . date(“H:i:s”, $now) . “
”;

putenv(“TZ=$original_tz”);
?>

Note that Listing 18.1 begins by storing the current time zone value so
that it can be restored after you are done changing the value.

19 0672327627 CH18 3/2/05 3:51 PM Page 161

162 Lesson 18

Security Considerations
Hopefully you have realized that having on your web server a script that
is able to execute host program commands is not always a good idea. In
fact, in Lesson 24, “PHP Security,” you will learn how you can use PHP’s
Safe Mode to place restrictions on host program execution.

To end this lesson, you will learn how to make sure that host program
execution is always done safely.

Escaping Shell Commands
Consider the script in Listing 18.2, which creates a web form interface to
the finger command.

LISTING 18.2 Calling the finger Command from a Web
Form
<FORM ACTION=”finger.php” METHOD=”POST”>
<INPUT NAME=”username” SIZE=10>
<INPUT TYPE=”SUBMIT” VALUE=”Finger username”>
</FORM>
<?php
if ($_POST[“username”]) {

$cmd = “finger {$_POST[‘username’]}”;
echo “<PRE>” . `$cmd` . “</PRE>”;

}
?>

Storing the Time The timestamp is saved to $now at
the start of Listing 18.1 so that the same value can be
passed to each date function. Although the second
argument to date can be omitted, if it is omitted, it is
possible that the script execution could take place as a
second ticks over, which would produce confusing
output.

19 0672327627 CH18 3/2/05 3:51 PM Page 162

163Host Program Execution

If you run this script in your browser and enter a username, the finger
information will be displayed.

However, if you instead enter a semicolon followed by another com-
mand—for instance, ;ls—the finger command is run without an argu-
ment and then the second command you entered is executed. Similar
trickery can be produced using other symbols, depending on your web
server platform.

This is clearly not a good thing. You might think that only limited damage
could be done through running processes as the same user as the web
server; however, many serious exploits can take advantage of this behav-
ior. A malicious user could issue a command such as wget or lynx to
install a hostile program on your server’s hard disk and then run it. This
could be a rootkit to attempt to take advantage of other server vulnera-
bilities, or it could be a script to launch a denial-of-service attack by eat-
ing up all your system resources. However you look at it, giving
anonymous users this kind of access to your web server is bad news.

To protect yourself against this kind of attack, you should use the
escapeshellcmd function. Any characters that may be used to fool the
shell into executing a command other than the one intended are prefixed
with a backslash. This way, undesirable characters actually become argu-
ments to the command.

To make Listing 18.2 safe, the statement that builds $cmd should be
changed to the following:

$cmd = escapeshellcmd(“finger {$_POST[‘username’]}”);

Now, entering ;ls into the form will result in the command executed
being finger \; ls—actually attempting to find users called ; or ls on
your system.

Summary
In this lesson you have learned how to safely run host commands on your
web server from PHP and deal with the output they produce. In the next
lesson you will learn about database access in PHP using MySQL.

19 0672327627 CH18 3/2/05 3:51 PM Page 163

LESSON 19
Using a
MySQL
Database

In this lesson you will learn how to access a MySQL database from PHP.
The pairing of PHP and MySQL is so popular and powerful that it is
quite rare to find PHP being used without MySQL—or at least some other
database back end.

Using MySQL
This lesson assumes that you already have MySQL installed on your web
server and that PHP has the MySQL module loaded. For information on
installing MySQL, see http://dev.mysql.com/doc/mysql/en/Installing.html,
and to learn how to activate MySQL support in PHP, refer to Lesson 23,
“PHP Configuration.”

Further Reading To learn about the MySQL data-
base, read Sams Teach Yourself MySQL in 24 Hours by
Julie Meloni. Or for a quick SQL language guide, refer
to Sams Teach Yourself SQL in 10 Minutes by Ben
Forta.

PHP 5 introduced the mysqli extension, which can take advantage of new
functionality in MySQL version 4.1 and higher and can also be used in an
object-oriented manner. This book concentrates on the classic mysql

20 0672327627 CH19 3/2/05 3:51 PM Page 164

extension, because it is still the version offered by many web hosting
providers and remains available in PHP 5.

Generally speaking, if you want to use mysqli instead of the classic mysql
extension described in this lesson, most function names are prefixed
mysqli rather than mysql, but they behave in a similar way. Refer to the
online documentation at www.php.net/mysqli for more information.

Connecting to a MySQL Database
You can connect to a MySQL database by using the mysql_connect func-
tion. Three arguments define your connection parameters—the hostname,
username, and password. In many cases, the MySQL server will be run-
ning on the same machine as PHP, so this value is simply localhost. A
typical mysql_connect statement may look like the following:

$db = mysql_connect(“localhost”, “chris”, “mypassword”);

Database Hostnames Because MySQL uses host-
based authentication, you must provide the correct
hostname—one that allows a connection to be made.
For instance, your MySQL server may be running on
www.yourdomain.com but it might only be config-
ured to accept connections to localhost.

Unless you are sure that the MySQL server is running
somewhere else, the hostname to use is almost always
localhost.

The mysql_connect function returns a database link identifier, which was
assigned to $db in the previous example. This resource is used as an argu-
ment to the other MySQL functions.

Notice that the connection parameters given to mysql_connect do not
include a database name. In fact, selecting the database is a separate step
after you are connected to a MySQL server; to do it, you use the

20 0672327627 CH19 3/2/05 3:51 PM Page 165

166 Lesson 19

mysql_select_db function. For example, the following statement selects
mydb as the current database:

mysql_select_db(“mydb”, $db);

Link Identifiers The $db argument is not actually
required in mysql_select_db and many other MySQL
functions. If it is omitted, PHP assumes that you mean
the most recently opened MySQL connection.
However, it is good practice to always include the link
identifier in MySQL function calls for clarity in your
code.

After mysql_select_db has been called, every subsequent SQL statement
passed to MySQL will be performed on the selected database.

When you are finished using MySQL in a script, you close the connection
and free up its resources by using mysql_close, like this:

mysql_close($db);

Executing SQL Statements
The function to pass a SQL statement to MySQL is mysql_query. It takes
two arguments—the query itself and an optional link identifier.

The following code executes a CREATE TABLE SQL statement on the
MySQL database for $db:

$sql = “CREATE TABLE mytable (col1 INT, col2 VARCHAR(10))”;
mysql_query($sql, $conn);

If you run a script that contains these statements in your web browser and
check your MySQL database, you will find that a new table called
mytable has been created.

All types of SQL statement can be executed through mysql_query,
whether they alter the data in some way or fetch a number of rows.

20 0672327627 CH19 3/2/05 3:51 PM Page 166

167Using a MySQL Database

Commands That Change a Database
Earlier in this lesson you saw an example of a CREATE TABLE statement.
Other Data Definition Language (DDL) statements can be executed in a
similar fashion, and, provided that no errors are encountered, they per-
form silently. You will learn about error handling later in this lesson.

When executing a DELETE, INSERT, or UPDATE statement—a subset of SQL
known as the Database Manipulation Language (DML)—a number of
rows in the table may be affected by the query. To find out how many
rows are actually affected, you can use the mysql_affected_rows func-
tion. The following example shows how to do this with a simple UPDATE
statement:

$sql = “UPDATE mytable SET col2 = ‘newvalue’ WHERE col1 > 5”;
mysql_query($sql, $conn);
echo mysql_affected_rows($conn) . “ row(s) were updated”;

The argument to mysql_affected_rows is the database link identifier, and
a call to this function returns the number of rows affected by the most
recent query. The number of rows affected by this UPDATE statement is not
necessarily the number of rows matching the WHERE clause. MySQL does
not update a row if the new value is the same as the one already stored.

Deleting All Rows If you execute a DELETE statement
with no WHERE clause, the number returned by
mysql_affected_rows is zero, regardless of the number
of rows actually deleted. MySQL simply empties the
table rather than delete each row in turn, so no count
is available.

Fetching Queried Data
The SELECT statement should return one or more rows from the database,
so PHP provides a set of functions to make this data available within a
script. In order to work with selected data, you must assign the result
from mysql_query to a result resource identifier, as follows:

$res = mysql_query($sql, $db);

20 0672327627 CH19 3/2/05 3:51 PM Page 167

168 Lesson 19

You cannot examine the value of $res directly. Instead, you pass this
value to other functions to retrieve the database records.

You can use the function mysql_result to reference a data item from a
specific row and column number in the query result. This is most useful
when your query will definitely only return a single value—for instance,
the result of an aggregate function.

The following example performs a SUM operation on the elements in a
table column and displays the resulting value onscreen:

$sql = “SELECT SUM(col1) FROM mytable”;
$res = mysql_query($sql, $conn);
echo mysql_result($res, 0, 0);

The three arguments to mysql_result are the result resource identifier, a
row number, and a column number. Numbering for both rows and
columns begins at zero, so this example finds the first row in the first col-
umn in the result set. In fact, because of the nature of aggregate functions,
you can be sure that there will always be only a single row and column in
the result of this query, even if there are no records in the table. An
attempt to access a row or column number that does not exist will result
in an error.

The function mysql_num_rows returns the number of rows found by the
query, and you can use this value to create a loop with mysql_result to
examine every row in the result. The following code shows an example of
this:

$sql = “SELECT col1, col2 FROM mytable”;
$res = mysql_query($sql, $db);
for ($i=0; $i < mysql_num_rows($res); $i++) {

echo “col1 = “ . mysql_result($res, $i, 0);
echo “, col2 = “ . mysql_result($res, $i, 1) . “
”;

}

With the query used in this example, because the column positions of
col1 and col2 are known, you can use mysql_result with a numeric
argument to specify each one in turn.

20 0672327627 CH19 3/2/05 3:51 PM Page 168

169Using a MySQL Database

Fetching Full Rows of Data
PHP provides a convenient way to work with more than one item from a
selected row of data at a time. By using mysql_fetch_array, you can cre-
ate an array from the query result that contains one element for each col-
umn in the query.

When you call mysql_fetch_array on a result resource handle for the
first time, an array is returned that contains one element for each column
in the first row of the data set. Subsequent calls to mysql_fetch_array
cause an array to be returned for each data row in turn. When there is no
more data left to be fetched, the function returns FALSE.

You can build a very powerful loop structure by using mysql_fetch_
array, as shown in the following example:

$sql = “SELECT col1, col2 FROM mytable”;
$res = mysql_query($sql, $conn);
while ($row = mysql_fetch_array($res)) {

echo “col1 = “ . $row[“col1”];
echo “, col2 = “ . $row[“col2”] . “
”;

}

Each row of data is fetched in turn, and in each pass of the loop, the entire
row of data is available in the array structure, without any further function
calls being necessary.

The array contains the row’s data, using elements with both numeric and
associative indexes. In the previous example, because you know that col1
is the first column selected, $row[“col1”] and $row[0] contain the same
value.

Field Names You can use a string for the column
argument to mysql_result; in this case, you need to
give the column’s name. This behavior is particularly
useful in SELECT * queries, where the order of
columns returned may not be known, and in queries
where the number of columns returned is not easily
manageable.

20 0672327627 CH19 3/2/05 3:51 PM Page 169

170 Lesson 19

This mechanism provides a method of sequential access to every row
returned by a query. Random access is also available, and by using the
function mysql_data_seek, you can specify a row number to jump to
before the next mysql_fetch_array is performed.

To jump to the tenth row, you would use the following (remember that the
numbering begins at zero, not one):

mysql_data_seek($res, 9);

It therefore follows that to reset the row position to the start of the data
set, you should seek row zero:

mysql_data_seek($res, 0);

If you attempt to call mysql_data_seek with a row number that is higher
than the total number of rows available, an error occurs. You should check
the row number against the value of mysql_num_rows to ensure that it is
valid.

Seeking To skip to the last row of a data set, you call
mysql_data_seek($res, mysql_num_rows($res)-1). The
number of the last row is one less than the total num-
ber of rows in the result.

However, the result can usually be achieved more eas-
ily by specifying reverse sorting in an ORDER BY clause
in your SQL and selecting the first row instead.

Debugging SQL
When a PHP call to the MySQL interface encounters a database error, the
warnings displayed are not always as helpful as you might hope. In the
following sections you will find out how to make the most of MySQL’s
error reporting to debug errors at the database level.

20 0672327627 CH19 3/2/05 3:51 PM Page 170

171Using a MySQL Database

SQL Errors
When there is an error in a SQL statement, it is not reported right away.
You should check the return value from mysql_query to determine
whether there was a problem—it is NULL if the query has failed for any
reason. This applies to DDL and DML statements as well as to SELECT
queries.

The following example tries to perform an invalid SQL statement (the
table name is missing from the DELETE command):

$sql = “DELETE FROM”;
$res = mysql_query($sql, $db);
if (!$res) {

echo “There was an SQL error”;
exit;

}

If you want to find out why a call to mysql_query failed, you must use the
mysql_error and mysql_errno functions to retrieve the underlying
MySQL warning text and error code number. A link resource argument
can be provided but is required only if you have two or more open
MySQL connections in the script:

if (!$res) {
echo “Error “ . mysql_errno() . “ in SQL “;
echo “<PRE>$sql</PRE>”;
echo mysql_error();
exit;

}

Debugging SQL When you’re debugging SQL, it is
useful to see the query that was attempted alongside
the error message, particularly if your query uses vari-
able substitutions. This is easy to do if the query is
stored in a variable—such as $sql used throughout
this lesson—rather than given directly as an argument
to mysql_query.

20 0672327627 CH19 3/2/05 3:51 PM Page 171

172 Lesson 19

If you do not trap SQL errors in script, PHP will continue to execute until
an attempt is made to use the failed result resource. You will see an error
message similar to the following if, for instance, mysql_result is called
with an invalid $res value:

Warning: mysql_result(): supplied argument is not a valid
MySQL result resource in /home/chris/mysql.php on line 8

This error does not give any indication of what the problem was, or even
when in the script it occurred. The line number given is the line of the
mysql_result call, not mysql_query, so you have to search upward in the
script to find the root of the problem.

Connection Errors
If an error occurs during connection to a MySQL database, a PHP error is
displayed onscreen, similar to the following, which were caused by an
invalid password and a mistyped hostname, respectively:

Warning: mysql_connect(): Access denied for user
‘root’@’localhost’
(using password: YES) in /home/chris/connect.php on line 3

Warning: mysql_connect(): Unknown MySQL server host
‘local-host’
(1) in /home/chris/connect.php on line 3

These warnings are generated by PHP and are adequately descriptive. If
you want, you can view the actual MySQL error message and error code
by using mysql_error and mysql_errno.

For instance, if you have stopped PHP warnings from being displayed
onscreen—you will learn how to do this in Lesson 23—it might be useful
to output this information or write it to a log file. You can detect that the
connection attempt failed because the link resource is NULL.

20 0672327627 CH19 3/2/05 3:51 PM Page 172

173Using a MySQL Database

The following code checks that a connection has been successful before
continuing, and it displays the reason for failure, if appropriate:

$db = mysql_connect(“localhost”, “chris”, “mypassword”);
if (!$db) {

echo “Connection failed with error “ .
mysql_errno() . “
”;

echo “Warning: “ . mysql_error();
exit;

}

Passwords Neither the PHP warning nor the mes-
sage from mysql_error contains the password used
when the reason for failure is an invalid logon
attempt.

Summary
In this lesson you have learned how to use PHP’s interface to the MySQL
database system. In the next lesson you will learn how PHP can commu-
nicate with different database back ends by using a database abstraction
layer.

20 0672327627 CH19 3/2/05 3:51 PM Page 173

LESSON 20
Database
Abstraction

In this lesson you will learn how to access different databases from PHP,
using a single interface. Database abstraction is a very powerful tech-
nique; it allows you to write scripts for a nonspecific database back end,
which you can then easily port simply by changing the connection para-
meters.

The PEAR DB Class
Many different database abstraction layers are available for PHP, but the
one you will learn how to use in this lesson is the PEAR DB class. In
Lesson 25, “Using PEAR,” you will find out more about PEAR—the PHP
Extension and Application Repository—and some other useful classes it
contains.

The DB class implements database abstraction, using PHP’s database
extensions, and it currently supports the extensions shown in Table 20.1.

TABLE 20.1 PHP Database Extensions supported by the
PEAR DB Class

Extension Database

dbase dBase (.dbf)

fbsql FrontBase

ibase Firebird/Interbase

ifx Informix

msql Mini SQL

21 0672327627 CH20 3/2/05 3:51 PM Page 174

mssql Microsoft SQL Server

mysql MySQL

mysqli MySQL 4.1 and higher

oci8 Oracle versions 7, 8, and 9

odbc ODBC

pgsql PostgreSQL

sqlite SQLite

Sybase Sybase

Extension Database

DB Class Documentation The online documentation
for the PEAR DB class can be found at http://pear.
php.net/package/DB.

Installing the DB Class
To check whether the DB class is installed on your web server, you can run
the following command to display a list of installed packages:

$ pear list

If you need to install the DB class, you run the following command:

$ pear install DB

Note that you need to be an admin to install a PEAR class, so if you are
using a shared web hosting service, you might need to contact your sys-
tem administrator.

Because the underlying PHP extensions are used, no additional database
drivers are needed to communicate with each type of database from the DB
class.

21 0672327627 CH20 3/2/05 3:51 PM Page 175

176 Lesson 20

Data Source Names
To connect to a database through the DB class, you need to construct a
valid data source name (DSN), which is a single string that contains all
the parameters required to connect and is formed in a similar manner to a
URL that you might use to access a protected web page or FTP server.

The following DSN can be used to connect to a MySQL database running
on localhost:

mysql://chris:mypassword@localhost/mydb

The components of this DSN are the database back-end type (mysql),
username (chris), password (mypassword), host (localhost), and data-
base name (mydb).

The full syntax definition for a DSN is as follows, and the components
that it can be constructed from are given in Table 20.2.

phptype(dbsyntax)://username:password@protocol+hostspec/
database?option=value

TABLE 20.2 Components of a DSN

Component Description

phptype Database back-end protocol to use (for example,
mysql, oci8)

dbsyntax Optional parameters related to SQL syntax; for
ODBC, should contain the database type (for exam-
ple, access, mssql)

username Username for database login

Further Reading To learn about the MySQL data-
base, read Sams Teach Yourself MySQL in 24 Hours by
Julie Meloni. Or, for a quick SQL language guide, refer
to Sams Teach Yourself SQL in 10 Minutes by Ben
Forta.

21 0672327627 CH20 3/2/05 3:51 PM Page 176

177Database Abstraction

password Password for database login

protocol Connection protocol (for example, tcp, unix)

hostspec Host specification, either hostname or
hostname:port

database Database name

option Additional connection options; multiple options are
separated by &

As shown in the first example of connecting to MySQL, not every compo-
nent of the DSN is required. The exact syntax depends on what informa-
tion your database back end needs.

For instance, a connection to SQLite—which requires no username,
password, or hostspec—would look like the following:

sqlite:///path/to/dbfile

On the other hand, a connection to a PostgreSQL server that is not run-
ning on a standard port number would require something more complex
like this:

pgsql://username:password@tcp(hostname:port)/dbname

Component Description

Using the DB Class
To begin using the DB class in scripts, you simply include it by using the
following statement:

include “DB.php”;

Database Types The database type values for the
phptype argument are the values shown in the first
column of Table 20.1.

21 0672327627 CH20 3/2/05 3:51 PM Page 177

178 Lesson 20

To make a connection to a database, you call the connect method on the
DB class, giving your DSN as the argument:

$db = DB::connect($dsn);

The $db return value is an object on which the DB class methods can be
invoked to perform different types of database operation.

Database Objects Note that you cannot create a
new instance of a DB object by using the new keyword.
You must call DB::connect to begin a new database
session.

If the database connection fails, the return value is a DB_Error object,
which you can analyze by using the isError and getMessage methods.
The following code shows a database connection attempt with error
checking:

$db = DB::connect($dsn);
if (DB::isError($db)) {

echo “Connection error: “ . $db->getMessage();
exit;

}

The function isError returns true only if the argument passed is a
DB_Error object, which indicates a problem of some kind with the data-
base connection. You can then call the getMessage method on the
DB_Error object to retrieve the actual error message from the database
server.

Connection Errors $db is assigned an object value of
some kind, whether or not the connection is success-
ful. Its value will never be NULL or FALSE.

21 0672327627 CH20 3/2/05 3:51 PM Page 178

179Database Abstraction

Performing a Query
To execute a SQL query through the DB class, you use the query method.
The return value depends on the type of query being executed, but in the
event of any error, a DB_Error object is returned, and the error can be
detected and diagnosed in the same way as can connection errors.

The following example executes the query stored in $sql with error
checking:

$res = $db->query($sql);
if (DB::isError($res)) {

echo “Query error “ . $res->getMessage();
exit;

}

If the query submitted is an INSERT, UPDATE, or DELETE statement, the
return value is the constant DB_OK. You can find out the number of rows
affected by the statement by calling the affectedRows method on the
database object itself, as shown in the following example:

$sql = “UPDATE mytable SET col2 = ‘newvalue’ WHERE col1 > 5”;
$res = $db->query($sql);
echo $db->affectedRows(). “ row(s) were affected”;

Retrieving Selected Data
If you issue a SELECT statement, the return value from the query is a
DB_Result object, which can then be used to access records from the
result data set.

To view the number of rows and columns in the data set, you use the
numRows and numCols methods, respectively, as in this example:

$sql = “SELECT * FROM mytable”;
$res = $db->query($sql);
echo “Query found “ . $res->numRows . “ row(s) “.

“and “ . $res->numCols . “ column(s)”;

You can use the fetchRow method on a DB_Result object to return a row
of data at a time in an array structure. The result pointer is then increased

21 0672327627 CH20 3/2/05 3:51 PM Page 179

180 Lesson 20

so that each subsequent call to fetchRow returns the next row of data, in
order. The following code shows how you can fetch all the rows returned
by a query by using fetchRow in a loop:

$sql = “SELECT col1, col2 FROM mytable”;
$res = $db->query($sql);
while ($row = $res->fetchRow()) {

echo “col1 = “ . $row[0] . “, “;
echo “col2 = “ . $row[1] . “
”;

}

In this example, elements of $row are numerically indexed, beginning at
zero. Because the selected columns are specified in the SELECT statement,
the order is known and you can be sure that $row[0] contains the value of
col1.

You can give an optional argument to fetchRow to change the array index-
ing. The default, which causes a numerically indexed array to be created,
is DB_FETCHMODE_ORDERED. By specifying DB_FETCHMODE_ASSOC, you cause
an associative array to be created, using the column names as keys.

You could use the following loop to reproduce the previous example,
instead using an associative array of the fetched values:

while ($row = $res->fetchRow(DB_FETCHMODE_ASSOC)) {
echo “col1 = “ . $row[“col1”] . “, “;
echo “col2 = “ . $row[“col2”] . “
”;

}

If you prefer, you can use the fetchRow method to create an object struc-
ture rather than an array, by passing the argument DB_FETCHMODE_OBJECT.
The following loop is equivalent to the previous two examples, but it uses
the object method:

while ($row = $res->fetchRow(DB_FETCHMODE_OBJECT)) {
echo “col1 = “ . $row->col1. “, “;
echo “col2 = “ . $row->col2 . “
”;

}

21 0672327627 CH20 3/2/05 3:51 PM Page 180

181Database Abstraction

Query Shortcuts
If a query will return only a single row and column—for instance, the
result of a single aggregate function—you can use the getOne method to
quickly execute the query and return the result. A string query argument is
supplied, and the database result is returned:

$sum = $db->getOne(“SELECT sum(col1) FROM mytable”);

Other shortcut methods are available, including getRow, to execute a
query and return a whole row, and getAll, to execute a query and return
the entire dataset as an array. Refer to the documentation for a full list of
functions.

Database Portability Issues
By using database abstraction, you can write database-driven code that
should be able to work with a multitude of back ends, simply by changing
the DSN used to connect to the database.

However, not all database systems are the same, so you need to consider
the design of database tables and SQL statements in order to make sure
that your code is as widely supported as possible.

The most important consideration is to make sure that your SQL is writ-
ten for the lowest common subset of the SQL language available to all the
database back ends you want to be compatible with. For example, SQL
that contains subqueries will not work with MySQL 4.0 or earlier.
Similarly, you should avoid SQL commands that are specific to certain
database systems, such as LIMIT or CREATE SEQUENCE.

Fetch Modes Which fetch mode you use usually
depends on your preference. The associative array and
object structures usually create mode-readable code.
However, where optimal performance is essential, you
should try to use DB_FETCHMODE_ORDERED.

21 0672327627 CH20 3/2/05 3:51 PM Page 181

182 Lesson 20

Portability Modes
The DB class includes some portability mode settings that can ease the
transition from one database back end to another. These modes are indi-
cated by a series of constants, shown in Table 20.3, that you can set by
using the setOption method with the required options, combined with a
logical OR operator. The following statement shows an example:

$db->setOption(‘portability’,
DB_PORTABILITY_ERRORS | DB_PORTABILITY_NUMROWS);

TABLE 20.3 Portability Mode Constants

Constant Mode

DB_PORTABILITY_ALL Turns on all portability features

DB_PORTABILITY_NONE Turns off all portability features

DB_PORTABILITY_DELETE_COUNT Forces a count to take place in a
DELETE statement with no WHERE
clause, with WHERE 1=1
appended to the statement

DB_PORTABILITY_ERRORS Increases consistency of error
reporting between different data-
base systems

DB_PORTABILITY_LOWERCASE Forces conversion of names of
tables and columns to lowercase

DB_PORTABILITY_NULL_TO_EMPTY Converts fetched NULL values to
empty strings; some databases
do not distinguish these

DB_PORTABILITY_NUMROWS Enables the numRows method to
work correctly in Oracle

DB_PORTABILITY_RTRIM Forces trailing whitespace to be
trimmed from fetched data

21 0672327627 CH20 3/2/05 3:51 PM Page 182

183Database Abstraction

Working with Quotes
You can use the DB method quoteSmart to enclose a value in quotation
marks so that it can be safely inserted into a column. String values are
enclosed in quotes, and any characters that need to be delimited are auto-
matically taken care of.

The following example builds a SQL statement by using quoteSmart to
ensure that the apostrophe in the string does not interfere:

$sql = “INSERT INTO phrases (phrase) “ .
“VALUES (“ . $db->quoteSmart($text) . “)”;

The following is the value of $sql when the previous statement is exe-
cuted, using the MySQL driver:

INSERT INTO phrases (phrase)
VALUES (‘Let\’s get ready to rumble’)

The output and the delimiting rules used depend on the database you are
connected to.

Sequences
The way sequences are implemented in different database engines varies
considerably. In MySQL, for instance, you use the AUTO_INCREMENT
attribute on a table column, and in SQL Server it is called an IDENTITY
field. In Oracle you use CREATE SEQUENCE to create a database object that
tracks the sequence value independently of any table.

The DB class uses its own set of functions to manage sequences so that
using any kind of auto-incrementing field does not tie your code to one
particular database back end.

Sequences If your back-end database supports
CREATE SEQUENCE, that functionality will be used.
Otherwise, the DB class emulates the sequence by
using a table that holds the sequence value, and it
performs an increment each time the sequence is
accessed.

21 0672327627 CH20 3/2/05 3:51 PM Page 183

184 Lesson 20

To create a new sequence, you use the createSequence method on a data-
base object, with a unique sequence identifier. After the sequence has
been created, the nextId method can be called with that identifier to
return the next sequential value.

The following example creates a sequence called order_number and dis-
plays the first sequence value:

$db->createSequence(“order_number”);
echo $db->nextId(“order_number”);

Subsequent calls to nextId for this sequence return incremental values.

To drop a sequence when you no longer have a use for it, you call the
dropSequence method.

Query Limits
MySQL implements the LIMIT keyword in SQL statements, which you
can use to restrict the number of rows returned by a query. This is non-
standard SQL, and other database systems do not include this feature.

The DB class includes the limitQuery method, which you can use to emu-
late the LIMIT clause in a SQL statement for maximum compatibility. This
method is called in the same way as a query, but it takes two additional
arguments: to specify the starting row and number of rows to be returned.

The following example returns five rows from the query’s data set, begin-
ning at row 11 (where row numbering begins at zero):

$res = $db->limitQuery(“SELECT * FROM mytable”, 10, 5);

Summary
In this lesson you have learned how to write database-driven PHP scripts
by using a database abstraction layer. In the next lesson you will learn
how to write and run command scripts by using PHP.

21 0672327627 CH20 3/2/05 3:51 PM Page 184

LESSON 21
Running PHP
on the
Command Line

Although PHP was conceived as a tool for creating dynamic web pages,
because the PHP language is very powerful, it has also become popular
for writing command scripts and even desktop programs.

In this lesson you will learn how to write PHP for use from the command
line and create your own command scripts.

The Command-Line Environment
In order to use PHP from the command line, you need to have a PHP exe-
cutable installed on your system. When running in a web environment,
PHP is usually installed as an Apache module, but it is also possible to
build a standalone program called php that can be used as a command-line
interface (CLI).

Differences Between CLI and CGI Binaries
Beginning in version 4.2, PHP started to differentiate between binary pro-
grams intended for CGI and those for CLI use. Both executables provide
the same language interpreter, but the CLI version includes the following
changes to make it more suitable for command-line use:

• No HTTP headers are written in the output.

• Error messages do not contain HTML formatting.

• The max_execution_time value is set to zero, meaning that the
script can run for an unlimited amount of time.

22 0672327627 CH21 3/2/05 3:51 PM Page 185

186 Lesson 21

To find out whether a php binary is a CGI or CLI version, you can run it
with the –v switch to see its version information. For instance, the follow-
ing output is from the CLI version PHP 5.0.3:

PHP 5.0.3 (cli) (built: Dec 15 2004 08:07:57)
Copyright (c) 1997-2004 The PHP Group
Zend Engine v2.0.3, Copyright (c) 1998-2004 Zend Technologies

The value in parentheses after the version number indicates the Server
Application Programming Interface (SAPI) that is in use. You can also
find this value dynamically in a script by looking at the return value from
the function php_sapi_name.

Windows Distributions The Windows distributions of
PHP 4.2 included two binaries—the CGI version was
called php.exe, and the CLI binary was php-cli.exe. For
PHP 4.3, both were called php.exe, but they were
found in folders called cli and cgi, respectively.

For PHP 5 and higher, php.exe is the CLI version, and
now the CGI binary is named php-cgi.exe. A new
php-win.exe CLI binary is also included that runs
silently—that is, the user doesn’t need to open a com-
mand prompt window.

PHP Shell Scripts on Linux/Unix
On a Linux/Unix platform, a shell script is simply a text file that contains
a series of instructions that are to be processed by a specific language
interpreter. The simplest shell interpreter is the Bourne Shell, sh, although
these days it has been superseded by the Bourne Again Shell, bash, which
is fully compatible with sh but also includes other useful features.

Because the command language available in most command shells is very
restrictive and often requires calls to external programs, PHP is not only a
more powerful language, suitable for many tasks, but its built-in features
also usually give better performance than the standard system tools.

22 0672327627 CH21 3/2/05 3:51 PM Page 186

187Running PHP on the Command Line

All shell scripts must begin with the characters #!, followed by the path to
the command interpreter that is to be used. For a traditional shell script,
this would look like the following:

#!/bin/sh

However, for a PHP script, the first line would be

#!/usr/local/bin/php

PHP Location The php executable is usually installed
to /usr/local/bin or /usr/bin, depending on whether
it was installed from source or a binary package, but
your actual location may vary. Try typing which php to
find the location if you do not know it.

The file permissions on a shell script must allow the file to be executed.
To set execute permission for the owner of the file, you use the following
command:

$ chmod u+x myscript.php

If your script is to be run by any system user, the command to set global
execute permission is as follows:

$ chmod a+x myscript.php

If the execute bit is not set, you can still run a file that contains a series of
PHP commands through the PHP interpreter by invoking php with a file-
name argument. The following two commands are identical to one another
(the –f switch can be used for clarity but is not required):

$ php myscript.php
$ php –f myscript.php

Hash Bang The most widely used pronunciation for
the character sequence #!, found at the start of a shell
script, is “hash bang,” although sometimes it is also
referred to as “shebang.”

22 0672327627 CH21 3/2/05 3:51 PM Page 187

188 Lesson 21

PHP Command Scripts on Windows
Windows does not allow an alternate command interpreter to be used in a
batch script, so to execute a PHP script under Windows, you have to pass
a filename argument to php.exe. The –f switch is optional, so the follow-
ing two commands are identical to one another:

> php.exe myscript.php
> php.exe –f myscript.php

Script Names There are no naming requirements for
any type of shell script. However, it is useful to retain
the .php extension so that the filename indicates a
PHP script. Bourne shell scripts sometimes have the file
extension .sh but often are command names with no
file extension at all.

Batch Scripts If you want, you can create a simple
batch script to invoke php.exe with the correct file-
name argument so that you can run your script by
using a single command.

To do so, you create a file named myscript.bat that
contains the command php.exe, followed by your
script name. You can then run that script by simply
entering myscript at the command prompt.

Embedding PHP Code
Just as when it is used in the web environment, PHP code in a command
script needs to be embedded. Any text that does not appear inside <?php
tags is sent straight to the output.

Because you usually want to create a script that is entirely made up of
PHP code, you must remember to begin every PHP shell script with a

22 0672327627 CH21 3/2/05 3:51 PM Page 188

189Running PHP on the Command Line

<?php tag. However, the embedded nature of PHP means you could create
a PHP script that generates only certain elements within a largely static
text file.

Writing Scripts for the
Command Line
The PHP language provides certain functionality that is particularly useful
for writing command-line scripts. You will rarely, if ever, use these fea-
tures in the web environment, but they are described in the following sec-
tions.

Character Mode Output
When you’re producing web output, you use the
 tag to produce a
simple line break in the output. When it is sent to a web page, the newline
character, \n, causes a line break in the HTML source, but it is not visible
in the rendered web page.

Command-line scripts, however, produce text-only output, so you must
use the newline character to format your output. If your script produces
any output, you should always include \n after the last item has been dis-
played.

You can also take advantage of the fixed-width character mode when run-
ning command-line scripts—for instance, by spacing output into columns.
The printf function allows you to use width and alignment format char-
acters, which have no effect on HTML output unless they’re contained in
<PRE> tags. For more information, refer to Lesson 6, “Working with
Strings.”

Command-Line Arguments
You can pass arguments to a shell script by simply appending them after
the script name itself. The number of arguments passed can be found in
the variable $argc, and the arguments themselves are stored in a numeri-
cally indexed array named $argv.

22 0672327627 CH21 3/2/05 3:51 PM Page 189

190 Lesson 21

The $argv array will always contain at least one element. Even if no addi-
tional arguments are passed to the script, $argv[0] will contain the name
of the script itself, and $argc will be 1.

The script in Listing 21.1 requires exactly two arguments to be passed.
Otherwise, an error message appears, and the script terminates. The out-
put produced shows which of the two arguments is greater.

LISTING 21.1 Using Command-Line Arguments
#!/usr/local/bin/php
<?php

if ($argc != 3) {
echo $argv[0].”: Must provide exactly two arguments\n”;
exit;

}

if ($argv[1] < $argv[2]) {
echo $argv[1] . “ is less than “. $argv[2] . “\n”;

}
elseif ($argv[1] > $argv[2]) {

echo $argv[1] . “ is greater than “. $argv[2] . “\n”;
}
else {

echo $argv[1] . “ is equal to “. $argv[2] . “\n”;
}
?>

Notice that the initial condition in Listing 21.1 checks that the value of
$argc is 3; there must be two arguments, plus the script name itself in
$argv[0]. In fact, $argv[0] is output as part of the error message. This is
a useful technique for ensuring that the actual script name is shown, what-
ever its name happens to be.

Arguments The identifier names argc and argv are
used for historic reasons. They originated in C and are
now widely used in many programming languages.

In PHP $argc is assigned for convenience only; you
could, of course, perform count($argv) to find out
how many arguments were passed to the script.

22 0672327627 CH21 3/2/05 3:51 PM Page 190

191Running PHP on the Command Line

Input/Output Streams
Although it is possible to read and write directly to the standard input,
output, and error streams in the web environment, doing so is much more
useful in command-line scripts.

Stream access is performed using the same set of functions as for file
access: You simply open a file pointer to the appropriate stream and
manipulate it in the same way.

The stream identifiers look like URLs—remember that PHP also allows
you to open URLs by using the file access functions—constructed of
php:// followed by the name of the stream. For instance, to open the
standard input stream for reading, you use the following command:

$fp = fopen(“php://stdin”, “r”);

However, because stream access is common in command-line scripts,
PHP provides a shortcut. The constants STDIN, STDOUT, and STDERR pro-
vide instant access to an opened stream without requiring a call to fopen.

The script in Listing 21.2 uses all three standard streams. It reads data
from standard input and capitalizes the letters it contains by using
strtoupper. If the input data contains non-alphanumeric characters, a
warning is sent to the standard error stream as well.

LISTING 21.2 Reading and Writing Standard Streams
#!/usr/local/bin/php
<?php

while (!feof(STDIN)) {
$line++;
$data = trim(fgets(STDIN));

fputs(STDOUT, strtoupper($data).”\n”);
if (!ereg(“^[[:alnum:]]+$”, $data)) {

fputs(STDERR,
“Warning: Invalid characters on line $line\n”);

}
}
?>

22 0672327627 CH21 3/2/05 3:51 PM Page 191

192 Lesson 21

If you run this script from the command line, it waits for you to type data
a line at a time, and it returns the uppercase version after each line is
entered. The advantage of using the standard input stream is that you can
redirect input from another source.

To pass the contents of the file myfile into a script named myscript and
have the output written to outfile, for instance, you would run the fol-
lowing command:

$ myscript < myfile > outfile

With the example in Listing 21.2, outfile would contain only the upper-
case data. The warning messages produced would continue to be dis-
played to screen, unless you also redirected standard error.

To summarize, the constants and stream identifiers available in command-
line PHP are shown in Table 21.1.

TABLE 21.1 Stream Access for CLI PHP

Constant Identifier Stream

STDIN php://stdin Standard input

STDOUT php://stdout Standard output

STDERR php://stderr Standard error

Creating Desktop Applications
PHP is such a powerful language that you can even use it to create desk-
top applications. Furthermore, because PHP is an interpreted language,
any such applications are likely to be highly portable.

The PHP-GTK extension implements an interface to the GIMP window
toolkit, GTK+. This provides PHP developers with the ability to create
applications with a graphical front end that includes windows, menus, but-
tons, and even drag-and-drop functionality.

Creating a complex graphical application is beyond the scope of this
book. If you are interested in learning more about PHP-GTK, however,
see http://gtk.php.net.

22 0672327627 CH21 3/2/05 3:51 PM Page 192

193Running PHP on the Command Line

Summary
In this lesson you have learned how to write PHP scripts by using the
CLI. In the next lesson you will learn techniques for error handling and
debugging in PHP.

22 0672327627 CH21 3/2/05 3:51 PM Page 193

LESSON 22
Error
Handling

In this lesson you will learn how to deal with errors in PHP scripts effec-
tively and how to debug code that does not work as you expect them to.

Error Reporting
PHP has a configurable error reporting system that you can set to be just
as pedantic you want it to be about code. By default, the strictest mode is
not enabled, and, in most cases, you get a warning message only when an
imperfection has a good chance of affecting the intended purpose of your
script.

Changing Error Levels
To change the error reporting level, you use the error_reporting func-
tion with a value that is made up of the constants shown in Table 22.1.

TABLE 22.1 Error Reporting Constants

Constant Description

E_ERROR Indicates a fatal runtime error. Script execu-
tion is halted.

E_WARNING Issues runtime warnings. Non-fatal; script
execution continues.

E_PARSE Indicates compile-time parsing errors.

E_NOTICE Issues runtime notices, which may or not
indicate errors.

23 0672327627 CH22 3/2/05 3:52 PM Page 194

E_CORE_ERROR Issues a fatal error generated internally by
PHP.

E_CORE_WARNING Issues a warning generated internally by
PHP.

E_COMPILE_ERROR Issues a fatal error generated by the Zend
engine.

E_COMPILE_WARNING Issues a warning generated by the Zend
engine.

E_USER_ERROR Issues a user-generated error message, trig-
gered by trigger_error.

E_USER_WARNING Issues a user-generated warning, triggered
by trigger_error.

E_USER_NOTICE Issues a user-generated notice, triggered by
trigger_error.

E_ALL Issues all errors and warnings except
E_STRICT.

E_STRICT Issues all errors and warnings, plus PHP
suggests code changes to improve code
compatibility.

You combine these constants by using bitwise operators to create a bit-
mask that represents the desired level. The default value is E_ALL &
~E_NOTICE, which means that all errors and warnings are displayed except
for E_STRICT, which is not covered by E_ALL, and E_NOTICE.

To set the error reporting level so that all warnings and notices are dis-
played, you use the following command:

error_reporting(E_ALL);

The type of notices that are not displayed by default are not life-
threatening and do not affect the normal execution of a script.

Constant Description

23 0672327627 CH22 3/2/05 3:52 PM Page 195

196 Lesson 22

The E_NOTICE error level can be very useful during script development
because it alerts you to the use of undefined variables. Although using
E_NOTICE does not cause an error in your script, seeing these warnings can
often alert you to an identifier name that was mistyped and should be ref-
erencing a previously declared value.

When you use E_NOTICE, you are also warned about certain points of cod-
ing style. For instance, array key identifiers should be enclosed in quota-
tion marks, but a sloppy programmer might use $array[key]. PHP first
assumes that key is a constant, but if no constant with that name is
defined, it also tries to use it as a string key name. With E_NOTICE
enabled, you are advised of this ambiguity.

The E_STRICT level is new in PHP 5, and it is useful if you want to make
sure your code is up-to-date. It warns you if you use deprecated functions
that have been left in the PHP language for backward compatibility.

You can also set the error reporting level in the php.ini file, or per direc-
tory, by using .htaccess, using the error_reporting directive. Lesson
23, “PHP Configuration,” describes how to use these features.

Displaying Errors The log_errors and display_errors
configuration directives allow you to choose whether
errors and warnings are displayed to screen or written
to a log file.

On a production web site, you should consider
whether displaying error messages onscreen is a secu-
rity risk because it could convey information about
your system to an intruder or a competitor.

Custom Error Handlers
PHP allows you to define a custom function that is called whenever an
error is encountered. This replaces the default action of displaying the
error message to screen or logging to a file, depending on your configura-
tion.

23 0672327627 CH22 3/2/05 3:52 PM Page 196

197Error Handling

You use the set_error_handler function to declare which function
should be used as the custom error handler. Its first argument is the func-
tion name, and you can give an optional second argument that contains a
bitmask that specifies which error levels should be handled by that func-
tion.

For example, to use the function myhandler to trap all E_WARNING and
E_NOTICE errors, you use the following command:

set_error_handler(“myhandler”, E_WARNING & E_NOTICE);

The user-defined error handler function requires two parameters: an error
code number and a string error message. The error code value can be
compared to the constants in Table 22.1 to find out what type of error
occurred. You can include three more optional parameters if you want to
process the information they pass to the function: the filename, line num-
ber, and context when the error occurred.

The example in Listing 22.1 declares a custom error handler function that
logs all errors to a MySQL database table.

LISTING 22.1 Writing a Custom Error Handler
<?php

function log_errors($errno, $errstr, $errfile, $errline) {

$db = mysql_connect(“localhost”, “loguser”, “logpassword”);
mysql_select_db(“test”, $db);
$errstr = mysql_escape_string($errstr);
$sql = “insert into php_log

(errno, errstr, errfile, errline)
values

(‘$errno’, ‘$errstr’, ‘$errfile’, ‘$errline’)”;

$res = mysql_query($sql, $db);
}

set_error_handler(“log_errors”);

// Assigning an undefined variable will raise a warning
$a = $b;
?>

23 0672327627 CH22 3/2/05 3:52 PM Page 197

198 Lesson 22

You create the database table required to log these errors by using the fol-
lowing SQL statement:

CREATE TABLE php_log (
error_timestamp timestamp,
errno int,
errstr text,
errfile text,
errline int

);

Note that this example does not use the optional fifth parameter that
passes in the context. The context is passed as an array that contains the
contents of every variable—both local values and system super-globals—
in the script at the time the error occurred.

Although this information can sometimes be useful when you’re debug-
ging, it is a lot of information to store to a log file or table. Furthermore,
because the value passed is an array, you need to pass $errcontext
through the serialize function in order to store it to a database or text
file.

Context Data Most likely you are interested in only a
small part of the context data passed to your error
handler function, so you can have the function extract
as much information as is necessary and discard the
rest.

Raising User Errors
You can use the trigger_error function to raise an error on demand. If a
custom error handler has been defined, it handles this user error.
Otherwise, the default PHP error handler takes the appropriate action.

You should pass an error message string to the trigger_error function,
and you can optionally give an error type constant. If no error type is
given, E_USER_NOTICE is used.

23 0672327627 CH22 3/2/05 3:52 PM Page 198

199Error Handling

For example, to raise a user notice type, you use this statement:

trigger_error(“Some kind of error happened”);

The error message displayed will look similar to the following:

Notice: Some kind of error happened in /home/chris/error.php
on line 3

To raise an error with the same message text but as a fatal error, you use
this statement instead:

trigger_error(“Some kind of error happened”, E_USER_ERROR);

Error Types You have to use the E_USER_ERROR and
E_USER_WARNING types, not E_ERROR and E_WARNING, for
user errors. An E_USER_ERROR type error is still treated
as a fatal error, however, and script execution ends
immediately when it occurs.

Logging Errors
You can accomplish most simple error logging requirements by using the
error_log function. You can use this function to write an error message to
the web server log file or some other local file, send it via email, or trans-
mit it to a remote debugging service.

The error_log function takes the following arguments:

error_log($message, $message_type, $destination,
$extra_headers);

Only the message argument is required, and the default action is to write
this message text to the usual PHP log file. In most cases, this is your web
server’s log file.

The message_type argument specifies a number that determines what type
of destination is supplied. Its possible values are shown in Table 22.2.

23 0672327627 CH22 3/2/05 3:52 PM Page 199

200 Lesson 22

TABLE 22.2 message_type Argument Values in error_log

Value Description

0 The message will be written to the default web server log
file.

1 The message will be sent via email; destination contains
the address to send to, and extra_headers contains
optional email headers.

2 The message will be sent to a remote debugging service;
destination contains the remote hostname. Note that
remote debugging is not available in PHP 4 and later.

3 The message will be appended to a local file; destination
contains the filename and path.

For example, to send an error message via email, you might use the fol-
lowing statement:

error_log(“An error occurred in your script”, 1,
“chris@lightwood.net”,
“From: PHP Script Error <errors@yoursite.com>”);

Suppressing Errors and Warnings
PHP allows you to suppress warning messages in your script. You can
either turn off warnings completely or select individual commands for
which any errors will not be displayed.

The Error Suppression Operator
If you want to stop a warning message from appearing for a particular
statement only, you can use the @ symbol to silence it. You might want to
do this so that your custom error messages are displayed.

For example, when you connect to a MySQL database, PHP raises its own
error if the connection fails. You can also detect the failure by checking
whether a valid database resource handle was returned. The following

23 0672327627 CH22 3/2/05 3:52 PM Page 200

201Error Handling

code uses the @ symbol to suppress the PHP error message so that only
your message is displayed onscreen:

$db = @ mysql_connect(“localhost”, “username”, “password”);
if (!$db) {

echo “Database connection failed”;
exit;

}

You can place the @ symbol before any expression in PHP. It causes any
error messages generated as a result of that expression being evaluated to
be ignored.

In the preceding example, the expression being silenced is the database
connection attempt. As a general rule, if something in PHP has a value, it
can be prefixed with the @ symbol. You cannot prepend an @ symbol to a
language construct such as a function definition or conditional statement.

The following statement is also valid, although it does not make it clear
that you are expecting the error message to originate with mysql_connect:

@ $db = mysql_connect(“localhost”, “username”, “password”);

Parsing Errors The @ operator does not hide error
messages caused by parsing errors in script.

Preventing Error Display
The configuration directive display_errors can be set to Off in php.ini
to prevent any errors from being displayed onscreen. You will learn how
to change the value of php.ini settings in Lesson 23.

Error Suppression If you have used set_error_
handler to specify a custom error handler in your
script, the @ operator will have no effect.

23 0672327627 CH22 3/2/05 3:52 PM Page 201

202 Lesson 22

If you choose to prevent error display for your whole website this way,
you should turn on the log_errors setting so that errors and warnings are
written to a file; otherwise, you will have no way of knowing about poten-
tial problems. You should not consider turning display_errors off while
a website is in development.

Summary
In this lesson you have learned how to detect and handle errors in PHP
scripts. In the next lesson you will learn about the various PHP settings
that you can configure to suit your particular needs.

23 0672327627 CH22 3/2/05 3:52 PM Page 202

LESSON 23
PHP
Configuration

In this lesson you will learn how to configure global PHP settings at run-
time, using the php.ini file, and per-directory settings, using .htaccess.

Configuration Settings
PHP allows you to tune many aspects of its behavior by using a set of
configuration directives. These directives can be global for your entire
web server, or you can make local changes that apply only to certain
scripts.

Using php.ini
PHP’s configuration file is named php.ini. Its location is set at compile
time; by default, it is located in /usr/local/lib/php.ini on Linux/Unix
servers and C:\WINDOWS\php.ini on Windows systems.

The php.ini file contains a list of configuration directives and their val-
ues, separated by equals signs. The default php.ini file distributed with
PHP is well documented, with plenty of comments. Any line that begins
with a semicolon is considered a comment, and sections of the file are
broken up using headings in square brackets, which the compiler also
ignores.

Listing 23.1 shows an extract from an unchanged php.ini file for PHP 5
that contains the log settings. As you can see, for many setting changes,
you do not even need to refer to the online documentation.

24 0672327627 CH23 3/2/05 3:52 PM Page 203

204 Lesson 23

LISTING 23.1 An Extract from php.ini
; Print out errors (as a part of the output). For
; production web sites,
; you’re strongly encouraged to turn this feature off,
; and use error logging
; instead (see below). Keeping display_errors enabled
; on a production web site
; may reveal security information to end users, such as
; file paths on your Web
; server, your database schema or other information.
display_errors = On

; Even when display_errors is on, errors that occur
; during PHP’s startup
; sequence are not displayed. It’s strongly recommended
; to keep
; display_startup_errors off, except for when debugging.
display_startup_errors = Off

; Log errors into a log file (server-specific log, stderr,
; or error_log (below))
; As stated above, you’re strongly advised to use error
; logging in place of
; error displaying on production web sites.
log_errors = Off

; Set maximum length of log_errors. In error_log information
; about the source is
; added. The default is 1024 and 0 allows to not apply any
;maximum length at all
.
log_errors_max_len = 1024

True or False Boolean values in php.ini can be set to
true (that is, on or yes) or false (that is, off, no, or
none). These values are not case-sensitive.

When it runs as a web server module, php.ini is read when the web
server process starts, and changes made to the configuration file do not
take place until the web server is restarted.

24 0672327627 CH23 3/2/05 3:52 PM Page 204

205PHP Configuration

If your web server runs PHP as a CGI binary, the php.ini settings are
loaded each time a script is run because a new php process is started.
Similarly, command-line PHP loads the settings from php.ini each time a
script is run.

Alternate php.ini Files
You can create separate php.ini files to apply for the different ways PHP
can be run. If you create a file named php-SAPI.ini (replacing SAPI with
the a valid SAPI name), that file is read instead of the global php.ini.

For instance, to provide a different set of directives only for command-
line PHP, you would use a configuration file named php-cli.ini. For the
Apache web server module, the filename would be php-apache.ini.

On a Windows system, a php.ini file in the Apache installation directory
is used before one in C:\WINDOWS. This allows you to maintain different
PHP settings for multiple web servers on the same machine.

To force the use of a particular configuration file, you must invoke php
with the –c option. In a shell script, you might change the first line to the
following to force a custom configuration file to be used only for that
script:

#!/usr/local/bin/php –c /path/to/php.ini

Per-Directory Configuration
Apache web server allows you to use a per-directory configuration file
named .htaccess to supply custom web server directives. PHP supports
the use of .htaccess to override the global settings from php.ini.

To give a new value for a PHP setting, you use php_value followed by the
directive from php.ini and the new value. The following line in an
.htaccess file gives a new value for max_execution_time of 60 seconds:

php_value max_execution_time 60

24 0672327627 CH23 3/2/05 3:52 PM Page 205

206 Lesson 23

Changes made in .htaccess apply only to the directory in which it
resides and its subdirectories. Any settings in .htaccess override the
global php.ini as well as any settings made in an .htaccess file in a par-
ent directory.

Dynamic Configuration
You can alter values of directives set in php.ini on-the-fly by using the
ini_set function. It takes two arguments: the directive name and the new
value. When you change a setting by using ini_set, the return value is
the previous setting for that directive.

The following example changes the memory_limit setting for the current
script to run a section of code that may require more resources than usual:

$limit = ini_set(“memory_limit”, “128M”);
// Execute code that requires this setting
ini_set(“memory_limit”, $limit);

The previous value is saved to a variable and then restored when the
intensive code has completed.

To find the current value of any php.ini setting without changing it, you
use the ini_get function.

Configuration Directives
This lesson cannot cover every configuration directive in php.ini in
detail—there are simply too many. However, in the following sections you
will learn how some of the most commonly used settings work. For a full
reference, refer to www.php.net/manual/en/ini.php.

Using .htaccess Be aware of the syntax difference
when changing configuration settings in php.ini and
.htaccess. In php.ini there must be an equals sign
between the directive name and the value. In
.htaccess the value follows the directive name, with
no equals sign.

24 0672327627 CH23 3/2/05 3:52 PM Page 206

207PHP Configuration

Configuring the PHP Environment
The following sections list some of the common configuration directives
that affect the environment in which PHP runs. Each directive listed in the
following sections is shown with its default entry from the php.ini file
that is distributed with PHP 5, where the default is set.

PHP Tag Styles
These directives allow you to select which tag styles can be used in a PHP
script:

• short_open_tag = On—The short_open_tag directive enables
or disables the use of the <? opening tag. If this setting is turned
off, your scripts must use the full <?php tag.

Because <? can have other meanings when embedded in a web
page, you should try to avoid using short_open_tag, and in
future releases of PHP, it may be disabled by default.

• asp_tags = Off—The asp_tags style of PHP tag begins with
<% and ends with %>. You must enable this style in php.ini if
you want to use it.

System Resource Limits
The following directives allow you to manage the system resources avail-
able to a PHP script:

• max_execution_time = 30;—The max_execution_time direc-
tive specifies the maximum total number of seconds that a script
can run. After this time is exceeded, an error occurs, and script
execution stops.

Unless you have a specific need for a higher value in order to
run slow scripts, you should not change this value. An accidental
infinite loop in your script would eat up a lot of system
resources, and max_execution_time is a safeguard against this
kind of problem.

If a web page takes 30 seconds or more to load, visitors will
probably not wait for it to finish, unless they have requested

24 0672327627 CH23 3/2/05 3:52 PM Page 207

208 Lesson 23

some specific information that they understand may take some
time to generate.

• memory_limit = 8M—Each PHP script has a memory usage
limit to make sure that the work it is doing does not get out of
control and affect the system in a negative way. Most scripts use
only a very small amount of memory; to find out just how much,
you can call the memory_get_usage function.

The M suffix indicates a value in megabytes; the K or G suffix
could also be used, to indicate kilobytes or gigabytes, respec-
tively. If you are absolutely sure you want to remove the mem-
ory limit completely, you can set memory_limit to –1.

Form Processing
You can use these directives to change the way PHP interacts with web
forms:

• magic_quotes—The magic_quotes settings instruct PHP to
automatically delimit quotes so that they are safe to use as string
values. These are the defaults:

magic_quotes_gpc = On
magic_quotes_runtime = Off
magic_quotes_sybase = Off

The magic_quotes_gpc setting applies to data posted from a
form and data from cookie values. (gpc stands for GET, POST, and
COOKIE data.) The magic_quotes_runtime directive tells PHP to
delimit quotes in data generated by the script, such as from a
database query or host command.

Usually, quotes are delimited with a backslash character, but
some databases, notably Sybase, use another quote character.
When the magic_quotes_sybase setting is enabled, delimited
quotes appear as ‘’ instead of \’.

• register_globals = Off—The register_globals setting has
been disabled in PHP by default since version 4.2. When it is
enabled, this option causes PHP to create global variables that

24 0672327627 CH23 3/2/05 3:52 PM Page 208

209PHP Configuration

contain the same information as the super-globals $_ENV, $_GET,
$_POST, $_COOKIE, and $_SERVER. The variable names corre-
spond to the key names in each of the super-global arrays.

• variables_order = “EGPCS”—The variables_order directive
determines the order in which global variables are registered
from the super-globals. With register_globals enabled and the
default ordering, a cookie named email is registered more
recently than a posted form value with the same name, so
$email in the script contains the cookie’s value.

Because register_globals creates values that are not distin-
guished by their source, it is strongly recommended that you use
the super-global arrays; when you do so, you can be confident
that $_POST[“email”] was a form-submitted value, but $email
could have come from one of several sources.

• register_long_arrays = On—Older PHP versions use arrays
named $HTTP_GET_VARS, $HTTP_POST_VARS, $HTTP_SERVER_VARS,
and so on instead of the newer super-global arrays. The
register_long_arrays directive determines whether arrays with
these names are created. This feature remains enabled by default
for backward compatibility.

Include Files
You can use the include_path directive to give a list of locations in
which to search for a file referenced in an include or require statement.
The locations are separated by colons on Linux/Unix systems and by
semicolons on Windows systems.

Often you need to ensure that include files are kept in a directory that is
not directly accessible by a web server. The following example defines an
include path that contains a directory parallel to the web root of
/home/chris/public_html:

php_value include_path .:/home/chris/include

The period character (.) is used to indicate the current working directory,
and in this example, it is given higher priority than the defined include

24 0672327627 CH23 3/2/05 3:52 PM Page 209

210 Lesson 23

directory. In this case, if an include statement finds a matching file in
both locations, the one in the working directory will be used. This type of
configuration allows you to use shared library files across your server but
override them for some scripts when necessary.

The auto_prepend_file and auto_append_file directives allow you to
specify files that are automatically added at the start and end of each PHP
script. The filename given is found in include_path, or a full path to the
file can be given.

A common use for auto_prepend_file is to automatically include part of
the HTML layout before the output from your script so that all your pages
look the same. Because auto_prepend_file is a PHP feature, only files
parsed by PHP have the file prepended; static HTML pages do not.

HTTP Headers After any output has been sent to the
browser, you cannot use the header function to send
HTTP headers or use any other PHP functions that
require headers to be sent, such as session control
functions or cookies. Therefore, any script included by
auto_prepend_file must produce no output if you
want to send custom HTTP headers.

Error Logging
As you learned in Lesson 22, “Error Handling,” PHP allows you to con-
figure the strictness of error reporting and the means by which it is
reported.

The value of the error_reporting directive is a bitmask comprised of the
values found in Table 22.1 in Lesson 22. You can use logical operators to
combine values as follows:

error_reporting = E_ALL & ~E_NOTICE & ~E_STRICT

The display_errors and log_errors directives determine whether an
error is written to the screen display and web server log file, respectively.

24 0672327627 CH23 3/2/05 3:52 PM Page 210

211PHP Configuration

The default settings are as follows, with errors displayed to screen and not
written to a file:

display_errors = On
log_errors = Off

You can use the error_log directive to specify an alternate filename, as in
the following example:

error_log = /tmp/php_log

Configuring PHP Extensions
Some PHP extensions have their own directives that can be configured in
php.ini to adjust the behavior of that extension.

For clarity in the configuration file, section headings are used to separate
extension-specific settings. For instance, all the settings that affect the
MySQL extension are found in a section of php.ini that begins [MySQL].
Each directive name also has a prefix that indicates the extension to which
it belongs (for example, mysql.connect_timeout or
session.cookie_path).

You can find documentation for extension-specific configuration direc-
tives in the online manual pages for each extension.

Configuring System Security
Some of the directives in php.ini that are not covered in this lesson—
most notably the safe_mode directive and its related settings—concern
server security. These configuration options allow you to restrict certain
types of functionality on the web server, and you will learn about them in
Lesson 24, “PHP Security.”

Loadable Modules
PHP allows you to load certain extensions at runtime. This means that you
can extend the functionality of PHP without needing to recompile from
source.

24 0672327627 CH23 3/2/05 3:52 PM Page 211

212 Lesson 23

Loading Extensions on Demand
You use the dl function to dynamically load an extension module. You
build extensions as dynamically loadable objects when PHP is compiled,
by using the --with-EXTENSION=shared switch. For instance, running the
following configure statement causes PHP to be compiled with MySQL
support linked in but with socket support as a loadable extension:

./configure --with-mysql --with-sockets=shared

The argument given to dl is the filename of the extension. In the case of
the sockets extension, it would be called sockets.so on Linux/Unix but
php_sockets.dll on Windows systems.

Loadable Extensions Whether the dl function is
available is governed by the enable_dl directive in
php.ini. You may find that on a shared web hosting
service, this feature is not available to you.

To check whether an extension is loaded into PHP, you use the
extension_loaded function. Given an extension name argument, this
function returns TRUE or FALSE, depending on the presence of that exten-
sion. Note that PHP cannot tell whether an extension was loaded by using
dl or is compiled in.

Loading Modules on Startup
If you have extensions as loadable modules and want them to be loaded
into PHP without needing to run dl in every script, you can use the
extension directive in php.ini to provide a list of extensions to load at
startup.

Each extension is given on a separate line, and there is no limit to the
number of extensions you can load in this way. The following lines from

24 0672327627 CH23 3/2/05 3:52 PM Page 212

213PHP Configuration

php.ini ensure that the sockets and imap extensions are loaded automati-
cally on a Linux/Unix server:

extension=imap.so
extension=sockets.so

On a Windows web server, the configuration lines need to look like this,
to reflect the difference in filenames between the two platforms:

extension=php_imap.dll
extension=php_sockets.dll

Summary
In this lesson you have learned how to configure PHP at runtime. In the
next lesson you will learn about PHP’s Safe Mode and how to minimize
security threats to your website.

24 0672327627 CH23 3/2/05 3:52 PM Page 213

LESSON 24
PHP Security

PHP is undoubtedly a very powerful server-side scripting language, but
with great power comes great responsibility. In this lesson you will learn
how to use PHP’s Safe Mode to make sure that some of the potentially
dangerous features of PHP are locked down.

Safe Mode
PHP’s Safe Mode attempts to provide a degree of basic security in a
shared environment, where multiple user accounts exist on a PHP-enabled
web server.

When a web server is running PHP in Safe Mode, some functions are dis-
abled completely, and others are available with limited functionality.

Restrictions Enforced by Safe Mode
Functions that attempt to access the filesystem have restricted functional-
ity in Safe Mode. The web server process runs under the same user ID for
all web space accounts and must have the appropriate read or write per-
mission to access a file. This is a requirement of the underlying operating
system and has nothing to do with PHP itself.

When Safe Mode is enabled and an attempt is made to read or write a
local file, PHP checks whether file ownership of the script is the same as
that of the target file. If the owner differs, the operation is prohibited.

25 0672327627 CH24 3/2/05 3:52 PM Page 214

The following core filesystem functions are restricted by this rule:

Write Permission Although Safe Mode implements
measures to prevent you from opening another user’s
files through PHP, the operating system’s file permis-
sions may still allow read or even write access to those
files at a lower level. Be aware that a user who has
shell access to the web server will be able to read any
files that are accessible by the web server and write to
any file that has global write permission.

chdir

chgrp

chown

copy

fopen

highlight_file

include

link

mkdir

move_uploaded_file

parse_ini_file

rmdir

rename

require

show_source

symlink

touch

unlink

Functions that are part of PHP extensions that also access the filesystem
are similarly affected.

Loadable Modules The dl function is disabled in Safe
Mode, regardless of the owner of the extension file.
Extensions must be loaded into PHP at startup, using
the extension directive in php.ini.

25 0672327627 CH24 3/2/05 3:52 PM Page 215

216 Lesson 24

Functions that execute host programs are disabled unless they are run
from the directory given in the safe_mode_exec_dir directive, which you
will learn about in the next section. Even if execution is allowed, argu-
ments to the commands are automatically passed to the escapeshellcmd
function.

The following program execution functions are affected by this rule:

exec

passthru

popen

shell_exec

system

In addition, the backtick operator (`) is disabled.

The putenv function has no effect when run in Safe Mode, although no
error is produced. Similarly, other functions that attempt to change the
PHP environment, such as set_time_limit and set_include_path, are
ignored.

Enabling Safe Mode
You turn Safe Mode on or off by using the safe_mode directive in
php.ini. To activate Safe Mode for all users on a shared web server, you
use the following directive:

safe_mode = On

As you learned in the previous section, functions that access the filesys-
tem perform a check on the owner of the file. By default, the check is per-
formed on the file owner’s user ID, but you can relax this to check the
owner’s group ID (GID) instead by turning on the safe_mode_gid direc-
tive.

If you have shared library files on your system, you can use the
safe_mode_include_dir directive to get a list of locations for which the
UID/GID check will not be performed when an include or require state-
ment is encountered.

25 0672327627 CH24 3/2/05 3:52 PM Page 216

217PHP Security

To allow inclusion of files in /usr/local/include/php for any user in
Safe Mode, you would use the following directive:

safe_mode_include_dir = /usr/local/include/php

To provide a location from which the system can be executed, you use the
safe_mode_exec_dir directive.

To allow programs in /usr/local/php-bin to be executed in Safe Mode,
you would use the following directive:

safe_mode_exec_dir = /usr/local/php-bin

Include Directories If you want to list more than one
location in the safe_mode_include_dir directive, you
can separate them using colons on Linux/Unix or semi-
colons on Windows systems—just as you do with the
include_path setting.

To allow setting of certain environment variables, you use the
safe_mode_allowed_env_vars directive. The value given is a prefix, and
by default it allows only environment variables that begin with PHP_ to be
changed. If more than one value is given, the list should be separated by
commas.

The following directive also allows the time zone environment variable,
TZ, to be changed:

safe_mode_allowed_env_vars = PHP_,TZ

Executables Rather than allow execution of all pro-
grams from /usr/bin or some other system location,
you should create a new directory and copy or link
only selected binaries into it.

25 0672327627 CH24 3/2/05 3:52 PM Page 217

218 Lesson 24

Other Security Features
In addition to Safe Mode, PHP provides a number of functions that allow
you to place restrictions on the features available to PHP.

Hiding PHP
You can use the expose_php directive in php.ini to prevent the presence
of PHP being reported by the web server, as follows:

expose_php = On

By using this setting, you can discourage automated scripts from trying to
attack your web server. Usually, the HTTP headers contain a line that
looks like the following:

Server: Apache/1.3.33 (Unix) PHP/5.0.3 mod_ssl/2.8.16
OpenSSL/0.9.7c

With the expose_php directive enabled, the PHP version is not included in
this header.

Of course, the .php file extension is a giveaway to visitors that PHP is in
use on a website. If you want to use a totally different file extension, you
need to first find the following line in httpd.conf:

AddType application/x-httpd .php

Then you need to change .php to any file extension you like. You can
specify any number of file extensions, separated by spaces. To have PHP
parse .html and .htm files so there is no indication that a server-side lan-
guage is being used at all, you can use the following directive:

AddType application/x-httpd .html .htm

25 0672327627 CH24 3/2/05 3:52 PM Page 218

219PHP Security

Filesystem Security
Safe Mode restricts filesystem access only to files owned by the script
owner, and you can use the open_basedir directive to specify the direc-
tory in which a file must reside. If you specify a directory, PHP will
refuse any attempt to access a file that is not in that directory or its subdi-
rectory tree. The open_basedir directive works independently of Safe
Mode.

To restrict filesystem access on your web server to only the /tmp direc-
tory, you use the following directive:

open_basedir = /tmp

Function Access Control
You can use the disable_functions directive to specify a comma-
delimited list of function names that will be disabled in the PHP language.
This setting works independently of Safe Mode.

To disable the dl function without turning on Safe Mode, you use the fol-
lowing directive:

disable_functions = dl

You can also disable access to classes by using the disable_classes
directive in the same way.

Parsing HTML Configuring your web server to parse
all HTML files with PHP may be convenient, but a
small performance hit is involved because the PHP
parser needs to fire up even if there is no server-side
code in a web page.

By using a different file extension for static pages, you
can eliminate the need for PHP to be involved where
it is not necessary.

25 0672327627 CH24 3/2/05 3:52 PM Page 219

220 Lesson 24

Database Security
You learned in Lesson 18, “Host Program Execution,” how a malicious
user might try to run an arbitrary host command on your system, and that
you can use the escapeshellcmd function to prevent this kind of abuse.

A similar situation applies to database use through PHP. Suppose your
script contains the following lines to execute a MySQL query based on a
form value:

$sql = “UPDATE mytable SET col1 = “ . $_POST[“value”] . “
WHERE col2 = ‘somevalue’”;

$res = mysql_query($sql, $db);

You are expecting $_POST[“value”] to contain an integer value to update
the value of column col1. However, a malicious user could enter a semi-
colon in the form input field, followed by any SQL statement he or she
wants to execute.

For instance, suppose the following is the value of $_POST[“value”]:

0; INSERT INTO admin_users (username, password)
VALUES (‘me’, ‘mypassword’);

The SQL executed would then look like the following (the statements are
shown here on separate lines for clarity):

UPDATE mytable SET col1 = 0;
INSERT INTO admin_users (username, password)
VALUES (‘me’, ‘mypassword’);
WHERE col2 = ‘somevalue’;

This is clearly a bad situation! The first statement updates the value of
col1 for all rows in mytable. This will be an inconvenience, but the sec-
ond statement creates a more serious problem—the user has been able to
execute an INSERT statement that creates a new administrator login. The
third statement is rubbish, but by the time the SQL parser reaches that
statement and throws an error, the damage has been done. This type of
attack is known as SQL injection.

Of course, for SQL injection to be a serious threat, the user must under-
stand a little about your database structure. In this example, the attacker is
aware that you have a table called admin_users, that it contains fields

25 0672327627 CH24 3/2/05 3:52 PM Page 220

221PHP Security

named username and password, and that the password is stored unen-
crypted.

A visitor to your website would not generally know such information
about a database you built yourself. However, if your website includes
open-source components—perhaps you have used a freeware discussion
board program—the table definitions for at least some of your database
are accessible to users.

Furthermore, if your script produces output whenever a query fails, this
could reveal important details about your database structure. On a produc-
tion website, you should consider setting display_errors to off and
using log_errors to write warnings and error messages to a file instead.

To prevent the possibility of a SQL injection attack, you must ensure that
user-submitted data that forms part of a query cannot be used to interrupt
the SQL statement that you intend to execute.

The previous example shows an integer value being updated. If this were
a string value enclosed in single quotes, the attacker would need to submit
a closing quote before the semicolon and then the SQL statement.
However, when magic_quotes_gpc is turned on, a quotation mark submit-
ted via a web form will be automatically delimited.

To be absolutely sure that form-submitted values are not vulnerable to
SQL injection attacks, you should always ensure that the data received is

Database Permissions It is vital that the database
connection from your script be made by a database
user who has only just enough access rights to per-
form the job.

You should certainly never connect as an administra-
tor from a script. If you did, an attacker would be able
to gain full access to your database and others on the
same server. Attackers will also be able to run the
GRANT or CREATE USER command to give themselves full
access outside the confines of your script!

25 0672327627 CH24 3/2/05 3:52 PM Page 221

222 Lesson 24

appropriate. If your query expects a numeric value, you should test the
form value with is_numeric or use settype to convert it to a number,
removing any characters that are designed to fool SQL.

If you are working with several user-submitted values in one SQL state-
ment, you can use the sprintf function to build a SQL statement string,
using format characters that indicate the data type of each value. The fol-
lowing is an example:

$sql = sprintf(“UPDATE mytable SET col1 = %d
WHERE col2 = ‘%s’”,
$_POST[“number”],
mysql_escape_string($_POST[“string”]));

The preceding example assumes that a MySQL database is being used, so
the string value is passed to mysql_escape_string. For other databases,
you should ensure that quote characters are adequately delimited, by using
addslashes or another suitable method.

Summary
In this lesson you have learned about the security considerations involved
in building a dynamic website using PHP. In the next lesson you will
learn about PEAR—PHP’s primary resource for third-party add-ons.

25 0672327627 CH24 3/2/05 3:52 PM Page 222

LESSON 25
Using PEAR

In this lesson you will learn about the PHP Extension and Application
Repository (PEAR).

Introducing PEAR
PEAR is a framework and distribution system for reusable PHP packages.
PEAR is made up of the following:

• A structured library of open-source code for PHP developers

• A system for distributing and maintaining code in packages

• The PEAR Coding Standards (PCS)

• The PHP Foundation Classes (PFC)

• Online support for the PEAR community through a website and
mailing list

The PEAR Code Library
PEAR brings together many different open-source projects, each of which
is bundled into its own package. Each PEAR package has its own main-
tainers and developers, who determine the changes and release cycle for
their own packages, but the package structure is consistent for all PEAR
projects.

You use the PEAR installer, which is shipped with PHP, to automatically
download and install a PEAR package by simply giving its name. You
will learn how to use the PEAR installer later in this lesson.

Each package may have dependencies from other PEAR packages, and
this is explicitly noted in the documentation, even if packages appear to
be related because of their names.

26 0672327627 CH25 3/2/05 3:52 PM Page 223

224 Lesson 25

A package tree structure exists within PEAR, and an underscore character
(_) separates nodes in the hierarchy. For instance, the HTTP package con-
tains various HTTP utilities, whereas HTTP_Header deals specifically with
HTTP header requests.

Package Distribution and Maintenance
PEAR packages are registered in a central database at http://pear.php.net.
The PEAR website provides a searchable interface to the database by
package name, category, and release date.

Maintainers of PEAR packages use the PEAR website to manage their
projects. A CVS server allows developers to collaborate on source code
and, once a release has been agreed upon, it can be made available from
this central location immediately.

PEAR Coding Standards
The PCS documents were created because many different teams are devel-
oping open-source packages that might be of use to the PHP community.

The documents in PCS outline a structured way in which code should be
written in order for a package to be accepted as part of the PEAR project.
The standards are quite detailed and contain mostly points of style, such
as identifier naming conventions and a consistent style to use when
declaring functions and classes.

This may sound a little daunting, but as your scripts become more compli-
cated, you will realize how important it is to write readable code, and you
will begin to develop a clear coding style. The PCS documentation simply
formalizes a set of guidelines for writing readable PHP.

You can find the PCS documents online at http://pear.php.net/manual/
en/standards.php.

PHP Foundation Classes
PFC is a subset of PEAR packages, and these classes have a strict set of
entrance criteria:

26 0672327627 CH25 3/2/05 3:52 PM Page 224

225Using PEAR

• Quality—Packages must be in a stable state.

• Generality—Packages should not be excessively specific to any
particular type of environment.

• Interoperability—Packages should work well with other pack-
ages and in different environments, and they should have a stan-
dardized API.

• Compatibility—Packages must be designed to be backward
compatible when new features are added.

At the present time, only the PEAR installer is shipped with PHP.
However, at a later date, certain classes may be included as standard. The
PFC would be those classes.

Online Support for PEAR
The PEAR website, at http://pear.php.net, includes comprehensive online
documentation for the PEAR project. The package database can be
searched via the website, and package maintainers can log in to update
their project details.

There are a number of mailing lists for PEAR users, maintainers, core
developers, and webmasters. You can join any or all of these lists by using
the form at http://pear.php.net/support/lists.php.

Using PEAR
In the following sections you will learn how to use PEAR to find and
install packages on a system, and you’ll learn how to submit your own
projects for consideration as PEAR packages.

Finding a PEAR Package
On every page of the PEAR website is a search box that you can use to
search the package database. You simply enter a name, or part of a name,
and all matching packages are displayed.

26 0672327627 CH25 3/2/05 3:52 PM Page 225

226 Lesson 25

You can click the name of the package you are interested in from the
search results. The page that is then displayed should give some key infor-
mation about that package, including a summary of its features, the cur-
rent release version, and status and information about its
dependencies—that is, any other PEAR packages that are required for this
package to work.

The tabs at the top of the package details page allow you to view the doc-
umentation. If you are unsure from the summary information about
exactly what you can achieve by using a particular package, you can
browse through the documentation pages.

If you simply want to browse all the available PEAR packages, you can
go to the categorized list at http://pear.php.net/packages.php.

Using the PEAR Installer
When you have decided that a package will be useful, you can download
it from the web by using the tab at the top of its package information
page. However, using the PEAR installer program is a quick and easy way
to manage packages within a PHP installation. The installer is able to find
and download the latest version of a package and can also install it for
you automatically.

The PEAR installer is named pear. To run the installer, you run the pear
command followed by a command option. To see all the packages cur-
rently installed on a system, you can use the list command option:

$ pear list

Searching Packages To perform a detailed search
on a package name, maintainer, or release date,
you can use the form at http://pear.php.net/
package-search.php.

26 0672327627 CH25 3/2/05 3:52 PM Page 226

227Using PEAR

The output produced should be similar to the following:

Installed packages:
===================
Package Version State
DB 1.6.2 stable
HTTP 1.2.2 stable
Net_DNS 1.00b2 beta
Net_SMTP 1.2.6 stable
Net_Socket 1.0.1 stable
PEAR 1.3.2 stable
SQLite 1.0.2 stable

Each package name, the version installed, and its release status are shown.
The actual packages installed on your system may differ from the ones
shown here.

You can use the search command option to search the PEAR package
database. To search for all packages that contain the string mail, you run
the following command:

pear search mail

The output produced displays all matching packages, their latest version
numbers, and a brief summary. The search performed is not case-
sensitive.

To view all the available stable PEAR packages, you use the list-all
command:

pear list-all

This produces a long list!

To download and install a package, you use the install command option
followed by the name of the package. To install the Mail package, you
issue the following command:

pear install Mail_Queue

Command Options Running pear with no arguments
brings up a list of all the available command options.

26 0672327627 CH25 3/2/05 3:52 PM Page 227

228 Lesson 25

Some packages cannot be installed unless others are already installed on
your system, and installation will fail if the required packages are not
found. The following output shows an attempt to install the Mail_Queue
package before the Mail package has been installed:

pear install Mail_Queue
downloading Mail_Queue-1.1.3.tar ...
Starting to download Mail_Queue-1.1.3.tar (-1 bytes)
.....done: 98,816 bytes
requires package `Mail’
Mail_Queue: Dependencies failed

Some dependencies are optional. When you install the Mail package to fix
the dependency reported in the previous error message, PEAR advises
you that the functionality of the Mail package can be enhanced if you also
install Net_SMTP:

pear install Mail
downloading Mail-1.1.4.tar ...
Starting to download Mail-1.1.4.tar (-1 bytes)
.....done: 73,728 bytes
Optional dependencies:
package `Net_SMTP’ version >= 1.1.0 is recommended to
utilize some features.
install ok: Mail 1.1.4

You can use the upgrade command option to download and install a later
version of an installed package. To check whether a new version of the
Mail package is released, you use the following command:

pear upgrade Mail

If a later version than the one installed is found, it is upgraded
automatically.

Upgrading Packages You can use the upgrade-all
command to check for newer versions of all your
installed PEAR packages at once.

If you want to remove a PEAR package completely, you use the
uninstall command.

26 0672327627 CH25 3/2/05 3:52 PM Page 228

229Using PEAR

Contributing Your Own PEAR Project
If you have written a PHP project that you think will be useful to other
developers, you might consider submitting a proposal to have it included
in PEAR.

The online documentation (at http://pear.php.net/manual/en/
guide-newmaint.php) includes a guide for project maintainers that details
the process of first making sure that your project is suitable for submis-
sion to PEAR and then ensuring that your code is of a suitable standard.
You should read that guide if you intend to write a package suitable for
use by other developers. Even if your project is not suitable for PEAR,
these guidelines will make you think about your software design and cod-
ing standards and will help you produce a much higher-quality package.

Summary
In this lesson you have learned how to use PEAR. Now that you have
completed this book, you can take advantage of the many freely available
PEAR classes so that you can create PHP scripts that perform a wide vari-
ety of functions. Happy coding!

26 0672327627 CH25 3/2/05 3:52 PM Page 229

APPENDIX A
Installing PHP

If you need to install PHP for yourself, this appendix is for you: It takes
you through the process step-by-step, on both Linux/Unix and Windows
platforms.

Linux/Unix Installation
These instructions take you through installing PHP from source, using an
Apache web server. You should become the root user to perform the
installation by issuing the su command and entering the superuser pass-
word.

Compiling Apache from Source
If you already have installed an Apache web server that supports dynamic
shared objects (DSO), you can skip this section. To check whether your
web server includes this feature, run the following command:

$ httpd –l

If the output includes mod_so.c, then DSO support is included. Note that
you may have to supply the full path to httpd (for instance,
/usr/local/apache/bin/httpd).

You begin by downloading the latest Apache source code from
http://httpd.apache.org. At the time of this writing, the latest version is
2.0.52, so the file to download is called httpd-2.0.52.tar.bz2. If a later
version is available, you should be sure to substitute the appropriate ver-
sion number wherever it appears in a filename.

You need to save this file to your filesystem in /usr/local/src or some
other place where you keep source code. Uncompress the archive using
bunzip2, as follows:

bunzip2 httpd-2.0.52.tar.bz2

27 0672327627 AppA 3/2/05 3:52 PM Page 230

When the file has been uncompressed, it loses the .bz2 file extension. You
extract this archive file by using tar:

tar xvf httpd-2.0.52.tar

Files are extracted to a directory called httpd-2.0.52. You should change
to this new directory before continuing:

cd httpd-2.0.52

Next, you should issue the configure command with any configuration
switches that are appropriate. For instance, to change the base installation
directory, you should use the --prefix switch, followed by the desired
location. You can enter configure --help to see a list of the possible
configure switches.

You need to include at least the --enable-module=so switch to ensure
that DSO support is available for loading the PHP module later on. You
should enter the following command, adding any other configuration
switches that you need to include:

./configure --enable-module=so

The configure command produces several screens full of output as it tries
to detect the best compilation settings for your system. When it is done,
you are returned to a shell prompt and can continue the installation.

To begin compiling, you issue the make command:

make

Again, a lot of output is produced, and the time required for compilation
depends on the speed of your system. When the build is done, you see the
following line and are returned to a shell prompt:

make[1]: Leaving directory `/usr/local/src/httpd-2.0.52’

The final step is to install the newly built software. To do this, you simply
enter make install, and the files are automatically copied to their correct
system locations:

make install

27 0672327627 AppA 3/2/05 3:52 PM Page 231

232 Appendix A

You issue the apachectl start command to start the Apache web server
and enter your server’s IP address in a web browser to test that the
installation is successful. You use the following command if you have not
changed the default installation location:

/usr/local/apache/bin/apachectl start

Compiling and Installing PHP
You can download the latest version of PHP from www.php.net/down-
loads.php. At the time of this writing, the latest version is 5.0.3, so the file
to download is called php-5.0.3.tar.bz2. If a later version is available,
you should be sure to substitute the appropriate version number wherever
it appears in a filename.

You need to save this file to your filesystem in /usr/local/src or some
other place where you keep source code. You uncompress the archive by
using bunzip2, as follows:

bunzip2 php-5.0.3.tar.bz2

Uncompressing If your system does not include the
bunzip2 utility, you should download the file called
httpd-2.0.52.tar.gz instead. This archive is slightly
larger but is compressed using gzip, which is more
widely available.

When the file has been uncompressed, it loses the .bz2 file extension.
Extract this uncompressed archive file by using tar:

tar xvf php-5.0.3.tar

Files are extracted to a directory called php-5.0.3. You should change to
this new directory before continuing:

cd php-5.0.3

Next, you should issue the configure command with any configuration
switches that are appropriate. For example, to include database support

27 0672327627 AppA 3/2/05 3:52 PM Page 232

233Installing PHP

through the MySQLi extension, you would use the --with-mysqli switch,
followed by the path to the mysql_config utility. To see the full list of
configure switches, you can run configure --help.

You need to include either the --with-apxs or --with-apxs2 switch—the
latter is for Apache 2.0—followed by the location of the apxs utility on
your system. You would use one of the following statements with a
default Apache installation:

./configure --with-apxs2=/usr/local/apache2/bin/apxs

./configure --with-apxs2=/usr/local/apache/bin/apxs

The configure command produces several screens full of output as it tries
to detect the best compilation settings for your system. When it is done,
you are returned to a shell prompt and can continue the installation.

To begin compiling, you issue the make command:

make

Again, a lot of output is produced, and the time required for compilation
depends on the speed of your system. When the build is done, you see the
following text and are returned to a shell prompt:

Build complete.
(It is safe to ignore warnings about tempnam and tmpnam).

The final step is to install the newly built PHP module into your web
server. To do this, you enter make install, and the files are automatically
copied to their correct system locations:

make install

To complete the installation, you need to make a change to the web server
configuration file to tell it that .php files should be passed to the PHP
module. You should edit the httpd.conf file to add the following line:

AddType application/x-httpd-php .php

You can include other file extensions besides .php if you want.

When you next restart your web server by using the apachectl restart
command, the PHP extension will be loaded. To test PHP, you can create

27 0672327627 AppA 3/2/05 3:52 PM Page 233

234 Appendix A

a simple script, /usr/local/apache2/htdocs/index.php, that looks
like this:

<?php
phpinfo();
?>

In your web browser, you can visit index.php on the IP address of your
web server, and you should see a page that gives lots of information about
the PHP configuration.

Windows Installation
The instructions in this section take you through installing PHP into an
Apache web server on a Windows system.

Installing Apache
If you already have an Apache web server installed on your system, you
can skip this section.

Download the latest version of Apache from httpd.apache.org. The file
to get is the MSI Installer package, named apache_2.0.52-win32-x86-
no_ssl.msi for the current Apache 2.0.52 release. Save this file to your
desktop and double-click to begin the installation process.

The installation process is done through a wizard and is mostly self-
explanatory. You must accept the license terms to continue with the instal-
lation, after which you are shown some release notes. Click Next after
you have read these, and you are asked to enter your server information.

Enter your server’s domain name and hostname and your email address. If
you are installing on a personal workstation, you should use localhost
and localdomain for your server information. You should leave the rec-
ommended option to install Apache on port 80 selected.

When asked to choose a setup type, you should select the typical setup.
Then you are given the opportunity to select the destination folder for the
Apache files. By default, this is C:\Program Files\Apache Group.
Finally, Apache is ready to install, and clicking the Install button causes
your system to start copying and setting up files on your system.

27 0672327627 AppA 3/2/05 3:52 PM Page 234

235Installing PHP

When the installation is complete, the Apache server and monitor program
start up, and you see a new icon in your system tray. You can double-click
this icon to bring up the Apache Service Monitor, which you can use to
start and stop the web server process. A green light indicates a running
server.

Installing PHP
You can download the latest version of PHP from the Windows Binaries
section of www.php.net/downloads.php. You should choose the zip file
rather than the installer package; it is named php-5.0.3-Win32.zip for
the latest version of PHP, which is 5.0.3 at this writing. If a later version
is available, be sure to substitute the appropriate version number wherever
it appears in a filename.

You need to save the zip file to your desktop and double-click it to extract
it to C:\php. You can choose another location, as long as you also change
the other instructions in this section to reflect it.

Next, you need to add the PHP module to Apache. Using the file explorer,
you need to open the Apache configuration directory (if you used the
default location, it should be C:\Program Files\Apache
Group\Apache2\conf) and edit httpd.conf. Then you need to add the fol-
lowing lines to the end of the file:

LoadModule php5_module c:/php/php5apache2.dll
AddType application/x-httpd-php .php

When you next restart your web server from the Apache monitor, the PHP
extension will be loaded. To test PHP, you can create in the htdocs folder
under your Apache installation location a simple script that looks like this:

<?php
phpinfo();
?>

In your web browser, if you visit http://localhost/index.php, you should
see a page that gives lots of information on the PHP configuration.

27 0672327627 AppA 3/2/05 3:52 PM Page 235

236 Appendix A

Troubleshooting
If you experience installation problems, first you should check that you
have followed the steps in this chapter exactly. If you continue to have
difficulties, try the following websites, which may be able to provide
assistance:

• http://httpd.apache.org/docs-2.0/faq/support.html

• www.php.net/manual/en/faq.build.php

27 0672327627 AppA 3/2/05 3:52 PM Page 236

SYMBOLS

(use in single-line comments), 11-12
#! (hash bang character), shell script, 187
$_SERVER super-global array (web

server environmental information), 142
scripts, 142-143
servers, 144
users, 143-144

% (modulus operator), 40
’ (backticks), host program execution,

157-158
* (multiplication operator), 39
+ (addition operator), 39
++ (increment operator), 40-41
- (subtraction operator), 39
— (decrement operator), 40-41
/ (division operator), 39
/*, */ (use in multiple-line comments),

11-12
// (use in single-line comments), 11-12

A
accessing

arrays, 57-58
cookies, 123
filesystems via file permissions,

146-147
form values

GET method, 98-100
POST method, 98-100

activating Safe Mode, 216-217
addition (+) operator, 39
alignment specifiers, string formatting,

52

alnum class, characters in regular
expressions, 71

alpha class, characters in regular
expressions, 71

Apache web servers
add-on HTTP authentication

modules, 130
dynamic shared objects (DSOs),

230-232
PHP installations

on Linux/Unix platforms,
230-233

on Windows platforms,
234-235

source code
apachect1 start command, 232
compiling, 230-232
configure command, 231
downloading, 230
make command, 231
make install command, 231
troubleshooting installation of,

236
Apache.org website, installation

resources, 236
apachect1 start command, starting Apache

web servers, 232
arguments, functions, 32-33
arithmetic operators

addition (+), 39
compound operations, 41
division (/), 39
modulus (%), 40
multiplication (*), 39
precedence rules, 42
subtraction (-), 39

array function, 58
arrays, 5

INDEX

28 0672327627 Index copy 3/3/05 9:50 AM Page 237

238 Sams Teach Yourself PHP in Ten Minutes

accessing, 57-58
associative, textual key names, 60
contents

outputting, 59
searching, 64

creating, 57-58
declaring, 57-58
functions, 61

array_diff, 64
array_intersect, 63
array_key_exists, 64
array_merge, 63
array_search, 64
array_unique, 63
asort, 62
count, 64
in_array, 64
ksort, 62
rsort, 63
serialize, 65
shuffle, 63
sort, 62
unserialize, 65

index values, assigning, 58
looping through

for loop, 60
foreach loop, 60
while loop, 60-61

merging, 63-64
multidimensional, defining, 66-67
randomizing, 63
session variables, storing, 127
two-dimensional, 65-66

array_diff function, 64
array_intersect function, 63
array_key_exists function, 64
array_merge function, 63
array_search function, 64
array_unique function, 63
ASCII values, strings, comparing, 49
asort function, array manipulation, 62
associative arrays, textual key names, 60
attributes of files, retrieving (file_exists

function), 147-148
authentication (websites), 128

basic HTTP, 129
Apache add-on modules, 130
drawbacks, 130
htaccess file, 128
htpasswd program, 129-130

code listings
Basic Login Form (15.1),

132-133
Login Processor Script (15.2),

133-134

Login Processor Script with
Encrypted Passwords (15.3),
135-136

session-based, 130-131
building, 131-136
login forms, 131-134
login usability, 136
password encryption, 134-136

auto_append directive (php.ini file), 210
auto_prepend directive (php.ini file), 210

B
backslash (\) character, escaping strings,

47-48
backticks (‘), host program execution,

157-158
base 2 numbers (strings), 51
basename function (filenames), 149
basic HTTP authentication, 129

Apache add-on modules, 130
drawbacks, 130
htaccess file, configuration

directives, 128
htpasswd program, 129-130

Basic Login Form (Listing 15.1), 132-133
binaries

CLI versus CGI, differentiating, 185
PHP, CLI/CGI binary support, 186
versions

SAPI numbering, 186
-v switch, 186

Boolean data types, 17-18
values in conditional statements, 20

Bourne Again Shell (bash) interpreter,
186

Bourne Shell (sh) interpreter, 186
braces ({})

code indentation rules, 21
use in conditional statements, 21
use in variables, 16

brackets ([]), use in conditional state-
ments, 21

breaking strings into components in
regular expressions, 76-77

breaking loops, 28
bunzip2 utility, uncompressing Apache

source code downloads, 230

C
cache settings, HTTP headers, 140-142
Cache-Control header (HTTP)

no-cache value, 140-142
private value, 140-142
public value, 140-142

28 0672327627 Index copy 3/3/05 9:50 AM Page 238

239Index

capitalization of strings
strtolower function, 54-55
strtoupper function, 54-55

case-sensitive variables, 14
ceil function, rounding number functions,

44
CGI binaries

PHP version support, 186
versus CLI binaries, differentiating,

185
character classes for regular expressions,

70
alnum, 71
alpha, 71
digit, 71
lower, 71
print, 71
punct, 71
space, 71
upper, 71

character mode output in command-line
scripts, 189

characters
regular expressions

testing for repeat patterns,
72-73

wildcard matching, 72
sets, testing (ereq function), 69-70

check boxes in forms, checking (dynamic
HTML), 104-105

chmod command, file permissions,
setting, 146-147

classes (OO programming), 87
appearance of, 88
constructors, 89
definitions, 88
disabling (disable_classes

directive), 219
functions, 87
inheritance, 87
methods, 87-89
object instances, creating, 88-89
private methods, 87
public methods, 87
third-party, 87, 90-92
when to use, 87

CLI (command-line interface), 185
binaries

PHP version support, 186
SAPI version numbering, 186
version type, 186
versus CGI binaries, 185

stream access constants, 192
closing

files via fclose function, 152
MySQL databases, 166

code
braces ({}), indentation rules, 21
comments

multiple-line, 11-12
single-line, 11-12

functions, uses for, 30
modular, 31

code listings
A Badly Formatted Script That

Displays the Date and Time (1.3),
11

A Sample Registration Form with
Required Fields (13.1), 115-117

A Web Form for Submitting User
Comments (11.1), 97-98

An Extract from php.ini (23.1),
203-205

Basic Login Form (15.1), 132-133
Calling the finger Command from a

Web Form (18.2), 162-163
Checking Whether Headers Have

Been Sent (16.1), 139
Creating a Multiple-Option

Selection Using Check Boxes
(12.4), 110-112

Defaulting the Value of a Text Input
Field (12.1), 103-104

Displaying the System Date and
Time (1.1), 8-9

error reporting, Writing a Custom
Error Handler (22.1), 197-198

Form Validation Using Inline
Warnings (13.2), 118

Login Processor Script (15.2),
133-134

Login Processor Script with
Encrypted Passwords (15.3),
135-136

Reading and Writing Standard
Streams (21.2), 191-192

Selecting a Default Item from a
Menu (12.3), 106-107

Selecting a Default Radio Button
Group Item (12.2), 105-106

Using Arrays as Session Variables
(14.2), 127

Using Command-Line Arguments
(21.1), 190

Using Comments in a Script (1.4),
12

Using echo to Send Output to the
Browser (1.2), 10-11

Using Session Variables to Track
Visits to a Page (14.1), 126

Using the TZ Environment Variable
to Change Time (18.1), 161-162

28 0672327627 Index copy 3/3/05 9:50 AM Page 239

240 Sams Teach Yourself PHP in Ten Minutes

combining words, use of underscore
characters, 15

comma-separated values (CSV), date
files, reading, 153

command strings, host program
execution, 158

command-line arguments
shell scripts, passing to, 189-190
Using Command-Line Arguments

(Listing 21.1), 190
command-line interface. See CLI
command-line scripts

character mode output, 189
executing in Windows, 188
input/output streams, 191-192
PHP code, embedding, 188
streams, Reading and Writing

Standard Streams (Listing 21.2),
191-192

comments
code

multiple-line, 11-12
single-line, 11-12

Using Comments in a Script
(Listing 1.4), 12

comparing strings, ASCII values, 49
comparison numeric functions

max, 45
min, 45

comparison operators
equality, 49
inequality, 49

compiling
Apache source code, 230-232
PHP (make command), 233

compound operators, 41
concatenation operators (strings), 48-49

joining, 16
conditional statements, 20-21

Boolean values, 20
braces ({}), 21
brackets ([]), 21
logical operators, 22-23
multiple condition branches, 24-25
operators, 21-22
switch statement, 25-26

configure command, Apache source code
switch settings, 231-233

configuring PHP
.htaccess file, 205-206
php.ini file, 203, 205-211
switches via configure command,

232-233
connecting MySQL databases, 165-166

DB class (PEAR), 178
errors, 172-173

constants, error reporting, 194-196
constructors, class methods, 89
converting

date formats to timestamps, 83
implicit data types via type juggling,

18-19
cookies, 121

accessing, 123
components, 121
domain paths, 122
expiration dates, 122
expiration times, 124
overwriting, 125
passwords, 124
setcookie function, creating,

123-124
stored values, 121
subdomains, 123
transmission of, 121
unsetcookie function, deleting, 125
versus sessions, 125
viewing, 123

copy function, 149
count function, array manipulation, 64
custom error handlers, declaring, 196-198

D
data files

comma-separated values (CSV),
reading, 153

retrieving via fgetcsv function, 154
writing to via fputcsv function, 154

Data Manipulation Language (DML)
DELETE statement, 167
INSERT statement, 167
UPDATE statement, 167

data rules, forms validation requirements,
117

data source names (DSN)
components, 176-177
full syntax definition, 176
MySQL databases, connecting,

176-177
data types

Boolean, 17-18
double, 17-18
gettype function, 17
integer, 17-18
juggling, 18-19
NULL values, 43
numeric, 42-43
querying, 17
settype function, 18
string, 17-18

converting to integer, 18

28 0672327627 Index copy 3/3/05 9:50 AM Page 240

241Index

database abstraction (PEAR DB class)
installing, 175-176
supported extensions, 174

databases
abstraction, PEAR DB class,

174-176
data source names (DSN)

components, 176-177
connecting, 176-177
full syntax definition, 176

DB class (PEAR), portability
modes, 181-182

MySQL
changing, 167
closing connections, 166
connecting, 165-166
connection errors, 172-173
full rows of data, fetching,

169-170
hostnames, 165
link identifiers, 166
mysql extension versus mysqli

extension, 164
queried data, fetching,

167-169
selecting, 165
SQL statement execution,

166-170
queries, limiting (DB class), 184
security

escapeshellcmd function, 220
SQL injections, 220-222

sequences
creating (DB class), 183-184
dropping (DB class), 184

SQL errors, debugging, 171-172
date command, 7
date formats

converting to timestamps, 83
listing of, 83
storage overview, 78
Unix timestamp

best uses, 79
drawbacks, 79

date function, 30-31, 80
format codes, 80-81

DB class (PEAR)
connect method, 178
createSequence method, 184
data source names (DSN), 176-177

components, 176-177
full syntax definition, 176

dropSequence method, 184
fetch modes, 181
getMessage method, 178
installing, 175-176

isError method, 178
limitQuery method, 184
online documentation, 175
portability modes, 181-182
queries, limiting, 184
quotation marks, use on string

values, 183
selected data, retrieving, 179-180
sequences, 183

creating, 184
dropping, 184

SQL queries
executing, 179
shortcut methods, 181

supported database extensions, 174
using in scripts, 177

DB_PORTABILITY_ALL constant, 182
DB_PORTABILITY_DELETE_COUNT

constant, 182
DB_PORTABILITY_ERRORS constant,

182
DB_PORTABILITY_LOWERCASE

constant, 182
DB_PORTABILITY_NONE constant,

182
DB_PORTABILITY_NULL_TO_EMPT

Y constant, 182
DB_PORTABILITY_NUMROWS

constant, 182
DB_PORTABILITY_RTRIM constant,

182
DB_Result object

fetchRow method, 179-180
getAll method, 181
getOne method, 181
getRow method, 181
numCols method, 179-180
numRows method, 179-180

debugging SQL errors in databases,
171-172

decimal numbers (strings), 51
declaring

arrays, 57-58
custom error handlers, 196-198
variables, 13

decrement (—) operator, 40-41
default argument values in functions,

34-35
default input values in forms, setting

(dynamic HTML), 103-104
defining functions, 31-32
DELETE statement (DML), 167
desktop applications, creating (PHP-GTK

extension), 192
detecting host platforms, 159
digit class, characters in regular

expressions, 71

28 0672327627 Index copy 3/3/05 9:50 AM Page 241

242 Sams Teach Yourself PHP in Ten Minutes

directories
changing, 155
viewing contents, 155

disable_classes directive, 219
disable_functions directive, 219
disabling

classes, 219
functions, 219

displaying
HTTP headers, 140
validation warnings for forms,

114-117
Displaying the System Date and Time

(Listing 1.1), 8-9
display_errors directive, 201
dissecting strings

sublen function, 55
subpos function, 55-56
substr function, 55-56

division (/) operator, 39
do loops, 27
dollar sign prefix ($), 13
double data types, 17-18
double-quoted strings, 16-17, 47
downloading

Apache source code, 230
PHP, latest version of, 232

dynamic HTML (DHTML), forms
check boxes, checking, 104-105
default input values, setting,

103-104
menus

creating, 109
default selections, 106-107
selecting multiple items,

109-112
radio buttons

creating, 107-109
selecting, 105-106

dynamic shared objects (DSOs), Apache
web server support, 230-232

E
echo command, 7

listings
A Badly Formatted Script That

Displays the Date and Time
(1.3), 11

Using echo to Send Output to
the Browser (1.2), 10-11

outputting to browser, 10-11
else clause, multiple condition branches,

24-25
elseif keyword, multiple condition

branches, 24-25

email
return values, mail function

example, 33
scripts, creating for user comments

in forms, 101-102
email address validation example, regular

expressions, 74-76
email_validation_class (third-party), 90

methods, 92
properties, 91-92

embedding PHP code in command
scripts, 188

enable_dl function, loading extensions on
demand, 212

enabling Safe Mode, 216-217
environment variables

code listings, Using the TZ
Environment Variable to Change
Time (18.1), 161-162

PATH, 159-160
putenv function, 160
TZ, 161-162
web servers, $_SERVER super-

global array, 142-144
equality operator, string comparisons, 49
ereq function (PCRE), 69

character sets, testing, 69-70
ereq_replace function, 77
error handlers

custom, declaring, 196-198
Writing a Custom Error Handler

(Listing 22.1), 197-198
errors

reporting, 194
constants, 194-196
custom error handlers,

196-198
logs, 199-200
php.ini file configuration

directives, 210-211
preventing display of, 201
user errors, raising, 198-199

suppressing, 200-202
error_log function, message_type

argument, 199-200
escape characters in strings, 47-48
escapeshellcmd function, 163, 220
escaping shell commands, host program

execution, 162-163
expiration times of cookies, 124
explicit newline characters, 11
expose_php directive, hiding presence of

PHP, 218-219
expressions, use in variables, 15
extensions

configuration directives, 211
loading on demand, 212
loading on startup, 212-213

28 0672327627 Index copy 3/3/05 9:50 AM Page 242

243Index

external host programs, executing
via backticks (‘), 157-158
via command strings, 158
via passthru function, 156-157

E_ALL constant, 195
E_COMPILE_ERROR constant, 195
E_COMPILE_WARNING constant, 195
E_CORE_ERROR constant, 195
E_CORE_WARNING constant, 195
E_ERROR constant, 194
E_NOTICE constant, 194
E_PARSE constant, 194
E_STRICT constant, 195
E_USER_ERROR constant, 195
E_USER_NOTICE constant, 195
E_USER_WARNING constant, 195
E_WARNING constant, 194

F
fclose function, files, closing, 152
fetch modes, DB class (PEAR), 181
fetching

full rows of data in databases
(MySQL), 169-170

queried data in databases (MySQL),
167-169

fgetcsv function, data file retrieval, 154
fgets function, files, reading, 152
fields in forms

highlighting, 118
validation requirements, 113-114

file directories
changing, 155
contents, viewing, 155

file extensions, shell scripts, 188
file permissions

Safe Mode restrictions, 214-216
shell scripts, executing, 187

fileatime function, 148
filectime function, 148
filegroup function, 148
fileinode function, 148
filemtime function, 148
fileowner function, 148
fileperms function, 148
files

attributes, testing (file_exists
function), 147-148

closing via fclose function, 152
opening via fopen function,

150-151
pointers

moving (fseek function), 153
moving (ftell function), 152
writing to, 153

reading
via fgets function, 152
via file_get_contents function,

150
via fread function, 151

remote handling via URLs, 154
writing via file_put_contents

function, 150
filesize function, 148
filesystems, access management

file copying, 149
file information, 147-148
file movement, 149
file names, 149
file permissions, 146-147
restricting, 219

filetype function, 148
file_exists function, file information

retrieval, 147-148
file_get_contents function, files, reading,

150
file_put_contents function, files, writing,

150
finger command, Calling the finger

Command from a Web Form (Listing
18.2), 162-163

float widths, string formatting, 53
floor function, rounding numbers, 44
flow control

conditional statements, 20-21
Boolean values, 20
logical operators, 22-23
multiple condition branches,

24-25
operators, 21-22
switch statement, 25-26

loops, 26
breaking out of, 28
do, 27
for, 27-28
nested, 28
while, 26-27

fopen function
files, opening, 150-151
mode arguments, 150-151

for loop, 27-28
arrays, looping through, 60

foreach loop, looping through arrays, 60
<FORM> tag (HTML)

ACTION attribute, 93
GET method, 94
METHOD attribute, 93
POST method, 94

format codes, string formatting, 52-53
format specifiers, string formatting, 52

28 0672327627 Index copy 3/3/05 9:50 AM Page 243

244 Sams Teach Yourself PHP in Ten Minutes

formatting strings
format codes, 52-53
printf function, 50-51
sprintf function, 53-54

forms
check boxes, checking (dynamic

HTML), 104-105
code listings

A Sample Registration Form
with Required Fields
(Listing 13.1), 115-117

Defaulting the Value of a Text
Input Field (12.1), 103-104

Form Validation Using Inline
Warnings (Listing 13.2), 118

Selecting a Default Item from
a Menu (12.3), 106-107

Selecting a Default Radio
Button Group Item (12.2),
105-106

default input values, setting
(dynamic HTML), 103-104

email scripts, creating, 101-102
hidden inputs, 100-101
HTML

<FORM> tag, 93-94
<INPUT> tag, 94-96
<SELECT> tag, 96-97
submitting to PHP, 93-97
submitting user comments,

97-98
<TEXTAREA> tag, 96
menus

creating (dynamic HTML),
109

default selections (dynamic
HTML), 106-107

selecting multiple items
(dynamic HTML), 109-112

processing (php.ini file configura-
tion directives), 208-209

radio buttons
creating (dynamic HTML),

107-109
selecting (dynamic HTML),

105-106
validation

data rules enforcement, 117
highlighting fields, 118
required fields enforcement,

113-114
warning displays, 114-117

values, accessing, 98-100
fputcsv function, data files, writing to,

154
fputs function, file pointer writing, 153
fread function, files, reading, 151

fseek function, file pointer movement,
153

ftell function, file pointer movement, 152
functions

arguments, 32-33
array manipulation, 61

array_diff, 64
array_intersect, 63
array_key_exists, 64
array_merge, 63
array_search, 64
array_unique, 63
asort, 62
count, 64
in_array, 64
ksort, 62
rsort, 63
serialize, 65
shuffle, 63
sort, 62
unserialize, 65

basename, 149
copy, 149
date, 30-31

format codes, 80-81
default argument values, 34-35
defining, 31-32
disabling (disable_functions

directive), 219
ereq_replace, 77
error_log, 199-200
escapeshellcmd, 163, 220
fgetcsv, 154
fileatime, 148
filectime, 148
filegroup, 148
fileinode, 148
filemtime, 148
fileowner, 148
fileperms, 148
filesize, 148
filetype, 148
file_exists, 147-148
fputcsv, 154
fputs, 153
fwrite, 153
generate_checkboxes, 110-112
generate_menu, 109
generate_radio_button_group,

107-109
getcwd, 155
getdate, 84-85
headers_list, 140
headers_sent, 138-139
htmlentities, 109
ini_set, 206
library files, creating, 36-37

28 0672327627 Index copy 3/3/05 9:50 AM Page 244

245Index

mail
form handling functions,

101-102
return values, 33

mathematical, 46
mktime, 81-83
mysql_affected_rows, 167
mysql_close, 166
mysql_connect, 165-166
mysql_errno, 171-173
mysql_error, 171-173
mysql_fetch_array, 169-170
mysql_num_rows, 168
mysql_query, 166-167
mysql_result, 168-169
mysql_select_db, 165
numeric, rounding numbers, 44
passthru, 156-157
phpinfo, 32-33
php_sapi_name, 186
printf , 50-51
print_r, 59
prototype, 30-31
putenv, 160
readdir, 155
realpath, 149
rename, 149
restricted use of in Safe Mode,

215-216
return codes, failure/success, 33-34
return values, 32-33
rewinddir, 155
session_start, 125-126
setcookie, cookie creation, 123-124
set_error_handler, 196-198
sprintf, 53-54
strtotime, 83
trigger_error, 198-199
unlink, 149
unsetcookie, cookie deletion, 125
uses for, 30
variable scope, 35-36

fwrite function, file pointer writing, 153

G - H
generate_checkboxes function, 110-112
generate_menu function, dynamic menu

creation (dynamic HTML), 109
generate_radio_group function, radio

button group creation (dynamic
HTML), 107-109

GET method, form values, accessing,
98-100

getcwd function, directories, changing,
155

getdate function, timestamp information
values, 84-85

gettype function, 17
global variables, 35-36
GMT (Greenwich Mean Time),

timestamps, 82
GNU.org website, date formats listing, 83

header function, custom HTTP headers,
sending, 137-138

headers (HTTP)
cache settings, 140-142
checking on send condition,

138-139
code listings, Checking Whether

Headers Have Been Sent (16.1),
139

cookies
accessing, 123
domain paths, 122
expiration dates, 122
expiration times, 124
subdomains, 123
transmission, 121
viewing, 123

custom, sending, 137-138
displaying, 140
redirection, 138
sample server information, 137

headers_list function, HTTP header
display, 140

headers_sent function, HTTP header
transmissions, checking, 138-139

hidden inputs in forms, 100-101
hiding PHP (expose_php directive),

218-219
highlighting form fields, 118
host environments

environment variables
PATH, 159-160
putenv function, 160
TZ, 161-162

platforms, detecting, 159
host platforms, detecting, 159
host programs

executing
via backticks (‘), 157-158
via command strings, 158
via passthru function, 156-157

shell commands, escaping, 162-163
hostnames in MySQL databases, 165
htaccess file, per-directory configuration,

205-206

28 0672327627 Index copy 3/3/05 9:50 AM Page 245

246 Sams Teach Yourself PHP in Ten Minutes

HTML (Hypertext Markup Language)
forms

submitting to PHP, 93-97
submitting user comments, 97-98

htmlentities function, 109
htpasswd program, 129-130
HTTP (Hypertext Transfer Protocol)

authentication, 129
Apache add-on modules, 130
drawbacks, 130
htaccess file, 128
htpasswd program, 129-130

code listings, Checking Whether
Headers Have Been Sent (16.1),
139

headers
cache settings, 140, 142
checking on send condition,

138-139
cookie transmission, 121
custom, sending, 137-138
displaying, 140
redirection, 138
sample server information,

137
HTTP_USER_AGENT element, 143-144

I - J - K
include files, php.ini file configuration

directives, 209-210
include keyword, library function files,

37
include once keyword, library function

files, 37
include_path directive (php.ini file), 209
increment (++) operator, 40-41
indenting code with braces, 21
index values in arrays, assigning, 58
inequality operator, string comparisons,

49
infinite loops, 26
inheritance in classes, 87
ini_get function (php.ini file), 206
ini_set function (php.ini file), 206
INPUT CHECKBOX input type, 95
INPUT tag (PHP)

CHECKED attribute, 95, 104-106
generate_radio_group function,

107-109
MAXLENGTH attribute, 94
NAME attribute, 95
RADIO input type, 95
TEXT input items, 94
VALUE attribute, 94

input values in forms, setting default
values (dynamic HTML), 103-104

INSERT statement (DML), 167
install command, PEAR package

installations, 227-228
installing

DB class (PEAR), 175-176
MySQL, website resources, 164
PEAR

packages, 227-228
via PEAR installer, 226-227

PHP to Apache Web servers
Linux/Unix platforms, 230-233
Windows platforms, 234-235

instances, class objects, creating, 88-89
integer data types, 17-18
in_array function, array manipulation, 64

ksort function, array manipulation, 62

L
library files, functions

creating, 36-37
including in other scripts, 37

link identifiers, MySQL databases, 166
Linux platforms, PHP installations on

Apache web servers, 230-233
list-all command, viewing PEAR

packages, 227
listings. See code listings
loadable modules

loading on demand, 212
loading on startup, 212-213

local variables, 35-36
logging errors (error_log function),

199-200
logical operators, conditional statements,

22-23
login forms, session-based authentication,

131-134
usability of, 136

Login Processor Script (Listing 15.2),
133-134

looping through arrays
for loop, 60
foreach loop, 60
while loop, 60-61

loops, 26
breaking out of, 28
do, 27
for, 27-28
infinite, 26
nested, 28
while, 26-27

lower class, characters in regular
expressions, 71

28 0672327627 Index copy 3/3/05 9:50 AM Page 246

247Index

M
mail function

default argument values, 34-35
email scripts, form handlers,

101-102
return values, 33

Mail package (PEAR), 228
Mail_Queue package (PEAR), 228
make command

Apache source code, compile
process, 231

PHP, compiling process, 233
make install command

Apache source code, 231
PHP installation process, 233

mathematical functions, 46
max function, numeric comparisons, 45
menus

code listings, Creating a Multiple-
Option Selection Using Check
Boxes (12.4), 110-112

forms
creating (dynamic HTML),

109
default selections (dynamic

HTML), 106-107
selecting multiple items

(dynamic HTML), 109-112
merging arrays, 63-64
Mersenne Twister, random number

generator, 46
message_type argument (error_log

function), 199-200
methods

classes, 89
constructors, 89

min function, numeric comparisons, 45
mktime function, timestamp creation,

81-83
modular code, 31
modulus (%) operator, 40
moving

file pointers
via fseek function, 153
via ftell function, 152

files
copy function, 149
unlink function, 149

multidimensional arrays, defining, 66-67
multiple condition branches in condi-

tional statements
else clause, 24-25
elseif keyword, 24-25

multiplication (*) operator, 39

MySQL
databases

changing, 167
closing connections, 166
connecting, 165-166
connection errors, 172-173
full rows of data, fetching,

169-170
hostnames, 165
link identifiers, 166
queried data, fetching,

167-169
selecting, 165
SQL errors, debugging,

170-172
installation resources, 164
mysql extension versus mysqli

extension, 164
online documentation, 165
SQL statements, executing, 166-170

MySQL Development website, 164
mysql_affected_rows function, 167
mysql_close function, 166
mysql_connect function, 165-166
mysql_errno function, 171-173
mysql_error function, 171-173
mysql_fetch_array function, 169-170
mysql_num_rows function, 168
mysql_query function, 166-167
mysql_result function, 168-169
mysql_select_db function, 165

N
naming

shell scripts, 188
variables, 13-14

case-sensitivity, 14
conventions, 14

negative numbers, rounding, 44
nested loops, 28
Net_SMTP package (PEAR), 228
newline characters, 11
NULL value, 43
numeric data types, 42-43
numeric functions

comparison
max, 45
min, 45

random
rand, 45-46
srand, 46

rounding numbers
ceil, 44
floor, 44
round, 44

28 0672327627 Index copy 3/3/05 9:50 AM Page 247

248 Sams Teach Yourself PHP in Ten Minutes

O
object-oriented programming. See OO

programming
objects, instances, creating (OO

programming), 88-89
OO (object-oriented) programming, 86

advantages, 87
classes

appearance of, 88
constructors, 89
definitions, 88
functions, 87
inheritance, 87
methods, 87, 89
objects, instance creation,

88-89
private methods, 87
public methods, 87
third-party, 87, 90, 92

PHP Classes website, 86
PHP functionality, 86
PHP.net website resources, 88
Sams Teach Yourself Object-

Oriented Programming in 21
Days, 88

when to use, 87
opening files via fopen function, 150-151
open_basedir directive, fileaccess

restrictions, 219
operators

arithmetic
addition (+), 39
division (/), 39
modulus (%), 40
multiplication (*), 39
subtraction (-), 39

compound, 41
conditional statements, 21-22
decrement (—), 40-41
increment (++), 40-41
precedence rules, 42

OPTION tag (PHP)
generate_menu function, 109
SELECTED attribute, 106-107

outputting array contents
(print_r function), 59

overwriting cookies, 125

P
packages (PEAR)

dependencies, 223-224
distribution of, 224
downloading, 223-224
installing, 223-224, 227-228

PEAR Foundation Classes (PFC),
224-225

Mail, 228
Mail_Queue, 228
maintenance of, 224
Net_SMTP, 228
searching, 225-226
tree structure, 223-224
uninstalling, 228
upgrading, 228
viewing, 227

passing command-line arguments to shell
scripts, 189-190

passthru function, host programs,
executing, 156-157

passwords
cookies, danger in, 124
encryption, session-based

authentication, 134-136
PATH environment variable, host

environments, 159-160
PCRE (Perl-Compatible Regular

Expression), 68
ereq function, testing sets of

characters, 69-70
PHP.net website documentation, 68

PCS (PEAR Coding Standards),
document styles, 224

PEAR (PHP Extension and Application
Repository)

code library, package dependencies,
223-224

coding standards, document styles,
224

components overview, 223
Foundation Classes package criteria,

224-225
installer, launching, 226-227
packages

dependencies, 223-224
distribution of, 224
downloading, 223-224
installing, 223-224, 227-228
Mail, 228
Mail_Queue, 228
maintenance of, 224
Net_SMTP, 228
searching, 225-226
tree structure, 223-224
uninstalling, 228
upgrading, 228
viewing, 227

projects, submitting proposals, 229
website

online support and resources,
225

package locator, 225-226

28 0672327627 Index copy 3/3/05 9:50 AM Page 248

249Index

pear command, launching PEAR
installer, 226-227

PEAR DB class (database abstraction),
174

connect method, 178
fetch modes, 181
getMessage method, 178
installing, 175-176
isError method, 178
online documentation, 175
portability modes, 181-182
queries, limiting, 184
quotation marks, use on string

values, 183
selected data, retrieving, 179-180
sequences, 183

creating, 184
dropping, 184

SQL queries
executing, 179
shortcut methods, 181

supported database extensions, 174
using in scripts, 177

per-directory configuration (.htaccess
file), 205-206

Perl-Compatible Regular Expression.
See PCRE

permissions (files), 146
chmod command, 146-147
read-only, 146-147

PFC (PEAR Foundation Classes),
package criteria, 224-225

PHP (Hypertext Preprocessor), 5
Apache web servers

installations to Linux/Unix
systems, 230-233

installations to Windows
systems, 234-235

features overview, 5-6
latest version

compiling (make command),
233

downloading, 232
installing (make install

command), 233
programming overview, 5-6
running locally from PC, 9
switches, configuring (configure

command), 232-233
versions, binaries support, 186

PHP Classes website, 86
third-party class downloads, 90

PHP code, command scripts, embedding,
188

PHP Extension and Application
Repository. See PEAR

php-cli.ini file, 205
PHP-GTK extension, creating desktop

applications, 192
PHP-GTK.net website, 192
php-SAPI.ini file, 205
php.ini file

alternates, 205
code listing, An Extract from

php.ini (23.1), 203-205
configuration directives, 203-205

error logging, 210-211
forms processing, 208-209
include files, 209-210
system resource limits,

207-208
system security, 211
tag styles, 207

enable_dl function, 212
extensions, configuring, 211
ini_get function, 206
ini_set function, 206
online resources, PHP.net website,

206
PHP.net website

array functions, 61
installation resources, 236
mathematical function resources, 46
MySQL documentation, 165
online manual documentation, 30
OO programming resources, 88
operator precedence, 42
PCRE documentation, 68
PHP downloads, 232
php.ini file online resources, 206
string functions listing, 54

phpinfo function, 32-33
php_sapi_name function (CLI binaries),

186
platforms, hosts, detecting, 159
portability modes, DB class (PEAR), 181

constants, 182
POSIX-extended syntax in regular

expressions, 68
POST method, form values, accessing,

98-100
precedence of arithmetic operators, 42
precision specifiers, string formatting, 53
preventing error displays, 201
print class, characters in regular expres-

sions, 71
printf function, string formatting, 50-51
print_r function, array contents,

outputting, 59
private methods (classes), 87
projects, submitting proposals to PEAR,

229

28 0672327627 Index copy 3/3/05 9:50 AM Page 249

250 Sams Teach Yourself PHP in Ten Minutes

prototypes, functions, 30-31
public methods (classes), 87
punct class, characters in regular

expressions, 71
putenv function, host environment

variables, 160

Q - R
queries (SQL)

executing via DB class (PEAR),
179-181

limiting (DB class), 184
quotation marks, string values, 183

radio buttons in forms
creating (dynamic HTML), 107-109
selecting (dynamic HTML),

105-106
rand function, random number

generation, 45-46
random number generator (Mersenne

Twister), 46
random numeric functions

rand, 45-46
srand, 46

randomizing arrays, 63
read-only access permission (files),

146-147
readdir function, directory navigation

function, 155
reading files

via fgets function, 152
via file_get_contents function, 150
via fread function, 151

realpath function (filenames), 149
records, retrieving (PEAR DB class),

179-180
redirection headers (HTTP), 138
regular expressions (regex), 68

character classes, 70
alnum, 71
alpha, 71
digit, 71
lower, 71
print, 71
punct, 71
space, 71
upper, 71

characters, testing for repeat
patterns, 72-73

Perl-Compatible Regular
Expression (PCRE), 68

ereq function, 69-70
POSIX-extended syntax, 68

strings
breaking into components,

76-77
searching and replacing, 77
testing position, 71-72
wildcard matching, 72

user input validation examples
email addresses, 74-76
telephone numbers, 74
zip codes, 74

remote files, handling via URLs, 154
rename function, 149
renaming files (rename function), 149
repeat patterns, testing characters in

regular expressions, 72-73
replacing strings in regular expressions,

77
reporting errors, 194

constants, 194-196
logs, 199-200
php.ini file configuration directives,

210-211
preventing display of, 201
user errors, raising, 198-199

require keyword, library function files, 38
require once keyword, library function

files, 38
retrieving

data files via fgetcsv function, 154
file information (file_exists

function), 147-148
records (PEAR DB class), 179-180

return values
functions, 32-33

failure, 33-34
success, 33-34

mail function example, 33
rewinddir function, directory navigation

function, 155
rounding number functions

ceil, 44
floor, 44
round, 44

rsort function, array manipulation, 63

S
Safe Mode, 214

enabling, 216-217
file permissions, restrictions,

214-216
functions, restricted use of, 215-216

Sams Teach Yourself MySQL in 24 Hours,
164

Sams Teach Yourself Object-Oriented
Programming in 21 Days, 88

28 0672327627 Index copy 3/3/05 9:50 AM Page 250

251Index

scalar variables, 57
scripts

A Badly Formatted Script That
Displays the Date and Time
(Listing 1.3), 11

Displaying the System Date and
Time (Listing 1.1), 8-9

flow control
conditional statements, 20-21
conditional statements, logical

operators, 22-23
conditional statements, multi-

ple condition branches,
24-25

conditional statements, opera-
tors, 21-22

conditional statements, switch
statement, 25-26

loops, 26-28
library functions, including, 37
Using Comments in a Script

(Listing 1.4), 12
Using echo to Send Output to the

Browser (Listing 1.2), 10-11
web server information, web page

requests, 142-143
searching

PEAR packages, 225-226
strings in regular expressions, 77

security
authentication

basic HTTP, 128-130
session-based, 130-131
session-based, building,

131-136
session-based, login forms,

131-134
session-based, login usability,

136
session-based, password

encryption, 134-136
classes, disabling, 219
databases

escapeshellcmd function, 220
SQL injections, 220-222

filesystem access, restricting, 219
functions, disabling, 219
hiding presence of PHP

(expose_php directive), 218-219
host programs, shell commands,

escaping, 162-163
php.ini file configuration directives,

211

Safe Mode, 214
enabling, 216-217
permission restrictions,

214-216
websites, password cookies, 124

SELECT tag (PHP)
generate_menu function, 109
MULTIPLE attribute, 109-112

semicolon character (;), statement
termination, 7

sending HTTP headers
checking on send condition,

138-139
customized, 137-138

sequences in databases
creating (DB class), 183-184
dropping (DB class), 184

serialize function, array manipulation, 65
server-side scripting, page processing, 6-7
SERVER_ADDR element, 144
SERVER_PORT element, 144
session-based authentication, 130-131

building, 131-136
login forms, 131-134
login usability, 136
password encryption, 134-136

sessions
code listings

Using Arrays as Session
Variables (14.2), 127

Using Session Variables to
Track Visits to a Page (14.1),
126

creating via session_start function,
125-126

variables, array storage, 127
versus cookies, 125

session_start function, session creation,
125-126

setcookie function, cookies, creating,
123-124

settype function, 18
set_error_handler function, 196-198
shell commands, host programs, escaping,

162-163
shell scripts

#! (hash bang) character, 187
arguments, passing, 189-190
Bourne Again Shell (bash), 186
Bourne Shell (sh), 186
file extensions, 188
file permissions, executing, 187
naming requirements, 188

shuffle function, array manipulation, 63
single-line comments, 11-12
single-quoted strings, 47

variables, 16-17

28 0672327627 Index copy 3/3/05 9:50 AM Page 251

252 Sams Teach Yourself PHP in Ten Minutes

sort function, array manipulation, 62
source code (Apache)

apachect1 start command, 232
compiling, 230-232
configure command, 231
downloading, 230
make command, 231
make install command, 231

space class, characters in regular
expressions, 71

sprintf function, string formatting, 53-54
SQL (Structured Query Language)

errors, debugging, 171-172
injections, database security,

220-222
queries, executing via DB class

(PEAR), 179-181
statements

DML subset, 167
executing (MySQL), 166-170

srand function, random number genera-
tion, 46

statement termination, semicolon (;)
character, 7

storing date formats, 78
Unix timestamp, 79

stream identifiers, command-line scripts,
191-192

string data types, 17-18
converting to integer data type, 18

strings
capitalization

strtolower function, 54-55
strtoupper function, 54-55
ucfirst function, 54
ucwords function, 54

comparing ASCII values, 49
concatenation operator, 48-49
dissecting

sublen function, 55
subpos function, 55-56
substr function, 55-56

escape characters, backslash (\),
47-48

formatting
format codes, 52-53
printf function, 50-51
sprintf function, 53-54

function of, 47
joining via concatenation operator,

16
numbers

base 2 format (%b), 51
decimal format (%d), 51

padding, 52

quotation marks
double, 47
single, 47

regular expressions
breaking into components,

76-77
position, testing, 71-72
searching and replacing, 77

variables
double-quoted, 16-17
single-quoted, 16-17

strtolower function, string capitalization,
54-55

strtotime function, 83
strtoupper function, string capitalization,

54-55
sublen function, dissection of strings, 55
submitting

HTML forms, 93-97
<FORM> tag, 93-94
<INPUT> tag, 94-96
<SELECT> tag, 96-97
<TEXTAREA> tag, 96

project proposals (PEAR), 229
user comments in HTML forms,

97-98
subpos function, strings, dissection of,

55-56
substr function, strings, dissection of,

55-56
subtraction (-) operator, 39
suppressing errors, 200-202
switch statement, use in conditional state-

ments, 25-26
system resource limits, php.ini file

configuration directives, 207-208

T
tag styles, php.ini file configuration

directives, 207
tags (HTML)

FORM, 93-94
INPUT, 94-96
SELECT, 96-97
TEXTAREA, 96

tags (PHP), processing instructions, 7-8
telephone number validation example,

regular expressions, 74
testing string position in regular

expressions, 71-72
third-party classes, 90-92

email_validation_class, 90
methods, 92
properties, 91-92

time function, timestamp, locating, 79
time zones, setting web servers, 161-162

28 0672327627 Index copy 3/3/05 9:50 AM Page 252

253Index

time.php script, date and time display,
8-9

timestamps, 80
converting date formats to, 83
creating (mktime function), 81-83
date function, format codes, 80-81
GMT (Greenwich Mean Time), 82
information values, obtaining

(getdate function), 84-85
time function, 79

trigger_error function, raising user errors,
198-199

troubleshooting
Apache source code installations,

236
PHP installations, 236

two-dimensional arrays, 65-66
type juggling (data types), implicit

conversion, 18-19
TZ environment variable, host

environments, 161-162

U - V
ucfirst function, string capitalization, 54
ucwords function, string capitalization,

54
uncompressing Apache source code

archive (bunzip2), 230
underscore characters, combining words,

15
uninstalling PEAR packages, 228
Unix timestamp format

best uses, 79
drawbacks, 79
ease of use, 79
maximum value, 79
mktime function, 81-83
starting value, 79

unlink function, files, moving, 149
unserialize function, array manipulation,

65
unsetcookie function, cookies, deleting,

125
UPDATE statement (DML), 167
upgrade-all command, 228
upgrading PEAR packages, 228
upper class, characters in regular

expressions, 71
user comments

forms, email script creation,
101-102

Web forms, submitting, 97-98
user errors, raising (trigger_error

function), 198-199

users, web server information, web page
requests, 143-144

Using Command-Line Arguments
(Listing 21.1), 190

Using echo to Send Output to the
Browser (Listing 1.2), 10-11

validating
email addresses with regular

expressions, 74-76
forms

data rules enforcement, 117
highlighting fields, 118
required fields enforcement,

113-114
warning displays, 114-117

telephone numbers with regular
expressions, 74

zip codes with regular expressions,
74

values in forms, accessing, 98-100
variable scope

global, 35-36
local, 35-36

variables
braces, 16
declaring, 13
dollar sign prefix ($), 13
expressions, use in, 15
fixed values, 13
function of, 13
in strings

double-quoted, 16-17
single-quoted, 16-17

invalid names, 14
naming, 13-14

case-sensitivity, 14
conventions, 14

scalar, 57
underscore characters, word

combinations, 15
valid names, 14
values, 13

viewing
cookies, 123
PEAR packages, 227

W - Z
warnings in forms validation, displaying,

114-117
web browsers

cookies
acceptance of, 121
accessing, 123

28 0672327627 Index copy 3/3/05 9:50 AM Page 253

254 Sams Teach Yourself PHP in Ten Minutes

creating via setcookie
function, 123-124

deleting via unsetcookie
function, 125

domain paths, 122
expiration dates, 122
expiration times, 124
function of, 121
overwriting, 125
passwords, 124
stored values, 121
subdomains, 123
versus sessions, 125
viewing, 123

HTTP_USER_AGENT element,
143-144

sessions
creating via session_start

function, 125-126
storing variables in arrays,

127
web pages

HTTP headers, cache control
settings, 140-142

server-side scripting, processing,
6-7

web servers
environment variables, $_SERVER

super-global array, 142-144
host environments

environment variables,
159-160

time zone settings, 161-162
host platforms, detecting, 159
host programs

executing via backticks (‘),
157-158

executing via command
strings, 158

executing via passthru
function, 156-157

HTTP headers
cache settings, 140-142
checking on send condition,

138-139
custom, sending, 137-138
displaying, 140
redirection, 138
sample information, 137

server-side scripting of web pages,
6-7

websites
authentication, 128

basic HTTP, 128-130
session-based, 130-131
session-based, building,

131-136

session-based, login forms,
131-134

session-based, login usability,
136

session-based, password
encryption, 134-136

cookies
accessing, 123
creating via setcookie

function, 123-124
deleting via unsetcookie

function, 125
domain paths, 122
expiration dates, 122
expiration times, 124
overwriting, 125
passwords, 124
stored values, 121
subdomains, 123
transmission of, 121
viewing, 123

GNU.org, date formats, 83
MySQL, 164
PEAR, online support and

resources, 225
PHP Classes, 86, 90
PHP-GTK.net, 192
PHP.net, 30, 42, 46, 54, 61

MySQL documentation, 165
OO programming resources,

88
php.ini file resources, 206

sessions
creating via session_start

function, 125-126
variables, 127
versus cookies, 125

while loops, 26-27
arrays

looping through, 60-61
width specifiers, string formatting, 52
wildcards, matching characters in regular

expressions, 72
Windows

php command scripts, executing,
188

platforms, PHP installations on
Apache web servers, 234-235

writing
to data files via fputcsv function,

154
to file pointers, 153
to files via file_put_contents

function, 150

zip code validation example (regular
expressions), 74

28 0672327627 Index copy 3/3/05 9:50 AM Page 254

CSS
in

Weakley

10 minutes is all you
need to learn how to…

• Use CSS on your web pages

• Apply styles

• Add background images

• Format text

• Style headings and links

• Position images and captions

• Create a photo gallery

• Style block quotes or data tables

• Create vertical or horizontal
navigation

• Set up site headers

• Style a scalable round corner
pullquote

• Position columns and footers

• Troubleshoot CSS and deal with bugs

Sams Teach Yourself CSS in 10
Minutes offers straightforward,
practical answers when you need
fast results. Organized into a series
of short 10-minute lessons, this
book clearly explains the key
concepts of CSS and carefully
shows you how to put them to
immediate use to control the visual
presentation of your web pages.

All the book’s CSS code has been
carefully verified to work with the
major current browsers, and the
author tells you how to avoid five
infamous CSS bugs, as well as how
to troubleshoot your code when all
else fails.

CSS

Te
a

ch
 You

rse
lf

10
M

in
u

te
s

in 10Minutes

Category: Web Development/Design
Covers: Cascading Style Sheets (CSS)
User Level: Beginning-Intermediate

Examples and related code in
this book can be downloaded
from www.samspublishing.com.

$14.99 USA/$19.99 CAN/£10.99 Net UK

Russ Weakley

Teach
Yourself

CSS
in 10Minutes

S327457_STY_CSS_10.qxd 10/19/05 5:02 PM Page 1

CSS
in 10MinutesRuss Weakley

800 East 96th Street, Indianapolis, Indiana 46240 USA

Teach
Yourself

00_0672327457_FM.qxd 10/17/05 2:35 PM Page i

Sams Teach Yourself CSS in 10 Minutes

Copyright © 2006 by Sams Publishing
All rights reserved. No part of this book shall be reproduced,
stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent lia-
bility is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume
no responsibility for errors or omissions. Nor is any liability
assumed for damages resulting from the use of the informa-
tion contained herein.

International Standard Book Number: 0-672-32745-7

Library of Congress Catalog Card Number: 2004097471

Printed in the United States of America

First Printing: November 2005

08 07 06 05 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trade-
marks or service marks have been appropriately capitalized.
Sams Publishing cannot attest to the accuracy of this informa-
tion. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and
as accurate as possible, but no warranty or fitness is implied.
The information provided is on an “as is” basis. The author
and the publisher shall have neither liability nor responsibility
to any person or entity with respect to any loss or damages
arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when
ordered in quantity for bulk purchases or special sales. For
more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

SENIOR ACQUISITIONS
EDITOR
Linda Bump Harrison

DEVELOPMENT EDITOR
Jon Steever

MANAGING EDITOR
Charlotte Clapp

PROJECT EDITOR
Mandie Frank

COPY EDITOR
Jessica McCarty

INDEXER
Aaron Black

PROOFREADER
Brad Engels

TECHNICAL EDITOR
Kevin Ruse

PUBLISHING
COORDINATOR
Vanessa Evans

MULTIMEDIA
DEVELOPER
Dan Scherf

DESIGNER
Gary Adair

PAGE LAYOUT
Nonie Ratcliff

00_0672327457_FM.qxd 10/17/05 2:35 PM Page ii

Table of Contents

Introduction 1
Who Is This Book For? ..1
How This Book Works ..1
Online Support Files ..2
Conventions Used in This Book ..2

1 Understanding CSS 3
What Is CSS? ..3
What Does Cascading Mean? ..3
Why Use CSS? ..5

2 Using CSS Rules 6
Setting Up the HTML Code ..6
Creating a Rule Set ..6
Using Multiple Declarations ..9
Combining Selectors ..10
Using Shorthand Properties ..11
Using Shorthand Borders ..14
Using Shorthand Margins and Padding ..16
Other Shorthand Properties ..18

3 Selectors in Action 20
Setting Up the HTML Code ..20
Type Selectors ..21
Class Selectors ..22
ID Selectors ..22
Descendant Selectors ..23
Universal Selectors ..24
Advanced Selectors ..25

00_0672327457_FM.qxd 10/17/05 2:35 PM Page iii

iv Sams Teach Yourself CSS in 10 Minutes

4 Applying Styles 28
Setting Up the HTML Code ..28
Applying Inline Styles ..29
Using Header Styles ..29
Using External Style Sheets ..30
@import Styles ..32
Hiding Styles from Older Browsers ..32

5 Getting to Know the CSS Box Model 35
Understanding Inline and Block Level Elements35
Setting Box Width ..36
Margins ..37
Background Color and Background Image39
Padding ..39
Border ..40
Content Area ..40

6 Adding Background Images 43
Setting Up the HTML Code ..43
Creating Selectors to Style the Header ..44
Adding background-image ..44
Setting background-repeat ..45
Adding background-position ..46
Using the background Shortcut ..48
Adding padding ..48

7 Formatting Text 50
Setting Up the HTML Code ..50
Removing Font Elements ..51
Creating the Selectors ..52
Styling the <p> Element ..53
Styling the First Paragraph ..54
Converting to Shorthand ..55

8 Styling a Flexible Heading 57
Styling the Heading ..57
Adding Color, Font Size, and Weight ..58

00_0672327457_FM.qxd 10/17/05 2:35 PM Page iv

vContents

Setting Text Options ..60
Applying Padding and Borders ..60
Adding a Background Image ..62

9 Styling a Round-Cornered Heading 63
Styling the Heading ..63
Styling the <h2> Element ..64
Adding a Background Image ..65
Styling the Element ..66

10 Styling Links 68
Links and Pseudo-Classes ..68
Setting Pseudo-Class Order ..69
Using Classes with Pseudo-Classes ..70
Styling Links with Background Images ..71
Removing Underlines and Applying Borders73
Increasing the Active Area of Links ..74

11 Positioning an Image and Its Caption 77
Wrapping the Image and Caption ..77
Floating the Container ..78
Applying Padding, Background Color, and a

Background Image ..79
Styling the Caption ..81
Styling the Image ..82
Creating a Side-By-Side Variation ..83
Creating a Photo Frame Variation ..84

12 Creating a Photo Gallery 87
Creating a Thumbnail Gallery ..87
Positioning the <div> Elements ..88
Styling the Image ..90
Styling the Paragraph Element ..91
Forcing a New Line ..93
Creating a Side-By-Side Variation ..95

00_0672327457_FM.qxd 10/17/05 2:35 PM Page v

vi Sams Teach Yourself CSS in 10 Minutes

13 Styling a Block Quote 98
Applying the <blockquote> Element ..98
Styling the <blockquote> Element ..100
Styling the Paragraph ..101
Styling the source Class ..102
Creating a Variation ..104

14 Styling a Data Table 107
Starting with a Basic Table ..107
Adding Accessibility Features to a Data Table108
Creating Selectors to Style a Table ..111
Styling the Caption ..112
Styling the <table> Element ..113
Styling the <th> and <td> Elements ..113
Styling the <tr> Element ..114
Targeting Instances of the <th> Element ..115
Creating Alternate Row Colors ..117

15 Creating Vertical Navigation 120
Why Use a List? ..120
Styling the List ..121
Styling the Element ..121
Styling the <a> Element ..122
Adding a Hover Effect ..127
Styling the Element ..128

16 Creating Horizontal Navigation 130
Styling the List ..130
Styling the Element ..131
Styling the Element ..132
Styling the <a> Element ..133
Styling the :hover Pseudo Class ..137
Summary ..138

17 Styling a Round-Cornered Box 139
Setting Up the HTML Code ..139
Creating the Illusion of Round Corners ..139

00_0672327457_FM.qxd 10/17/05 2:35 PM Page vi

viiContents

Creating Selectors to Style the Round-Cornered Box140
Preparing the Images ..141
Styling the <div> Element ..141
Styling the <h2> Element ..142
Styling the <p> Element ..143
Styling the .furtherinfo Class ..144
Styling the <a> Element ..146
Creating a Fixed-Width Variation ..147
Creating a Top-Only Flexible Variation ..149

18 Creating a Site Header 152
Setting Up the HTML Code ..152
Creating Selectors to Style the Header ..153
Styling the <body> Element ..153
Styling the Container ..154
Styling the <h1> Element ..156
Styling the <image> Element ..157
Styling the Element ..158
Styling the Element ..160
Styling the <a> Element ..162

19 Positioning Two Columns with a Header
and a Footer 165
Setting Up the HTML Code ..165
Creating Selectors to Style the Two-Column Layout166
Styling the <body> Element ..167
Styling the Container ..168
Styling the <h1> Element ..169
Styling the #nav Container ..171
Styling the Element ..173
Styling the Element ..175
Styling the #content Container ..177
Styling the #footer Container ..179
Styling the <h2> Element ..182
Styling the <a> Element ..184

00_0672327457_FM.qxd 10/17/05 2:35 PM Page vii

viii Sams Teach Yourself CSS in 10 Minutes

20 Styling a Page for Print 188
Setting Up the Print CSS ..188
Starting with Existing HTML and CSS Code191
Creating Selectors to Style for Print ..192
Styling the <body> Element ..193
Styling the <h1> Element ..194
Styling the #nav Container ..196
Styling the #footer Container ..197
Styling the <a> Element ..199

21 Positioning Three Columns with a Header
and a Footer 201
Setting Up the HTML Code ..201
Creating Selectors to Style the Three-Column Layout202
Creating a Liquid-Layout Grid ..204
Creating the Background Images ..204
Styling the <body> Element ..206
Styling the <h1> Element ..207
Styling the <h2> and <h3> Elements ..209
Styling the First Container ..210
Styling the Second Container ..212
Styling the #content Column ..213
Styling the #news Column ..215
Styling the #nav Column ..217
Styling the Element ..219
Styling the #footer Element ..221

22 Troubleshooting CSS 225
Setting Up the CSS Code ..225
Fixing the Problems ..227
Some Tips for Troubleshooting CSS Problems234

Index 237

00_0672327457_FM.qxd 10/17/05 2:35 PM Page viii

About the Author
Russ Weakley has worked in the design field for more than 18 years.
During the last nine years, he has focused on web design through his own
business, Max Design. He is also the web designer for the Australian
Museum.

He co-chairs the Web Standards Group with Peter Firminger. The role of
this group is to assist web developers in learning about new technologies
and accessibility issues. He also co-founded Web Essentials, which orga-
nizes web development conferences and workshops that attract speakers
and delegates from all over the world.

Internationally recognized for his presentations and workshops on web
development, standards, and accessibility, Weakley has also produced a
series of widely acclaimed CSS-based tutorials including Listamatic,
Listamatic2, Listutorial, Floatutorial, and Selectutorial, which can all be
found on his website at http://www.maxdesign.com.au.

00_0672327457_FM.qxd 10/17/05 2:35 PM Page ix

Acknowledgments
Thanks to the Sams team, in particular Linda Harrison, for giving me the
opportunity to write this book.

Thanks to everyone who has given me comments, criticism, and positive
feedback on my online tutorials. This feedback has given me confidence
and insight into the problems other designers and developers face when
learning CSS.

Thanks to Lisa Miller, who willingly proofread and user-tested every
lesson.

Finally, thanks to my partner, Anna, for her patience, support, and encour-
agement throughout the writing of this book.

00_0672327457_FM.qxd 10/17/05 2:35 PM Page x

We Want to Hear from You!
As the reader of this book, you are our most important critic and commen-
tator. We value your opinion and want to know what we’re doing right,
what we could do better, what areas you’d like to see us publish in, and
any other words of wisdom you’re willing to pass our way.

You can email or write me directly to let me know what you did or didn’t
like about this book—as well as what we can do to make our books
stronger.

Please note that I cannot help you with technical problems related to the
topic of this book, and that due to the high volume of mail I receive, I
might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as
well as your name and phone or email address. I will carefully review
your comments and share them with the author and editors who worked
on the book.

Email: webdev@samspublishing.com

Mail: Mark Taber
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
For more information about this book or another Sams Publishing title,
visit our website at www.samspublishing.com. Type the ISBN (excluding
hyphens) or the title of a book in the Search field to find the page you’re
looking for.

00_0672327457_FM.qxd 10/17/05 2:35 PM Page xi

00_0672327457_FM.qxd 10/17/05 2:35 PM Page xii

Introduction

Cascading Style Sheets (CSS) is a simple and powerful language for
adding style to web documents. Whether you are a web designer, devel-
oper, or anywhere in between, CSS is an important part of developing
websites.

Many web developers still use tables for layout and do not understand the
benefits of CSS. Although there are many good CSS resources and books
available, people are often overwhelmed by the sheer volume of informa-
tion. It is hard to decide the best place to start.

Sams Teach Yourself CSS in 10 Minutes is designed to help you get a han-
dle on CSS quickly and easily through a series of step-by-step lessons.

Who Is This Book For?
This book is for you if any (or all) of the following apply:

• You’re new to CSS

• You want a simple, hands-on guide to using CSS

• You want to quickly learn how to get the most out of CSS

• You want to learn new ways to use CSS

How This Book Works
Sams Teach Yourself CSS in 10 Minutes is divided into 22 lessons that
gradually build on one another. By the end of the book, you should have a
solid understanding of CSS and how to apply it in a variety of real-world
situations.

Each lesson is written in simple steps so that you can quickly grasp the
overall concept and put it into practice. The lessons are also designed to
stand alone so that you can jump directly to particular topics as needed.

01_0672327457_Intro.qxd 10/17/05 2:28 PM Page 1

2 Sams Teach Yourself CSS in 10 Minutes

Online Support Files
Each lesson from Sams Teach Yourself CSS in 10 Minutes has support files
that can be downloaded from the Sams Publishing website. The files can
either be downloaded as a single file for all lessons, or individually for
each lesson.

The address is http://www.samspublishing.com/.

Conventions Used in This Book
This book uses different typefaces to differentiate between HTML/CSS
code and other content.

HTML and CSS code are presented using monospace type. Bold text indi-
cates a change in code from the previous step.

Note A Note presents pertinent pieces of informa-
tion related to the surrounding discussion.

Caution A Caution advises you about potential prob-
lems having to do with CSS or its implementation in
specific browsers.

Tip Tip offers advice or demonstrates an easier way
to do something.

01_0672327457_Intro.qxd 10/17/05 2:28 PM Page 2

LESSON 1
Understanding
CSS

In this lesson, you will learn about Cascading Style Sheets and why you
should use them.

What Is CSS?
Cascading Style Sheets (CSS) is a language that works with HTML docu-
ments to define the way content is presented. The presentation is specified
with styles that are placed directly into HTML elements, the head of the
HTML document, or separate style sheets.

Style sheets contain a number of CSS rules. Each rule selects elements in
an HTML document. These rules then define how the elements will be
styled.

Any number of HTML files can be linked to a single CSS file.

What Does Cascading Mean?
There are three types of style sheets that can influence the presentation of
an HTML document in a browser. These are

• Browser style sheets—Browsers apply style sheets to all web
documents. Although these style sheets vary from browser to
browser, they all have common characteristics, including black
text, blue links, and purple visited links. These are referred to as
default browser style sheets.

• User style sheets—A user is anyone who looks at your website.
Most modern browsers allow users to set their own style sheets
within their browser. These style sheets will override the
browser’s default style sheets—for that user only.

02_0672327457_CH01.qxd 10/17/05 2:28 PM Page 3

4 Lesson 1

• Author style sheets—The author is the person who develops the
website—you! As soon as you apply a basic style sheet to a
page, you have added an author style sheet. Author styles gener-
ally override user styles, which override browser styles. The cas-
cade is shown in Figure 1.1.

browser
style
sheet

user
style
sheet

author
style
sheet

web
page

FIGURE 1.1 The three types of style sheets that influence the pre-
sentation of a web page.

Cascading means that styles can fall (or cascade) from one style sheet to
another. The cascade is used to determine which rules will take prece-
dence and be applied to a document.

For example, rules in author style sheets will generally take precedence
over rules in user style sheets. Rules in user and author style sheets will
take precedence over rules in the browser’s default style sheet.

Where Does CSS Come From? CSS is a recommenda-
tion of the World Wide Web Consortium (W3C). The
W3C is an industry consortium of web stakeholders
including universities; companies such as Microsoft,
Netscape, and Macromedia; and experts in web-
related fields.

One of the W3C’s roles is to produce recommenda-
tions for a range of aspects of the Web. CSS1 became
a recommendation in late 1996, CSS2 became a rec-
ommendation in May 1998, and CSS2.1 became a rec-
ommendation in January 2003.

02_0672327457_CH01.qxd 10/17/05 2:28 PM Page 4

5Understanding CSS

Why Use CSS?
Some of the benefits of using CSS for authors include

• Easy to maintain—The power of CSS is that a single CSS file
can be used to control the appearance of multiple HTML docu-
ments. Changing the appearance of an entire site can be done by
editing one CSS file rather than multiple HTML documents.

• Smaller file sizes—CSS allows authors to remove all presenta-
tion from HTML documents, including layout tables, spacer
images, decorative images, fonts, colors, widths, heights, and
background images. Presentation can then be controlled by CSS
files. This can dramatically reduce the file sizes of HTML
documents.

• Increased accessibility—CSS, combined with well-structured
HTML documents, can aid devices such as screen readers. With
presentational markup removed, the only thing that a screen
reader encounters is structural content. CSS also can be used to
increase the clickable area of links, as well as control line height
and text line lengths for users with motor skill or cognitive
difficulties.

• Different media—CSS can be styled specifically for different
media, including browsers, printers, handheld devices, and pro-
jectors—without changing the content or document structure in
any way.

• More control over typography—CSS allows authors to control
the presentation of content with properties such as capitalize,
uppercase, lowercase, text-decoration, letter-spacing,
word-spacing, text-indent, and line-height. CSS can also be
used to add margins, borders, padding, background color, and
background images to any HTML element.

Summary
In this lesson, you learned about Cascading Style Sheets and why you
should use them. You also learned where style sheets come from and the
three types of style sheets that can affect a web page.

02_0672327457_CH01.qxd 10/17/05 2:28 PM Page 5

LESSON 2
Using CSS
Rules

In this lesson, you will learn the syntax and rules of the Cascading Style
Sheet (CSS) language. You will learn the components of CSS rules,
including selectors, declarations, properties, and values. You will learn
how to style a series of simple HTML elements. You will also learn how
to use shorthand properties.

Setting Up the HTML Code
The HTML code for this lesson will be comprised of three elements—
<h1>, <h2>, and <p>, as shown in Listing 2.1.

LISTING 2.1 HTML Code Containing the Markup for
Lesson 2
<h1>

Level 1 heading
</h1>
<h2>

Level 2 heading
</h2>
<p>

Lorem ipsum dolor sit amet, consectetuer...
</p>

Creating a Rule Set
A rule, or rule set, is a statement that tells browsers how to render partic-
ular elements on an HTML page. A rule set consists of a selector followed
by a declaration block. Inside the declaration block, there can be one or
more declarations. Each declaration contains a property and a value as
shown in Figure 2.1.

03_0672327457_CH02.qxd 10/17/05 2:29 PM Page 6

FIGURE 2.1 Diagram of rule set structure.

The first step in creating a rule set is to decide on a selector. The selector
“selects” the elements on an HTML page that are affected by the rule set.
The selector consists of everything up to (but not including) the first left
curly bracket. The selectors used in this lesson are shown in Listing 2.2.
Selectors are discussed in more detail in Lesson 3, “Selectors in Action.”

LISTING 2.2 CSS Code Showing Selectors
h1
h2
p

Next, the declaration block must be created. A declaration block is a
container that consists of everything between (and including) the curly
brackets. The declaration blocks used in this lesson are highlighted in
Listing 2.3.

LISTING 2.3 CSS Code Showing Declaration Blocks
h1 {...}
h2 {...}
p {...}

Inside the declaration block, there are one or more declarations. Declara-
tions tell a browser how to draw any element on a page that is selected. A
declaration consists of a property and one or more values, separated by a
colon. The end of each declaration is indicated with a semicolon.

The declarations used in this lesson are highlighted in Listing 2.4.

LISTING 2.4 CSS Code Showing Declarations
h1 { text-align: center; }
h2 { font-style: italic; }
p { color: maroon; }

selector

body

declaration block

declaration declaration

{ color: black; padding: 1em; }

property value property value

03_0672327457_CH02.qxd 10/17/05 2:29 PM Page 7

8 Lesson 2

LISTING 2.5 CSS Code Showing Single-Line Rule Set
h2 { font-style: italic; text-align: center; color: navy; }

LISTING 2.6 CSS Code Showing Multiple-Line Rule Set
h2
{

font-style: italic;
text-align: center;
color: navy;

}

The property is an aspect of the element that you are choosing to style.
There can be only one property within each declaration unless a shorthand
property is used (see “Using Shorthand Properties,” later in this lesson).
The properties used in this lesson are highlighted in bold in Listing 2.7.

LISTING 2.7 CSS Code Showing Properties
h1 { text-align: center; }
h2 { font-style: italic; }
p { color: maroon; }

The value is the exact style you want to set for the property. Values can
include length, percentage, color, url, keyword, and shape. The values
used in this lesson are highlighted (in bold) in Listing 2.8.

LISTING 2.8 CSS Code Showing Values
h1 { text-align: center; }
h2 { font-style: italic; }
p { color: maroon; }

Using Whitespace Whitespace (spaces, tabs, line
feeds, and carriage returns) is allowed around rule
sets, as well as inside declaration blocks.

Rule sets can be laid out to suit your needs. Some
developers prefer all declarations within a single line
to conserve space as shown in Listing 2.5. Others pre-
fer to place each declaration on a new line to make
the rule sets easier to read as shown in Listing 2.6.

03_0672327457_CH02.qxd 10/17/05 2:29 PM Page 8

9Using CSS Rules

The first rule set will target the <h1> element and align it in the center of
the browser window.

The second rule set will target the <h2> element and render it in italics.

The third selector will target the <p> element and color all the text inside
the element maroon.

The results of this styling applied to the HTML code in Listing 2.1 are
shown in Figure 2.2.

FIGURE 2.2 Screenshot of styled elements.

Using Multiple Declarations
More than one declaration can be used within a declaration block. Each
declaration must be separated with a semicolon.

In this example, the <h1> and <h2> elements will be styled with a new
declaration—color: navy;. The <h2> element also will be styled with
text-align: center;, which will align it in the center of the browser
window. The new declarations are highlighted in Listing 2.9. The results
are shown in Figure 2.3.

03_0672327457_CH02.qxd 10/17/05 2:29 PM Page 9

10 Lesson 2

LISTING 2.9 CSS Code Showing Multiple Declarations
h1
{

text-align: center;
color: navy;

}

h2
{

font-style: italic;
text-align: center;
color: navy;

}

p
{

color: maroon;
}

FIGURE 2.3 Screenshot of elements styled with multiple
declarations.

Combining Selectors
When several selectors share the same declarations, they may be grouped
together to prevent the need to write the same rule more than once. Each
selector must be separated by a comma.

The <h1> and <h2> elements share two declarations, so parts of the two
rule sets can be combined to be more efficient as shown in Listing 2.10.

03_0672327457_CH02.qxd 10/17/05 2:29 PM Page 10

11Using CSS Rules

LISTING 2.10 CSS Code Showing Combined Selectors
h1, h2
{

text-align: center;
color: navy;

}

h2
{

font-style: italic;
}

p
{

color: maroon;
}

Adding CSS Comments CSS comments can be added
to CSS to explain your code. Like HTML comments, CSS
comments will be ignored by the browser. A CSS com-
ment begins with /* and ends with */. Comments can
appear before or within rule sets as well as across
multiple lines. They also can be used to comment out
entire rules or individual declarations.

Using Shorthand Properties
Shorthand properties allow the values of several properties to be specified
within a single property. Shorthand properties are easier to write and
maintain. They also make CSS files more concise.

For example, the <h2> element can be styled with font-style,
font-variant, font-weight, font-size, line-height, and font-family
as shown in Listing 2.11, or with a single font property as shown in
Listing 2.12 and Figure 2.4.

Most shorthand properties do not require the values to be placed in a set
order. However, when using the font property, it is safer to set values in
the order specified by the W3C, which is font-style, font-variant,
font-weight, font-size, line-height, and font-family.

03_0672327457_CH02.qxd 10/17/05 2:29 PM Page 11

12 Lesson 2

When font-size and line-height are used within the font property,
they must be specified with font-size first, followed by a forward slash
(/), followed by line-height, as shown in Listing 2.12.

LISTING 2.11 CSS Code Highlighting All font Properties
h1, h2
{

text-align: center;
color: navy;

}

h2
{

font-style: italic;
font-variant: small-caps;
font-weight: bold;
font-size: 100%;
line-height: 120%;
font-family: arial, helvetica, sans-serif;

}

p
{

color: maroon;
}

LISTING 2.12 CSS Code Highlighting Shorthand font
Property
h1, h2
{

text-align: center;
color: navy;

}

h2
{

font: italic small-caps bold 100%/120% arial, helvetica,
sans-serif;
}

p
{

color: maroon;
}

03_0672327457_CH02.qxd 10/17/05 2:29 PM Page 12

13Using CSS Rules

FIGURE 2.4 Screenshot of styled <h2> element.

Values for the shorthand font property include font-style, font-
variant, font-weight, font-size, line-height, and font-family.
However, all of these values do not need to be included in a shorthand
declaration. For example, for the <p> element, you might want to only
specify values for font-size and font-family as shown in Listing 2.13.

In this case, font-style, font-variant, font-weight, and line-height
are not included in the shorthand property, so they will be assigned their
default value. The results can be seen in Figure 2.5.

LISTING 2.13 CSS Code Highlighting All font Properties
h1, h2
{

text-align: center;
color: navy;

}

h2
{

font: italic small-caps bold 100%/120% arial, helvetica,
sans-serif;
}

p
{

color: maroon;
font: 80% arial, helvetica, sans-serif;

}

03_0672327457_CH02.qxd 10/17/05 2:29 PM Page 13

14 Lesson 2

FIGURE 2.5 Screenshot of styled <p> element.

Using Shorthand Borders
Border properties also can be converted to the shorthand border property.
The <h1> element can be styled with border-width, border-style, and
border-color as shown in Listing 2.14, or with a single border property
as shown in Listing 2.15. The results can be seen in Figure 2.6.

LISTING 2.14 CSS Code Highlighting All border Properties
h1, h2
{

text-align: center;
color: navy;

}

h1
{

border-width: 1px;
border-style: solid;
border-color: gray;

}

h2
{

font: italic small-caps bold 100%/120% arial, helvetica,
sans-serif;
}

continues

03_0672327457_CH02.qxd 10/17/05 2:29 PM Page 14

15Using CSS Rules

p
{

color: maroon;
font: 80% arial, helvetica, sans-serif;

}

LISTING 2.15 CSS Code Highlighting the Shorthand border
Property
h1, h2
{

text-align: center;
color: navy;

}

h1
{

border: 1px solid gray;
}

h2
{

font: italic small-caps bold 100%/120% arial, helvetica,
sans-serif;
}

p
{

color: maroon;
font: 80% arial, helvetica, sans-serif;

}

FIGURE 2.6 Screenshot of styled <h1> elements.

03_0672327457_CH02.qxd 10/17/05 2:29 PM Page 15

16 Lesson 2

Using Shorthand Margins and
Padding
Margins create space between the edge of an element and the edge of any
adjacent elements. Padding creates the space between the edge of the ele-
ment and its content (see Lesson 5, “Getting to Know the CSS Box
Model,” for more information). The margin and padding shorthand
properties also can be used to make CSS code more concise.

The margin property can combine margin-top, margin-right,
margin-bottom, and margin-left. The padding property can combine
padding-top, padding-right, padding-bottom, and padding-left.

The margin and padding properties also can be used to style different
values for each side of an element. Values are applied in the following
order: top, right, bottom, and left—clockwise, starting at the top.

The <p> element can be styled with padding-top, padding-right,
padding-bottom, and padding-left as shown in Listing 2.16, or with a
single padding property as shown in Listing 2.17.

LISTING 2.16 CSS Code Highlighting All padding Properties
h1, h2
{

text-align: center;
color: navy;

}

h1
{

border: 1px solid gray;
}

h2
{

font: italic small-caps bold 100%/120% arial, helvetica,
sans-serif;
}

p
{

color: maroon;

continues

03_0672327457_CH02.qxd 10/17/05 2:29 PM Page 16

17Using CSS Rules

font: 80% arial, helvetica, sans-serif;
padding-top: 1em;
padding-right: 2em;
padding-bottom: 3em;
padding-left: 4em;

}

LISTING 2.17 CSS Code Highlighting a Shorthand padding
Property
h1, h2
{

text-align: center;
color: navy;

}

h1
{

border: 1px solid gray;
}

h2
{

font: italic small-caps bold 100%/120% arial, helvetica,
sans-serif;
}

p
{

color: maroon;
font: 80% arial, helvetica, sans-serif;
padding: 1em 2em 3em 4em;

}

You can use one, two, three, and four values within a shorthand
declaration.

The declaration p { padding: 1em; } will apply 1em of padding to all
sides of an element.

The declaration p { padding: 1em 2em; } will apply 1em of padding to
the top and bottom, and 2em of padding to the left and right of an element.

The declaration p { padding: 1em 2em 3em; } will apply 1em of
padding to the top, 2em of padding to the left and right, and 3em to the
bottom of an element.

03_0672327457_CH02.qxd 10/17/05 2:29 PM Page 17

18 Lesson 2

The declaration p { padding: 1em 2em 3em 4em; } will apply 1em of
padding to the top, 2em of padding to the right, 3em of padding to the
bottom, and 4em of padding to the left of an element.

Other Shorthand Properties
The background property combines background-color, background-
image, background-repeat, background-attachment, and background-
position as shown in Listing 2.18.

LISTING 2.18 CSS Code Highlighting a Shorthand
background Property
h1, h2
{

text-align: center;
color: navy;

}

h1
{

border: 1px solid gray;
background: yellow url(tint.jpg) repeat-y 100% 0;

}

h2
{

font: italic small-caps bold 100%/120% arial, helvetica,
sans-serif;
}

p
{

color: maroon;
font: 80% arial, helvetica, sans-serif;
padding: 1em 2em 3em 4em;

}

The list-style property combines list-style-type, list-style-
position, and list-style-image as shown in Listing 2.19.

03_0672327457_CH02.qxd 10/17/05 2:29 PM Page 18

19Using CSS Rules

LISTING 2.19 CSS Code Highlighting a Shorthand
list Property
h1, h2
{

text-align: center;
color: navy;

}

h1
{

border: 1px solid gray;
background: yellow url(tint.jpg) repeat-y 100% 0;

}

h2
{

font: italic small-caps bold 100%/120% arial, helvetica,
sans-serif;
}

p
{

color: maroon;
font: 80% arial, helvetica, sans-serif;
padding: 1em 2em 3em 4em;

}
ul
{

list-style: square inside;
}

Summary
In this lesson, you learned how to use selectors, declarations, properties,
shorthand properties, and values to style a series of simple HTML
elements. In the next lesson, you will learn about the different types of
selectors and how to use them.

03_0672327457_CH02.qxd 10/17/05 2:29 PM Page 19

LESSON 3
Selectors in
Action

In this lesson, you will learn about the different types of selectors and how
to use them.

Setting Up the HTML Code
Selectors are one of the most important aspects of CSS because they are
used to “select” elements on an HTML page so that they can be styled.
The HTML code for this lesson is shown in Listing 3.1.

LISTING 3.1 HTML Code Containing Markup for Lesson 3
<body>
<div id=”content”>

<h1>
Heading here

</h1>
<p class=”intro”>

Lorem ipsum dolor sit amet.
</p>
<p>

Lorem ipsum dolor sit amet.
</p>

</div>
<div id=”nav”>

item 1
item 2
item 3

</div>
<div id=”footer”>

Lorem ipsum dolor sit amet.
</div>
</body>

04_0672327457_CH03.qxd 10/17/05 2:29 PM Page 20

What Is a <div>? The <div> element is a generic
container that can be used to add structure to an
HTML document. Although it is a block level element,
it does not add any other presentation to the content.

For this lesson, the <div> element has been used to
contain logical divisions of content, such as navigation
and footer information.

These divisions of content can then be styled to suit
your needs using descendant selectors, which are
covered later in this lesson.

Type Selectors
Type selectors will select any HTML element on a page that matches the
selector.

In the HTML sample shown in Listing 3.1, there are seven HTML ele-
ments that could be used as type selectors, including <body>, <div>, <h1>,
<p>, , , and <a>.

For example, to select all elements on the page, the selector is
used as shown in Listing 3.2.

LISTING 3.2 CSS Code Containing Styling for the
Element
li
{

color: blue;
}

04_0672327457_CH03.qxd 10/17/05 2:29 PM Page 21

22 Lesson 3

Class Selectors
Class selectors can be used to select any HTML element that has been
given a class attribute.

In the HTML sample shown in Listing 3.1, there are two HTML elements
with class attributes—<p class=”intro”> and <a href=”#”
class=”intro”>.

For example, to select all instances of the intro class, the .intro selector
is used as shown in Listing 3.3.

LISTING 3.3 CSS Code Containing Styling for the
.intro Class
.intro
{

font-weight: bold;
}

You also can select specific instances of a class by combining type
and class selectors. For example, you might want to select the
<p class=”intro”> and the separately.
This is achieved using p.intro and a.intro as shown in Listing 3.4.

LISTING 3.4 CSS Code Containing Two Different Stylings
of the .intro Class
p.intro
{

color: red;
}

a.intro
{

color: green;
}

ID Selectors
ID selectors are similar to class selectors. They can be used to select any
HTML element that has an ID attribute. However, each ID can be used

04_0672327457_CH03.qxd 10/17/05 2:29 PM Page 22

23Selectors in Action

only once within a document, whereas classes can be used as often as
needed.

In this lesson, IDs are used to identify unique parts of the document struc-
ture, such as the content, navigation, and footer.

In the HTML sample shown in Listing 3.1, there are three IDs:
<div id=”content”>, <div id=”nav”>, and <div id=”footer”>. To
select <div id=”nav”>, the #nav selector is used as shown in Listing 3.5.

LISTING 3.5 CSS Code Containing the #nav ID Selector
#nav
{

color: blue;
}

Should You Use ID or Class? Classes can be used as
many times as needed within a document. IDs can be
applied only once within a document. If you need to
use the same selector more than once, classes are a
better choice.

However, IDs have more weight than classes. If a class
selector and ID selector apply the same property to
one element, the ID selector’s value would be chosen.
For example, h2#intro { color: red; } will override
h2.intro { color: blue; }.

Descendant Selectors
Descendant selectors are used to select elements that are descendants of
another element.

For example, in the HTML sample shown in Listing 3.1, three <a>
elements are descendants of the elements. To target these three <a>
elements only, and not all other <a> elements, a descendant selector can
be used as shown in Listing 3.6. This selector targets any <a> element that
is nested inside an element.

04_0672327457_CH03.qxd 10/17/05 2:29 PM Page 23

24 Lesson 3

LISTING 3.6 CSS Code Containing Descendant Selector
li a
{

color: green;
}

Descendant selectors do not have to use direct descendant elements. For
example, the <a> element is a descendant of <div id=”nav”> as well as
the element. This means that #nav a can be used as a selector as
well (see Listing 3.7).

LISTING 3.7 CSS Code Containing Descendant Selector
#nav a
{

color: red;
}

Descendant selectors also can include multiple levels of descendants to be
more specific as shown in Listing 3.8.

LISTING 3.8 CSS Code Containing Descendant Selector
#nav ul li a
{

color: green;
}

Universal Selectors
Universal selectors are used to select any element. For example, to set the
margins and padding on every element to 0, * can be used as shown in
Listing 3.9.

Listing 3.9 CSS Code Containing the Universal Selector
*
{

margin: 0;
padding: 0;

}

04_0672327457_CH03.qxd 10/17/05 2:29 PM Page 24

25Selectors in Action

Universal selectors also can be used to select all elements within another
element as shown in Listing 3.10. This will select any element inside the
<p> element.

LISTING 3.10 CSS Code Containing the Universal Selector
Within the <p> Element
p *
{

color: red;
}

Advanced Selectors
Child selectors are used to select an element that is a direct child of
another element (parent). Child selectors will not select all descendants,
only direct children. For example, you might want to target an that is
a direct child of a <div>, but not other elements that are descendants
of the <div>. The selector is shown in Listing 3.11.

Child selectors are not supported by Windows Internet Explorer 5, 5.5,
and 6, but are supported by most other standards-compliant browsers.

LISTING 3.11 CSS Code Containing the Child Selector
div > em
{

color: blue;
}

Adjacent sibling selectors will select the sibling immediately following an
element. For example, you might want to target an <h3> element, but only
<h3> elements that immediately follow an <h2> element. This is a com-
monly used example because it has a real-world application. There is
often too much space between <h2> and <h3> elements when they appear
immediately after each other. The selector is shown in Listing 3.12.

Adjacent sibling selectors are not supported by Windows Internet
Explorer 5, 5.5, and 6, but are supported by most other standards-
compliant browsers.

04_0672327457_CH03.qxd 10/17/05 2:29 PM Page 25

26 Lesson 3

LISTING 3.12 CSS Code Containing the Adjacent Sibling
Selector
h2 + h3
{

margin: -1em;
}

Attribute selectors are used to select elements based on their attributes or
attribute value. For example, you might want to select any image on an
HTML page that is called “small.gif” as shown in Listing 3.13.

Attribute selectors are not supported by Windows Internet Explorer 5, 5.5,
and 6, or Macintosh Internet Explorer 5. They are also not supported by
earlier versions of Opera.

LISTING 3.13 CSS Code Containing the Attribute Selector
img[src=”small.gif”]
{

border: 1px solid #000;
}

Pseudo-elements enable you to style information that is not available in
the document tree. For instance, using standard selectors, there is no way
to style the first letter or first line of an element’s content. However, the
content can be styled using pseudo-elements as shown in Listing 3.14.

Pseudo-elements :before and :after are not supported by Windows
Internet Explorer 5, 5.5, and 6, or Macintosh Internet Explorer 5. They are
also not supported by earlier versions of Opera.

LISTING 3.14 CSS Code Containing the Psuedo-Element
Selector
p:first-line
{

font-weight: bold;
}

p:first-letter
{

font-size: 200%; font-weight: bold;}

04_0672327457_CH03.qxd 10/17/05 2:29 PM Page 26

27Selectors in Action

Pseudo-classes enable you to format items that are not in the document
tree. They include :first-child, :link, :visited, :hover, :active,
:focus, and :lang(n). Pseudo-classes are covered in Lesson 10, “Styling
Links.”

Summary
In this lesson, you learned how to use a range of selectors, including type,
class, ID, descendant, and universal. You also learned about the difference
between ID and class selectors. In the next lesson, you will learn how to
apply inline styles, header styles, and styles within external style sheets.

04_0672327457_CH03.qxd 10/17/05 2:29 PM Page 27

LESSON 4
Applying
Styles

In this lesson, you will learn the three different locations where you can
place CSS code, including inline, header, and external style sheets. You
will also learn how to target a style sheet to a specific device such as a
cell phone, television, or PDA by using media types. You will also learn
methods that can be used to hide advanced styles from older browsers
using media types.

Setting Up the HTML Code
The HTML code for this lesson that contains a single paragraph of text is
shown in Listing 4.1.

LISTING 4.1 HTML Code Containing the Markup for
Lesson 4
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”

“http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>

<meta http-equiv=”content-type” content=”text/html;
charset=utf-8”>
<title>Lesson 4</title>

</head>
<body>
<p>

Lorem ipsum dolor sit amet, consectetuer adipiscing
elit...

</p>
</body>
</html>

In this lesson, the <p> element will be styled with font-family, width,
background-color, margin, and padding.

05_0672327457_CH04.qxd 10/17/05 2:29 PM Page 28

These styles can be applied to <p> elements using three methods: inline
styles, header styles, and external style sheets. Although each method will
be explained, external style sheets are the preferred option because they
do not add CSS to the HTML markup.

Applying Inline Styles
Inline styles can be applied directly to elements in the HTML code using
the style attribute. However, inline styles should be avoided wherever
possible because the styles are added to the HTML markup. This defeats
the main purpose of CSS, which is to apply the same styles to as many
pages as possible across your website using external style sheets. Styles
that are applied inline can cause additional maintenance across a website
because multiple pages might need changing rather than one CSS file.

An example of an inline style is shown in Listing 4.2.

LISTING 4.2 HTML Code Containing an Inline Style for the
<p> Element
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”

“http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>

<meta http-equiv=”content-type” content=”text/html;
charset=utf-8”>
<title>Lesson 4</title>

</head>
<body>
<p style=”font-family: arial, helvetica, sans-serif; margin:
1em;padding: 1em; background-color: gray; width: 10em;”>

Lorem ipsum dolor sit amet, consectetuer adipiscing
elit...

</p>
</body>
</html>

Using Header Styles
Header styles also can be used to style the <p> element. The CSS rules
can be placed in the head of the document using the style element. Like

05_0672327457_CH04.qxd 10/17/05 2:29 PM Page 29

30 Lesson 4

inline styles, header styles should be avoided where possible because the
styles are added to the HTML markup rather than in external CSS files.

There are cases where header styles might be the preferred option in spe-
cific instances, such as a CSS rule that is specific to one page within a
large website. Rather than add this rule to an overall CSS file, a header
style may be used.

An example of a header style is shown in Listing 4.3. The type=
”text/css” attribute must be specified within the style element in order
for browsers to recognize the file type.

LISTING 4.3 HTML Code Containing Header Styles
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”

“http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>

<meta http-equiv=”content-type” content=”text/html;
charset=utf-8”>
<title>Lesson 4 - listing 2</title>

<style type=”text/css” media=”screen”>
p
{

font-family: arial, helvetica, sans-serif;
margin: 1em;
padding: 1em;
background-color: gray;
width: 10em;

}
</style>
</head>
<body>
<p>

Lorem ipsum dolor sit amet, consectetuer adipiscing
elit...

</p>
</body>
</html>

Using External Style Sheets
The third method of applying styles to a document involves linking to
external style sheets. External style sheets are the most appropriate

05_0672327457_CH04.qxd 10/17/05 2:29 PM Page 30

31Applying Styles

method for styling documents. If styles need to be changed, the modifica-
tions can take place in one CSS file rather than all HTML pages.

To change the header style to an external style, move the rule set to a new
CSS file as shown in Listing 4.4.

Next, link to this style sheet from your HTML file using the link element
as shown in Listing 4.5.

LISTING 4.4 CSS Code Containing an External Style Sheet
with Styles for the <p> Element
p
{

font-family: arial, helvetica, sans-serif;
margin: 1em;
padding: 1em;
background-color: gray;
width: 10em;

}

LISTING 4.5 HTML Code Containing the link Element
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”

“http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>

<meta http-equiv=”content-type” content=”text/html;
charset=utf-8”>
<title>Lesson 4</title>
<link rel=”stylesheet” href=”style.css” type=”text/css”
media=”screen”>

</head>
<body>
<p>

Lorem ipsum dolor sit amet, consectetuer adipiscing
elit...

</p>
</body>
</html>

05_0672327457_CH04.qxd 10/17/05 2:29 PM Page 31

32 Lesson 4

@import Styles
Header and external style sheets also can import other style sheets using
the @import rule as shown in Listing 4.6. The @import rule must be
placed before all other rules in the header or external style sheet.

LISTING 4.6 CSS Code Containing an Imported Style Sheet
@import “advanced.css”;

p
{

font-family: arial, helvetica, sans-serif;
margin: 1em;
padding: 1em;
background-color: gray;
width: 10em;

}

Imported styles can be used to link to multiple CSS files as well as to hide
styles from older browsers.

Hiding Styles from Older Browsers
Some older browsers, such as Netscape Navigator 4 and Internet Explorer
4, have poor support for CSS. It is possible to hide styles from these
browsers using specific media types and @import rules.

All styles will be hidden from Netscape Navigator 4 by changing the link
element’s media type from screen to screen, projection as shown in
Listing 4.7. Netscape Navigator 4 does not support multiple media types.

LISTING 4.7 HTML Code Containing a link Element with a
screen, projection Media Type
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”

“http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>

<meta http-equiv=”content-type” content=”text/html;
charset=utf-8”>
<title>Lesson 4</title>

continues

05_0672327457_CH04.qxd 10/17/05 2:29 PM Page 32

33Applying Styles

<link rel=”stylesheet” href=”style.css” type=”text/css”
media=”screen, projection”>

</head>
<body>
<p>

Lorem ipsum dolor sit amet, consectetuer adipiscing
elit...

</p>
</body>
</html>

The remaining styles will be hidden from Internet Explorer 4 and several
other older browsers by moving the <p> element rule set out of the origi-
nal style sheet and into the imported style sheet as shown in Listings 4.8
and 4.9. Internet Explorer 4 is not able to read imported files.

LISTING 4.8 CSS Code Inside the Original Style Sheet Called
style.css
@import “advanced.css”;

LISTING 4.9 CSS Code Inside the Import Style Sheet Called
advanced.css
p
{

font-family: arial, helvetica, sans-serif;
margin: 1em;
padding: 1em;
background-color: gray;
width: 10em;

}

All modern browsers will read the multiple media type screen,
projection, as well as the imported style, so they will display the
fully styled <p> element.

Header styles also can be hidden from older browsers by enclosing the
contents of the style element inside a comment as shown in Listing 4.10.

05_0672327457_CH04.qxd 10/17/05 2:29 PM Page 33

34 Lesson 4

LISTING 4.10 HTML Code Containing Header Styles Within
a Comment
<style type=”text/css” media=”screen”>
<!--

p
{

font-family: arial, helvetica, sans-serif;
margin: 1em;
padding: 1em;
background-color: gray;
width: 10em;

}
-->
</style>

Summary
In this lesson, you learned how to apply inline, header, and external styles
to a document. You also learned what a media type is and how to hide
advanced styles from older browsers using multiple media types and
@import. In the next lesson, you will learn about the CSS box model
including margin, background color, background image, padding, and
border.

05_0672327457_CH04.qxd 10/17/05 2:29 PM Page 34

LESSON 5
Getting to
Know the CSS
Box Model

In this lesson, you will learn about the CSS box model—the rectangular
boxes that are generated for all HTML elements. You will learn about
aspects that make up the box model, including margin, background color,
background image, padding, and border. You also will learn the difference
between inline and block level elements.

Understanding Inline and Block
Level Elements
Block level elements are normally displayed as blocks with line breaks
before and after. Examples of block level elements include paragraphs,
headings, divs, and block quotes.

Inline elements are not displayed as blocks. The content is displayed in
lines and there are no line breaks before and after. Examples of inline ele-
ments include emphasized text, strong text, and links. Examples of both
block and inline elements are shown in Figure 5.1.

FIGURE 5.1 Examples of block level and inline elements.

06_0672327457_CH05.qxd 10/17/05 2:29 PM Page 35

36 Lesson 5

All block level and inline elements are boxes that use the box model. Both
types of elements can be styled with box model properties such as
margin, background-color, background-image, padding, and border as
shown in Figure 5.2.

Some box model properties, such as height and width, do not apply to
inline elements. Also, margin and padding applied to an inline element
will affect content on either side, but not content above or below.

FIGURE 5.2 Three-dimensional diagram of the CSS box model.

Setting Box Width
The width of an element is applied to the content area. Other measure-
ments, such as padding, border, and margins, are added to this width.

For example, if an element is specified with width: 200px;, the content
area is 200px wide. If padding, border, or margin are applied to the same
element, their measurements are added to the overall width.

However, Internet Explorer 5 for Windows (and Internet Explorer 6 for
Windows in some circumstances) will use a different method to set widths

06_0672327457_CH05.qxd 10/17/05 2:29 PM Page 36

37Getting to Know the CSS Box Model

for boxes. If padding and border are applied to an element, their measure-
ments are subtracted from the overall width. This is shown in Figure 5.3.

CORRECT BOX MODEL - TOTAL WIDTH = 280

BORDER

PADDING

CONTENT

INTERNET EXPLORER BOX MODEL
TOTAL WIDTH = 200

CONTENT = 120

CONTENT = 20020 20 20 20

20 20 20 20

BORDER

PADDING

CONTENT

FIGURE 5.3 CSS box model showing Internet Explorer width
problem.

Margins
Margins can be applied to the outside of any block level or inline element.
They create space between the edge of an element and the edge of any
adjacent elements.

06_0672327457_CH05.qxd 10/17/05 2:29 PM Page 37

38 Lesson 5

Margins can be applied to individual sides of a box as shown in Listing 5.1.

LISTING 5.1 CSS Code Containing Various margin Properties
p { margin-top: 0; }
p { margin-right: 2em; }
h2 { margin-bottom: 3em; }
h3 { margin-left: 1em; }

Margins also can be applied using a single shorthand property. If one
margin value is specified, it applies to all sides of an element as shown in
Listing 5.2.

LISTING 5.2 CSS Code Containing the margin Shorthand
Property with One Value Specified
p { margin: 1em; }

If two values are specified, the top and bottom margins are set to the first
value and the right and left margins are set to the second as shown in
Listing 5.3.

LISTING 5.3 CSS Code Containing the Shorthand margin
Property with Two Values Specified
p { margin: 1em 0; }

If three values are specified, the top is set to the first value, the left and
right are set to the second, and the bottom is set to the third as shown in
Listing 5.4.

LISTING 5.4 CSS Code Containing the Shorthand margin
Property with Three Values Specified
p { margin: 1em 0 2em; }

If four values are specified, they apply to the top, right, bottom, and left
as shown in Listing 5.5.

LISTING 5.5 CSS Code Containing the Shorthand margin
Property with Four Values Specified
p { margin: 1em 2em 2em 1em; }

06_0672327457_CH05.qxd 10/17/05 2:29 PM Page 38

39Getting to Know the CSS Box Model

Background Color and Background
Image
The background-color property sets the background color of an element.

The background-image property applies a background image to an ele-
ment, which will appear on top of any background-color. Background
images are covered in more detail in Lesson 6, “Adding Background
Images.”

Padding
Padding can be applied to the outside edges of the content area of any
block level or inline element. Padding creates the space between the edge
of the element and its content.

Like margins, padding can be applied to individual sides of a box as
shown in Listing 5.6.

LISTING 5.6 CSS Code Containing Various padding
Properties
p { padding: 1em; }
h1 { padding-top: 0; }
h2 { padding-right: 2em; }
h2 { padding-bottom: 3em; }
h3 { padding-left: 1em; }

Padding also can be applied using a single shorthand property. If one
padding value is specified, it applies to all sides of an element as shown
in Listing 5.7.

LISTING 5.7 CSS Code Containing the Shorthand padding
Property with One Value Specified
p { padding: 1em; }

If two values are specified, the top and bottom margins are set to the first
value and the right and left margins are set to the second as shown in
Listing 5.8.

06_0672327457_CH05.qxd 10/17/05 2:29 PM Page 39

40 Lesson 5

LISTING 5.8 CSS Code Containing the Shorthand padding
Property with Two Values Specified
p { padding: 1em 0; }

If three values are specified, the top is set to the first value, the left and
right are set to the second, and the bottom is set to the third as shown in
Listing 5.9.

LISTING 5.9 CSS Code Containing the Shorthand margin
Property with Three Values Specified
p { padding: 1em 0 2em; }

If four values are specified, they apply to the top, right, bottom, and left
as shown in Listing 5.10.

LISTING 5.10 CSS Code Containing the Shorthand padding
Property with Four Values Specified
p { padding: 1em 2em 2em 1em; }

Border
The border properties specify the width, color, and style of the border of
an element. Shorthand border properties include border-top, border-
bottom, border-right, border-left, and border as shown in Listing 5.11.

LISTING 5.11 CSS Code Containing Various Shorthand
border Properties
p { border-top: 1px solid red; }
p { border-right 1px solid red; }
p { border-bottom: 1px solid red; }
p { border-left: 1px solid red; }
p { border: 1px solid red; }

Content Area
The content area of a box can be given width, height, and color. Width
and height can be specified in points (equal to 1/72 of an inch), picas

06_0672327457_CH05.qxd 10/17/05 2:29 PM Page 40

41Getting to Know the CSS Box Model

(equal to 12 points), pixels, ems, exes, millimeters, centimeters, inches, or
percents as shown in Listing 5.12.

LISTING 5.12 CSS Code Containing Various width and
height Values
p { width: 100pt; }
p { height: 20pc; }
p { width: 300px; }
p { height: 40em; }
p { width: 50ex; }
p { height: 600mm; }
p { width: 70cm; }
p { height: 8in; }
p { width: 50%; }

The color property can be used to style the text color. Color can be speci-
fied in a number of ways, including keywords, hexadecimal RGB, and
functional notation RGB.

Keywords for color include aqua, black, blue, fuchsia, gray, green, lime,
maroon, navy, olive, purple, red, silver, teal, white, and yellow. Although
other keywords might work in some browsers, they are not part of the
specification and should not be used.

Hexadecimal colors can be specified using only three or six hexadecimal
characters as shown in Listing 5.13. When a color has three pairs of hexa-
decimal digits (such as #ff0000), it can be shortened by removing one
digit from each pair (#f00). RGB colors can be specified using three
comma-separated integer or percentage values. For example, the color red
can be specified using either rgb(255, 0, 0) or rgb(100%, 0%, 0%) as
shown in Listing 5.13.

LISTING 5.13 CSS Code Containing Various color Values
p { color: red }
p { color: #f00 }
p { color: #ff0000 }
p { color: rgb(255,0,0) }
p { color: rgb(100%, 0%, 0%) }

06_0672327457_CH05.qxd 10/17/05 2:29 PM Page 41

42 Lesson 5

Summary
In this lesson, you learned about the CSS box model including margin,
background color, background image, padding, and border. You also
learned the difference between inline and block level elements and how
some versions of Internet Explorer misinterpret the box model. In the next
lesson, you will learn how to apply a background image to the <body>
element. You also will learn how to apply the background-repeat and
background-position properties.

06_0672327457_CH05.qxd 10/17/05 2:29 PM Page 42

LESSON 6
Adding
Background
Images

In this lesson, you will learn how to apply a background image to the
<body> element. You will also learn how to apply the background-repeat
and background-position properties. The aim is to create a gradient
image that repeats down the right edge of the page.

Setting Up the HTML Code
The HTML code for this lesson will be comprised of three paragraphs of
text as shown in Listing 6.1.

LISTING 6.1 HTML Code Containing the Markup for
Lesson 6
<p>

Lorem I
psum dolor sit amet...
</p>
<p>

Ut wisi enim ad minim veniam...
</p>
<p>

Duis autem vel eum iriure dolor...
</p>

07_0672327457_CH06.qxd 10/17/05 2:29 PM Page 43

44 Lesson 6

Creating Selectors to Style the
Header
To style the <body> element and its content, you will only need a single
type selector as shown in Listing 6.2.

LISTING 6.2 CSS Code Showing the Selector to Style
the Body
body {...}

Adding background-image
The background-image property is used to add a background image to the
<body> element.

Values for the background-image property are either a url (to specify the
image) or none (when no image is used).

For this lesson, you will use url(chapter6.jpg). The image path can be
written with or without quotation marks. The background-image code is
shown in Listing 6.3. The results can be seen in Figure 6.1.

LISTING 6.3 CSS Code Styling the <body> Element with a
Background Image
body
{

background-image: url(chapter6.jpg);
}

Background Images and Internet Explorer 5 for
Macintosh Internet Explorer 5 for Macintosh will not
render background-images if quotations are used
around image paths. Because quotation marks are not
needed, it is simpler and safer to leave them out.

07_0672327457_CH06.qxd 10/17/05 2:29 PM Page 44

45Adding Background Images

FIGURE 6.1 Screenshot of styled <body>.

Setting background-repeat
The background image in this lesson is now repeating across the screen.
This can be controlled using background-repeat.

Values for the background-repeat property (see Figure 6.2) include
repeat (where the image is repeated both horizontally and vertically),
repeat-x (where the image is repeated horizontally only), repeat-y
(where the image is repeated vertically only), and no-repeat (where the
image is not repeated).

In this lesson, you will use repeat-y, as shown in Listing 6.4, to force
the image to repeat vertically down the page.

LISTING 6.4 CSS Code Setting background-repeat
body
{

background-image: url(chapter6.jpg);
background-repeat: repeat-y;

}

07_0672327457_CH06.qxd 10/17/05 2:29 PM Page 45

46 Lesson 6

FIGURE 6.2 Screenshot of <body> styled with background-repeat.

Adding background-position
Now that the background image is repeating correctly, it must be posi-
tioned down the right edge of the <body> element. This is achieved using
background-position.

Values for the background-position property include percentage (such
as 0 100%), length (such as 2px 20px), and keywords (such as left top).
In each case, the horizontal position is specified first, and then the vertical
position. The values 0% 0% will position the upper-left corner of the image
in the upper-left corner of the box’s padding edge. Values of 0 100% will
position the bottom-left corner of the image in the bottom-left corner of
the box’s padding edge. Values of 2px 20px will position the top-left
corner of the image 2px in from the left edge of the box and 20px down
from the top of the box.

If only one percentage or length value is given, it sets the horizontal posi-
tion only and the vertical position will be 50%. If two values are given, the
horizontal position comes first. Combinations of length and percentage
values are allowed (such as 50% 2cm). Negative positions are also allowed
(such as –20px 10px).

07_0672327457_CH06.qxd 10/17/05 2:29 PM Page 46

47Adding Background Images

For this lesson, you will use percentage values of 100% 0, which will
place the image in the right and top of the element. The code is shown in
Listing 6.5.

The image will now repeat down the right edge of the <body> element
(see Figure 6.3).

Background Position Issues Some browsers do not
recognize the background-position keyword value
right. However, all modern browsers support the per-
centage value of 100%, so this value can be used instead.

LISTING 6.5 CSS Code Styling the <body> Element with
background-position
body
{

background-image: url(chapter6.jpg);
background-repeat: repeat-y;
background-position: 100% 0;

}

FIGURE 6.3 Screenshot of <body> element styled with
background-position.

07_0672327457_CH06.qxd 10/17/05 2:29 PM Page 47

48 Lesson 6

Using the background Shortcut
As discussed in Lesson 2, “Using CSS Rules,” shorthand properties allow
the values of several properties to be specified within a single property.
The background property can be used to combine background-color,
background-image, background-repeat, background-attachment, and
background-position.

When sorting shorthand properties, browsers will first set all the individ-
ual properties to their initial values, and then override these with values
specified by the author.

A default background rule would be set to background: transparent
none repeat scroll 0 0;. If the declarations used in this lesson are
combined into the shorthand rule, they will override the default values for
background-image, background-repeat, and background-position. The
result will be background: transparent url(chapter6.jpg) repeat-y

scroll 100% 0;.

However, the rule can be shortened to include only the values that are
needed, so the final declaration will be background: url(chapter6.jpg)
repeat-y 100% 0; (see Listing 6.6).

LISTING 6.6 CSS Code Styling the <body> Element with a
Shorthand background Property
body
{

background: url(chapter6.jpg) repeat-y 100% 0;
}

Adding padding
The final step will be to add padding to the <body> element to push the
text away from the background-image. This can be achieved using the
shorthand padding declaration padding: 1em 80px 1em 1em; as shown
in Listing 6.7. This will place 1em of padding on the top, bottom, and left
of the <body> and 80px on the right edge. The results can be seen in
Figure 6.4.

07_0672327457_CH06.qxd 10/17/05 2:29 PM Page 48

49Adding Background Images

LISTING 6.7 CSS Code Adding padding to the <body>
Element
body
{

background: url(chapter6.jpg) repeat-y 100% 0;
margin: 0;
padding: 1em 80px 1em 1em;

}

FIGURE 6.4 Screenshot of <body> element with padding applied.

Summary
In this lesson, you learned how to apply a background image to the
<body> element. You also learned how to apply the background-repeat,
background-position, and shorthand background properties. In the next
lesson, you will learn how to style text using the font, size, color, and
alignment properties.

07_0672327457_CH06.qxd 10/17/05 2:29 PM Page 49

LESSON 7
Formatting
Text

In this lesson, you will learn how to style text using font, size,
alignment, and color properties instead of the element.

Setting Up the HTML Code
The HTML code for this lesson contains three paragraphs of text as
shown in Listing 7.1. The contents of these paragraphs are wrapped inside
 elements. The first paragraph has been set to a larger font size. It
also has been colored and styled in bold and italic. The results are shown
in Figure 7.1.

LISTING 7.1 HTML Code Containing Markup for Lesson 7
<p align=”center”>

<font size=”4” color=”#990000” face=”times, times new
roman”>
<i>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit...</i>

</p>
<p>

Ut wisi enim ad minim

veniam, quis nostrud exerci...
</p>
<p>

Duis autem vel eum iriure dolor in hendrerit vulputate...

</p>
<p>

<p> nostrud
exerci...

</p>

08_0672327457_CH07.qxd 10/17/05 2:29 PM Page 50

FIGURE 7.1 Screenshot of -styled paragraphs.

Removing Font Elements
Instead of using elements throughout a document, you should use
CSS to style the content. This reduces the overall file size and makes
future maintenance easier. All font-styling information can be stored in
one external file, rather than scattered throughout every document in a
website.

The elements will be removed from the HTML markup as shown
in Listing 7.2. The first paragraph will be styled with an introduction
class because it will need additional styling (see Figure 7.2).

08_0672327457_CH07.qxd 10/17/05 2:29 PM Page 51

52 Lesson 7

LISTING 7.2 HTML Code Containing the Markup Without
 Elements
<p class=”introduction”>

Lorem ipsum dolor sit amet, consectetuer adipiscing
elit...

</p>
<p>

Ut wisi enim ad minim veniam, quis nostrud exerci...
</p>
<p>

Duis autem vel eum iriure dolor in hendrerit vulputate...
</p>

Ut wisi enim ad minim veniam, quis nostrud exerci...
</p>

FIGURE 7.2 Screenshot of paragraphs with elements
removed.

Creating the Selectors
To style the paragraphs, two selectors will be used as shown in Listing 7.3.

LISTING 7.3 CSS Code Showing the Selectors to Style
the Paragraphs
p {...}
p.introduction {...}

08_0672327457_CH07.qxd 10/17/05 2:29 PM Page 52

53Formatting Text

Styling the <p> Element
The font family is set using the font-family property. A range or fonts
should always be included, separated by commas. A generic font family
must be included at the end of the list. If a user does not have the initial
font family, his or her browser will look for the second font family. If
no font family matches are found, the browser will fall back to the generic
font family.

Generic Font Families Generic font families are a
fallback mechanism to provide some basic font styling
if none of the specified font families are available.
The five generic font families are serif, sans-serif, cur-
sive, fantasy, and monospace.

The font-size property will be set to 80%, which will make it 80% of the
user’s default browser style. Using percentages will allow the user to con-
trol the overall size of fonts (see Figure 7.3).

Ems and Percents In theory, there is no difference
between using ems or percents for font sizing.
However, Internet Explorer 5 for Windows will mis-
read em measurements below 100% and change the
unit from ems to pixels. For example, a value of .8em
will be displayed at 8px.

To avoid this problem, font-size should be set using
percentage units for any value below 100%.

Finally, a line-height of 140% will be included to provide space between
each line and make the text more readable. The default line-height for
most browsers is 120%. Setting a value of 140% will add 20% additional
space between each line. The rule set is shown in Listing 7.4.

08_0672327457_CH07.qxd 10/17/05 2:29 PM Page 53

54 Lesson 7

Listing 7.4 CSS Code Containing Styles for the <p>
Element
p
{

font-family: arial, helvetica, sans-serif;
font-size: 80%;
line-height: 140%;

}

FIGURE 7.3 Screenshot of styled paragraphs.

Styling the First Paragraph
The first paragraph in this example will use different fonts than the other
paragraphs. In this case, it will be styled with times, “times new
roman”, serif. Fonts such as Times New Roman, which have spaces in
their names, should always be wrapped in quotation marks.

The next step is to style the text italic and bold. This is achieved using
font-style: italic; and font-weight: bold;.

To align the text in the center of the screen, use text-align: center.

The font size can be increased using font-size: 110%; and the font color
can be set using color: #900; as shown in Listing 7.5 (see Figure 7.4).

08_0672327457_CH07.qxd 10/17/05 2:29 PM Page 54

55Formatting Text

LISTING 7.5 CSS Code Containing Styles for the First
Paragraph
p
{

font-family: arial, helvetica, sans-serif;
font-size: 80%;
line-height: 1.4;

}

p.introduction
{

font-family: times, “times new roman”, serif;
font-style: italic;
font-weight: bold;
text-align: center;
font-size: 110%;
color: #900;

}

FIGURE 7.4 Screenshot of styled first paragraph.

Converting to Shorthand
As discussed in Lesson 2, “Using CSS Rules,” shorthand properties are
easier to write and maintain than longhand properties. They also make
CSS files more concise.

08_0672327457_CH07.qxd 10/17/05 2:29 PM Page 55

56 Lesson 7

The <p> element can be styled so that font-size, line-height, and
font-family are declared as a single font property.

The introduction class can be styled so that font-style, font-weight,
font-size, line-height, and font-family are declared as a single font
property as shown in Listing 7.6.

LISTING 7.6 CSS Code Containing the Shorthand Styles
p
{

font: 80%/1.4 arial, helvetica, sans-serif;
}

p.introduction
{

font: bold italic 110%/1.4 times, “times new roman”,
serif;

text-align: center;
color: #900;

}

Summary
In this lesson, you learned how to style text using font-family, font-
size, line-height, font-style, font-weight, text-align, and color.
You also learned how to use the shorthand font property. In the next les-
son, you will learn how to style a heading using border, background-
images, and text-transform properties.

08_0672327457_CH07.qxd 10/17/05 2:29 PM Page 56

LESSON 8
Styling a
Flexible
Heading

In this lesson, you will learn how to create a border above and below a
heading, add a continuous gradient background image, and style the text
with text-transform and letter spacing.

Styling the Heading
To style this heading, you will need a selector that targets the <h1> ele-
ment. To make sure you don’t target every <h1> on the page, you should
also include a unique identifier, such as header, within the selector (see
Listing 8.1).

LISTING 8.1 CSS Code Showing the Selector to Style
the Heading
h1#header {...}

The HTML code used for this heading is shown in Listing 8.2.

LISTING 8.2 HTML Code Containing the Markup for a
Heading
<h1 id=”header”>

Page Heading
</h1>

09_0672327457_CH08.qxd 10/17/05 2:30 PM Page 57

58 Lesson 8

Adding Color, Font Size, and Weight
To add a color to the heading, use the color property. The color can be
changed to suit your needs.

For this heading, you will set the font-size to 120% and the font-weight
to normal, as shown in Listing 8.3.

LISTING 8.3 CSS Code Setting font-size and font-weight
h1#header
{

color: #036;

font-size: 120%;
font-weight: normal;

}

Heading Levels and Document Structure Web docu-
ments should use semantically correct markup to add
meaning to the content. For example, headings
should be placed inside heading elements, paragraphs
of text should be placed inside paragraph elements,
and lists should be placed inside list elements.

When the semantically correct HTML markup is in
place, CSS can be used to visually style the content.

Heading levels are an important part of this markup.
Ideally, web pages should start with a single <h1>
element for the most significant information on the
page, such as the page title or the site name.

Headings should never be faked using or
 elements because they do not provide mean-
ing for devices such as screen readers or text-based
browsers.

09_0672327457_CH08.qxd 10/17/05 2:30 PM Page 58

59Styling a Flexible Heading

Overriding Standard Heading Settings Any HTML
document may have three or more style sheets associ-
ated with it, including a browser style sheet, a user
style sheet, and one or more author style sheets.

Browsers apply default style sheets to all web docu-
ments. Although these browser style sheets vary from
browser to browser, they have common characteristics,
such as black text and blue links.

Most modern browsers allow users to set their own
style sheets within their browser. These user style
sheets will override any browser default style sheets—
for that user only.

As soon as you apply a basic style sheet or an inline
style to a page, you have added an author style sheet.
Author style sheets will generally override both
browser and user style sheets.

Most browser style sheets will display an <h1> element
in bold text at 200% of the default font size. If you
style the <h1> element to 120%, this measurement will
be used instead of 200% because your style sheet will
override the browser style sheet.

Using Shorthand Hexadecimal Colors Hexadecimal
colors can be specified using the # symbol immediately
followed by three or six hexadecimal characters.

Three-digit hexadecimal values are converted to six-
digit form by replicating digits. So, #f00 is the same as
#ff0000 and #f2a is the same as #ff22aa.

09_0672327457_CH08.qxd 10/17/05 2:30 PM Page 59

60 Lesson 8

Setting Text Options
The next step is to center the heading, make it uppercase, and add some
letter spacing. This can be achieved using the text-transform, text-
align, and letter-spacing properties as shown in Listing 8.4 and illus-
trated in Figure 8.1. These options can be changed to suit your needs.

LISTING 8.4 CSS Code Transforming Text
h1#header
{

color: #036;
font-size: 120%;
font-weight: normal;
text-transform: uppercase;
text-align: center;
letter-spacing: .5em;

}

FIGURE 8.1 Screenshot of uppercase, centered heading.

Applying Padding and Borders
Later in this lesson, you will be adding borders to the top and bottom of
the heading. To avoid placing the text hard against the borders, you will
need to add some top and bottom padding. You can use the shorthand
padding property, setting top and bottom padding to .4em, and left and
right padding to 0.

To apply borders to the top and bottom of the heading, use the
border-top and border-bottom properties as shown in Listing 8.5.

09_0672327457_CH08.qxd 10/17/05 2:30 PM Page 60

61Styling a Flexible Heading

The results can be seen in Figure 8.2. The borders can be removed or
changed to suit your needs.

LISTING 8.5 CSS Code Adding Borders
h1#header
{

color: #036;
font-size: 120%;
font-weight: normal;
text-transform: uppercase;
text-align: center;
letter-spacing: .5em;
padding: .4em 0;
border-top: 1px solid #069;
border-bottom: 1px solid #069;

}

CSS Borders CSS Border properties define the bor-
ders around an element.

border-color sets the color of the border (for
example, red, transparent, none, #036, #003366).

border-width sets the thickness of the border (for
example, thin, medium, thick, 1px, .5em, 1ex).

border-style sets the appearance of the border
(for example, none, hidden, dotted, dashed,
solid, double, groove, ridge, inset, outset).

Border properties and values can be specified in many
ways. The simplest option is to use the shorthand
border property like this:

border: (width) (style) (color);

Some border styles, such as dotted, are not supported
by Internet Explorer 5 or 5.5.

FIGURE 8.2 Screenshot of bordered heading.

09_0672327457_CH08.qxd 10/17/05 2:30 PM Page 61

62 Lesson 8

Adding a Background Image
To add a background image to the heading, use the background property.
You can then specify the url and the repeat value as shown in Listing
8.6. In this case, the image is set to repeat-x, so it will repeat across the
x axis only.

The results can be seen in Figure 8.3. The background image can be
removed or changed to suit your needs.

LISTING 8.6 CSS Code Adding a Background Image
h1#header
{

color: #036;
font-size: 120%;
font-weight: normal;
text-transform: uppercase;
text-align: center;
letter-spacing: .5em;
padding: .4em 0;
border-top: 1px solid #069;
border-bottom: 1px solid #069;
background: url(chapter8.jpg) repeat-x;

}

FIGURE 8.3 Screenshot of finished heading.

Summary
In this lesson, you have learned how to style a flexible heading using
font-size, font-weight, borders, padding, and background images.
In the next lesson, you will learn how to style a round-cornered heading.

09_0672327457_CH08.qxd 10/17/05 2:30 PM Page 62

LESSON 9
Styling a
Round-
Cornered
Heading

In this lesson, you will learn how to wrap a round-cornered box around a
heading. The box is made from two background images that adjust to suit
any size heading.

Styling the Heading
To style this heading, you will need a selector that targets the <h2> ele-
ment. To make sure you don’t target every <h2> on the page, you should
also include a class within the selector. A class is used in this case instead
of an ID because you might want to include more than one of these fixed-
width headings on a single page (see Listing 9.1).

LISTING 9.1 CSS Code Showing the Selectors to Style
the Heading
h2.decorative {...}
h2.decorative em {...}

The HTML code used for this heading is shown in Listing 9.2. Notice that
the heading is wrapped inside an (emphasis) element. This additional
element will be important later in the lesson.

10_0672327457_CH09.qxd 10/17/05 2:30 PM Page 63

64 Lesson 9

LISTING 9.2 HTML Code Containing the Markup for a
Heading
<h2 class=”decorative”>

Section Heading
</h2>

Creating the Scaleable Background Image The head-
ing in this lesson will eventually be wrapped inside a
round-cornered box.

This box must be able to grow downward if the head-
ing text is long, or if the user has chosen to use larger
font sizes within her browser.

For this reason, the round-cornered box is made up of
two background images. The first image is the top
section of the box, and the second image is the bot-
tom section of the box.

The first image must be very long, in order to grow
downward as needed.

If the first background image is applied to the <h2>
element, the second background image must be
applied to another element.

One simple option is to wrap the heading text in an
 element and apply the second image to this. As
long as the second image is positioned at the bottom
of the element, the content can grow as needed.

Styling the <h2> Element
To add a color to the <h2> element, use the color property. The color can
be changed to suit your needs.

The font weight, size, and family are set using the font property, and the
heading is centered using the text-align property as shown in Listing 9.3
and illustrated in Figure 9.1.

10_0672327457_CH09.qxd 10/17/05 2:30 PM Page 64

65Styling a Round-Cornered Heading

LISTING 9.3 CSS Code Setting Text Alignment
h1#header
{

color: #036;
font: bold 100% arial, helvetica, sans-serif;
text-align: center;

}

FIGURE 9.1 Screenshot of styled heading.

Adding a Background Image
To add a background image to the <h2> element, use the background
property. The image should be set to no-repeat so it doesn’t reappear in
the middle of a long heading. The image is shown in Figure 9.2.

FIGURE 9.2 Screenshot of the first image—which is applied to the
<h2> element.

You will also need to set a width for this element because the background
image is 220 pixels wide. If the width is left undefined, the heading will
poke out the side of the round-cornered box.

You should also apply 5 pixels of padding on the top of the element as
shown in Listing 9.4 and illustrated in Figure 9.3. This top padding will
move the text down slightly so it doesn’t sit hard against the background
image.

10_0672327457_CH09.qxd 10/17/05 2:30 PM Page 65

66 Lesson 9

LISTING 9.4 CSS Code Setting Background Image, Width,
and Padding
h1#header
{

color: #036;
font: bold 100% arial, helvetica, sans-serif;
text-align: center;
background: url(chapter9.gif) no-repeat;
width: 220px;
padding: 5px 0 0 0;

}

FIGURE 9.3 Screenshot of heading with background image.

Styling the Element
The element will be used to house the second background image—
the bottom of the round-cornered box. This means it must be given the
same width as the <h2> element in order for the two images to line up
properly.

However, because the is an inline element, it will ignore any width
that is specified. The solution is to set it to display: block; before
applying a width.

Next, padding-bottom is used to move the text up slightly so it doesn’t sit
hard against the background image.

You can also override the element’s default italic style using
font-style: normal;.

Finally, you need to apply the background image using the background
property. The image should be set to no-repeat so it does not reappear
under the heading. The background position should be set to 0 100% so
the lower-left corner of the image will align with the lower-left corner of
the element’s edge.

The image is shown in Figure 9.4 and the CSS code is shown in Listing
9.5. The completed heading is shown in Figure 9.5.

10_0672327457_CH09.qxd 10/17/05 2:30 PM Page 66

67Styling a Round-Cornered Heading

FIGURE 9.4 Screenshot of the second image—which is applied to
the element.

LISTING 9.5 CSS Code Styling the Element
h1#header
{

color: #036;
font: bold 100% arial, helvetica, sans-serif;
text-align: center;
background: url(chapter9.gif) no-repeat;
width: 220px;
padding: 5px 0 0 0;

}

h2.decorative em
{

display: block;
width: 220px;
padding: 0 0 5px 0;
font-style: normal;
background: url(chapter9a.gif) no-repeat 0 100%;

}

FIGURE 9.5 Screenshot of the final heading.

Summary
In this lesson, you have learned how to apply color, font, and text align-
ment to a heading. You have also learned how to set background images
for two elements in order to achieve a round-corner box. In the next
lesson you will learn about styling links.

10_0672327457_CH09.qxd 10/17/05 2:30 PM Page 67

LESSON 10
Styling Links

In this lesson, you will learn how to style links. You also will learn how to
add background images to links, turn off link underlines, use borders for
underlines, and increase the active link area.

Links and Pseudo-Classes
You have already learned how to style <a> or link elements in Lesson 3,
“Selectors in Action.” Now you will learn how to style the five different
link states.

Links can be in the following states:

• Normal—The standard unvisited link state

• Visited—The link points to a URI that has already been visited

• Hover—The cursor is over the active area of the link

• Active—The moment the link is selected or clicked

• Focus—The link is in focus and ready to accept input, such as a
click or mouse down

Some link states cannot occur at the same time. For example, a link can
either be visited or unvisited—it cannot be both. However, visited and
unvisited links can also be in the hover, active, and focus states.

Each of these states can be styled individually using link pseudo-classes
(classes that do not exist in the document structure). The five link pseudo-
classes are

• a:link—Styles unvisited link elements

• a:visited—Styles visited link elements

11_0672327457_CH10.qxd 10/17/05 2:30 PM Page 68

• a:focus—Styles the state during focus

• a:hover—Styles the state when the cursor moves over a link

• a:active—Styles the state when a link is activated

The five pseudo-classes are shown in Listing 10.1.

LISTING 10.1 CSS Code Containing the Five Link
Pseudo-Classes
a:link {...}
a:visited {...}
a:focus {...}
a:hover {...}
a:active {...}

Focus and Active States The a:focus pseudo-class
highlights the tab position for people who use a
keyboard to navigate.

Unfortunately, Internet Explorer for Windows does
not support the a:focus pseudo-class. Instead, it uses
the a:active pseudo-class for tab highlighting.

As an additional problem, Internet Explorer for
Windows incorrectly applies the a:active pseudo-class.
The a:active state remains visible until another action
takes place.

Setting Pseudo-Class Order
The five pseudo-classes have the same weight, so the order in which they
are placed within a CSS file is important. Pseudo-class declarations that
appear later in a CSS file will override those that appear earlier. The cor-
rect order is shown in Listing 10.2.

11_0672327457_CH10.qxd 10/17/05 2:30 PM Page 69

70 Lesson 10

LISTING 10.2 CSS Code Containing Correct Order of <a>
Pseudo-Classes
a {...}
a:link {...}
a:visited {...}
a:focus {...}
a:hover {...}
a:active {...}

Using Classes with Pseudo-Classes
Class selectors can be combined with pseudo-classes to create links for
different purposes. For example, you might want to style links depending
on whether they are internal or external.

A class could be added to all external links, and then these links could be
styled using a combined class and pseudo-class selector as shown in
Listing 10.3. The results can be seen in Figure 10.1.

LISTING 10.3 CSS Code Demonstrating Combined Class and
Pseudo-Class Selectors
a:link
{

color: blue;
}

a:visited
{

color: purple;
}

a.external:link
{

color: red;
font-weight: bold;

}

a.external:visited
{

color: black;
font-weight: bold;

}

11_0672327457_CH10.qxd 10/17/05 2:30 PM Page 70

71Styling Links

FIGURE 10.1 Screenshot showing difference between a:link and
a.external:link.

Styling Links with Background
Images
Following on from the preceding example, it is possible to display a small
icon beside every external link.

The first step is to create basic rules for the required link states. In this
case, you can use a:link, a:visited, and a:hover.

Three new states are then added, specifically for links styled with an
“external” class. These are a.external:link, a.external:visited, and
a.external:hover.

In each case, a background image is added to the link. The image is set to
no-repeat so that it doesn’t tile across the background of the entire link.
The position is set to 100%, which will place the right edge of the image
against the right edge of the link.

A single background image is used for all three states. The vertical
background-position needs to change for each state. This means that a
single image is loaded and cached, so there is no lag when the rollover
image is required.

The a:link state has been set to 0. The a:visited state has been set to
–100px. The a:hover state has been set to –200px. The background image
is shown in Figure 10.2.

Finally, padding has been used to push the link content away from the
background image as shown in Listing 10.4 (see Figure 10.3).

11_0672327457_CH10.qxd 10/17/05 2:30 PM Page 71

72 Lesson 10

FIGURE 10.2 Screenshot of background image used to style the
.external link.

LISTING 10.4 CSS Code Containing the Markup to Style the
.external Link
a:link
{

color: blue;
}

a:visited
{

color: purple;
}

a:hover
{

color: red;
}

a.external:link
{

background: url(chapter10.gif) no-repeat 100% 0;
padding-right: 20px;

}

a.external:visited
{

background: url(chapter10.gif) no-repeat 100% -100px;
padding-right: 20px;

}

a.external:hover continues

11_0672327457_CH10.qxd 10/17/05 2:30 PM Page 72

73Styling Links

{
background: url(chapter10.gif) no-repeat 100% -200px;
padding-right: 20px;

}

FIGURE 10.3 Screenshot showing styled .external link with a
background image.

Removing Underlines and Applying
Borders
Some users, particularly those with poor eyesight, might find standard link
underlines hard to read. This is particularly true for links that contain
italic text.

One solution is to turn off text underlines and use borders.

The first step is to set the text-decoration to none. This will turn off link
underlines.

Next, the required states need to be colored. In this case, a:link is set to
blue, a:visited is set to purple, and a:hover is set to red.

Finally, borders are added to each state using border-bottom as shown in
Listing 10.5. padding-bottom can be added to control the distance
between the underline and the content, if required (see Figure 10.4).

LISTING 10.5 CSS Code to Style Links with Borders
a
{

text-decoration: none;
}

a:link
{

continues

11_0672327457_CH10.qxd 10/17/05 2:30 PM Page 73

74 Lesson 10

color: blue;
border-bottom: 1px solid blue;

}

a:visited
{

color: purple;
border-bottom: 1px solid purple;

}

a:hover
{

color: red;
border-bottom: 1px solid red;

}

LISTING 10.5 Continued

FIGURE 10.4 Screenshot showing difference between links with
underlines and links with border-bottom.

Increasing the Active Area of Links
For some users, particularly those with motor-skill difficulties, clicking on
links can be difficult. Using CSS, the active area of links can be increased.

The first step is to add .5em of padding above and below the <a> element
to increase the active area of a link. This is achieved using padding:
.5em 0;.

11_0672327457_CH10.qxd 10/17/05 2:30 PM Page 74

75Styling Links

Next, the <a> element should be set to position: relative, which will
stop the padding from affecting surrounding text, as shown in Listing 10.6
(see Figure 10.5).

To see the increased link area in action, you can apply a background color
to the <a> element. This background color can be removed before it is
applied in a real situation.

A more detailed explanation of this technique is available on David
Benton’s website at http://www.dbenton.com/go/chronicles/2004/08/22/
fitts-law-and-text-links/.

LISTING 10.6 CSS Code Containing Styles to Increase the
Active Area of Links
a
{

padding: .4em 0;
position:relative;
z-index: 1;
background: yellow;

}

FIGURE 10.5 Screenshot showing difference between standard
link area and links with increased active area.

11_0672327457_CH10.qxd 10/17/05 2:30 PM Page 75

76 Lesson 10

Summary
In this lesson, you learned how to style links and pseudo-classes. You
learned how to apply background images and borders to the <a> element.
You also learned how to increase the active area of links to make them
more accessible. In the next lesson, you will learn how to position and
style an image and its caption.

11_0672327457_CH10.qxd 10/17/05 2:30 PM Page 76

LESSON 11
Positioning an
Image and Its
Caption

In this lesson, you will learn how to position and style an image and
its caption.

Wrapping the Image and Caption
The first step is to wrap a container around the image and caption so they
can be floated together. There are many elements that can be used such as
paragraphs, lists, or even definition lists. However, for this lesson, you
will use a <div> as shown in Listing 11.1.

LISTING 11.1 HTML Code Containing the Markup for a
Container, an Image, and Its Caption
<div class=”imagecaption”>

A flower from my garden.

</div>
<p>

Lorem ipsum dolor sit amet...
</p>

To make sure you don’t target every <div> on the page, you should
include a class within the selector as shown in Listing 11.2.

A class is used here instead of an ID because you might want to include
more than one floated image and caption on a page.

12_0672327457_CH11.qxd 10/17/05 2:30 PM Page 77

78 Lesson 11

LISTING 11.2 CSS Code Showing the Selectors for Styling
the Container
div.imagecaption {...}
div.imagecaption img {...}

Floating the Container
To move the container across to the right edge of the browser window, use
float: right.

When the container is floated, it must be given a width. In this case, you
will use width: 182px.

Why the strange width? The image inside of this container is 180px wide.
Later in this lesson, the image will be given a 1px-wide border. The right
border width (1px), left border width (1px), and image width (180px) add
up to 182px.

Next, you might want to create some space around the container so that
text and other elements don’t butt up against it (see Figure 11.1). You can
achieve this by applying margins to the right, bottom, and left of the con-
tainer as shown in Listing 11.3.

LISTING 11.3 CSS Code Floating the Container
div.imagecaption
{

float: right;
width: 182px;
margin: 0 1em 1em 1em;
display: inline;

}

FIGURE 11.1 Screenshot of floated container.

12_0672327457_CH11.qxd 10/17/05 2:30 PM Page 78

79Positioning an Image and Its Caption

Applying Padding, Background
Color, and a Background Image
Now that the container is positioned, you can style its appearance using
padding, background-image, and background color.

The first step is to apply padding to the container to create space around
the image and caption. You can use the shorthand padding rule to specify
values for top, right, bottom, and left. All sides should be given a value of
10px except the bottom, which should be given a value of 70px. This will
provide some space for the background image.

The background image can be applied using background-image:
url(chapter11.gif) as shown in Figure 11.2.

You must set a repeat value to avoid the image repeating across the entire
background area of the container. In this case, you will need the image to
repeat across the x-axis. This is achieved using background-repeat:
repeat-x.

Floats, Margins, and Internet Explorer 5 If you view
samples from this lesson in Internet Explorer 5 and 5.5
for Windows, you will notice that the right margin is
actually much wider than in other browsers. In fact, it
is 2em wide—double the width it is supposed to be.
This is Internet Explorer’s Double Margin Float Bug.

This bug occurs when you apply a right margin to a
right floated element and it sits directly against the
right edge of the parent container.

The opposite is also true. The bug will occur when you
apply a left margin to a left floated element and it sits
against the left edge of the parent container.

Luckily, there is a solution. Simply add display: inline
to the rule set. All other browsers will ignore this dec-
laration, but Internet Explorer 5 and 5.5 for Windows
will then apply the correct margin width.

12_0672327457_CH11.qxd 10/17/05 2:30 PM Page 79

80 Lesson 11

FIGURE 11.2 Screenshot of background image.

The background image needs to be aligned with the bottom of the con-
tainer. One way to achieve this is to set the vertical value to 100%, which
will place the bottom of the image against the bottom of the padding area.
The declaration would be background-position: 0 100%.

The background color can be specified using background-color: #036.

All of these background declarations can be condensed into one shorthand
declaration as shown in Listing 11.4. The results are illustrated in
Figure 11.3.

LISTING 11.4 CSS Code Setting Padding, Background Color,
and Background Image
div.imagecaption
{

float: right;
width: 182px;
margin: 0 1em 1em 1em;
display: inline;
padding: 10px 10px 70px 10px;
background: #036 url(chapter11.gif) repeat-x 0 100%;

}

FIGURE 11.3 Screenshot of container with padding and
background.

12_0672327457_CH11.qxd 10/17/05 2:30 PM Page 80

81Positioning an Image and Its Caption

Styling the Caption
The next step is to apply some basic styles to the caption text, starting
with color.

There are many ways that the color white can be specified, including
white, #fff, #ffffff, rgb(255,255,255), and rgb(100%,100%,100%). In
this case, the three-digit hexadecimal option will be used—color: #fff.

Text can be aligned to the left, right, center, or justify. This caption will be
centered using text-align: center as shown in Listing 11.5. The results
can be seen in Figure 11.4.

LISTING 11.5 CSS Code Styling the Caption
div.imagecaption
{

float: right;
width: 182px;

Background Position Keywords When you position a
background image, you can use measurements (for
example, 1em, 20%, and 5px) or you can use keywords
(left, right, center, top, and bottom).

Unfortunately, some versions of Internet Explorer and
Opera for Windows ignore keywords.

Luckily, these can be replaced with percentage values
that have exactly the same effect.

If you want to position a background image at the
right of a container, you can use a horizontal value of
100%. This will align the right edge of the image with
the right edge of the container.

If you want to position a background image at the
bottom of a container, you can use a vertical value of
100%. This will align the bottom edge of the image
with the bottom edge of the container.

continues

12_0672327457_CH11.qxd 10/17/05 2:30 PM Page 81

82 Lesson 11

margin: 0 1em 1em 1em;
display: inline;
padding: 10px 10px 70px 10px;
background: #036 url(chapter11.gif) repeat-x 0 100%;
color: #fff;
text-align: center;

}

LISTING 11.5 Continued

FIGURE 11.4 Screenshot of styled caption.

Styling the Image
Finally, the image can be styled with a border.

There are many ways to specify a border around an image. The simplest
method is the shorthand border property shown in Listing 11.6 and illus-
trated in Figure 11.5.

LISTING 11.6 CSS Code Styling the Image
div.imagecaption
{

float: right;
width: 182px;
margin: 0 1em 1em 1em;
display: inline;
padding: 10px 10px 70px 10px;
background: #036 url(chapter11.gif) repeat-x 0 100%;
color: #fff;
text-align: center;

}

continues

12_0672327457_CH11.qxd 10/17/05 2:30 PM Page 82

83Positioning an Image and Its Caption

div.imagecaption img
{

border: 1px solid #fff;
}

FIGURE 11.5 Screenshot of the final result.

Creating a Side-By-Side Variation
Using the same selectors and HTML code, it is possible to change the lay-
out to display the image and caption side by side.

First, the width of the container will need to be increased to accommodate
the new caption and image locations. The declaration can be changed to
width: 302px. This width can be changed to suit your needs.

Next, padding can be set to 10px for all sides because you do not need any
space for a background image.

The background-image, background-repeat, and background-position
properties can also be removed, leaving a simple declaration—
background: #036.

The image must be floated to the right so that the caption can sit beside it.
Width does not need to be defined in this case because the image has its
own intrinsic width.

Finally, the image will need to be given some margin so that the caption
doesn’t butt up against it. You can use margin-right: 1em as shown in
Listing 11.7 and illustrated in Figure 11.6.

12_0672327457_CH11.qxd 10/17/05 2:30 PM Page 83

84 Lesson 11

LISTING 11.7 CSS Code for the Side-By-Side Variation
div.imagecaption
{

float: right;
width: 302px;
margin: 0 1em 1em 1em;
display: inline;
padding: 10px;
background: #036;
color: #fff;

}

div.imagecaption img
{

float: right;
margin-left: 1em;
border: 1px solid #fff;

}

FIGURE 11.6 Screenshot of the side-by-side variation.

Creating a Photo Frame Variation
Another variation is to create a simple photo frame using the container
and some borders.

The first step is to change the padding to 15px for top, right, and left
edges, and 20px for the bottom. Like the original example, this additional
space will be used for the background image.

12_0672327457_CH11.qxd 10/17/05 2:30 PM Page 84

85Positioning an Image and Its Caption

The borders will be used to create a three-dimensional illusion. The top
and left edges will have light-colored thin borders, whereas the right and
bottom edges will have darker and thicker borders. This can be achieved
using three border declarations as shown in Listing 11.8.

LISTING 11.8 CSS Code for the Photo Frame Variation
div.imagecaption
{

float: right;
width: 182px;
margin: 0 1em 1em 1em;
padding: 15px 15px 20px 15px;
display: inline;
text-align: center;
border-color: #CCC #999 #999 #CCC;
border-width: 1px 2px 2px 1px;
border-style: solid;
background: url(chapter11c.gif) repeat-x 0 100%;

}

div.imagecaption img
{

border-color: #000 #ccc #ccc #000;
border-width: 1px 1px 1px 1px;
border-style: solid;

}
}

A new background image can be used with the same settings as the origi-
nal version.

Finally, borders need to be added to the image. These borders will be set
in the opposite colors to the container, with darker borders on the top and
left edges of the image, and lighter borders on the right and bottom edges.

The final results can be seen in Figure 11.7.

12_0672327457_CH11.qxd 10/17/05 2:30 PM Page 85

86 Lesson 11

FIGURE 11.7 Screenshot of the photo frame variation.

Summary
In this lesson, you have learned how to wrap a container around an image
and its caption. You then learned how to float the container and style it
with width, margin, padding, background image, color, and text-align. You
also learned how to apply borders to the image. In the next lesson, you
will learn how to create a photo gallery.

12_0672327457_CH11.qxd 10/17/05 2:30 PM Page 86

LESSON 12
Creating a
Photo Gallery

In this lesson, you will learn how to create a photo gallery using a series
of floated <div> elements. You will also learn how to use two backgrounds
images to create a flexible container.

Creating a Thumbnail Gallery
First of all, you will need a series of thumbnail images and captions. Each
thumbnail image and caption will be placed inside a <div> element. The
caption will then be placed inside a <p> element as shown in Listing 12.1.

To make sure you don’t target every <div> on the page, you should apply
the same classname to each one.

LISTING 12.1 HTML Code Containing the Markup for a
Thumbnail Gallery
<div class=”thumbnail”>

<p>A flower from my garden</p>

</div>
<div class=”thumbnail”>

<p>White and pinkflower in Spring</p>

</div>
<div class=”thumbnail”>

<p>Flower in morning light</p>

</div>
<div class=”thumbnail”>

<p>A close-up of flower petals</p>

</div>

continues

13_0672327457_CH12.qxd 10/17/05 2:30 PM Page 87

88 Lesson 12

<div class=”thumbnail”>

<p>A timeless flower </p>

</div>

You will be using three selectors in this lesson. The first selector will tar-
get any <div> that contains a “thumbnail” class.

The second selector will target any image inside a <div> that contains a
“thumbnail” class.

The third selector will target any <p> element inside a <div> that contains
a “thumbnail” class. The selectors are shown in Listing 12.2.

LISTING 12.2 CSS Code Showing the Selectors for Styling
the Container
div.thumbnail {...}
div.thumbnail img {...}
div.thumbnail p {...}

Positioning the <div> Elements
Because the images and captions will sit beside each other in rows, you
will need to float the <div>. This can be achieved using float: left.

When the <div> is floated, it must be given a width. In this case, you will
use width: 130px. This width can be changed to suit your needs.

Next, you might want to create some space around the <div> elements so
that they don’t butt up against each other. You can achieve this by apply-
ing margins to the right and bottom of each <div>.

Finally, a background image (shown in Figure 12.1) will be added to the
<div>. As you can see in Figure 12.1, the image is very long so that it is
able to grow to accommodate long captions.

This background image must be set to no-repeat because you don’t want
it to reappear under the caption. The CSS code is shown in Listing 12.3
and illustrated in Figure 12.2.

LISTING 12.1 Continued

13_0672327457_CH12.qxd 10/17/05 2:31 PM Page 88

89Creating a Photo Gallery

FIGURE 12.1 Screenshot of background image used by <div>
element.

LISTING 12.3 CSS Code Floating the Container
div.thumbnail
{

width: 130px;
float: left;
margin: 0 10px 10px 0;
background: url(chapter12a.gif) no-repeat;

}

FIGURE 12.2 Screenshot of positioned containers.

13_0672327457_CH12.qxd 10/17/05 2:31 PM Page 89

90 Lesson 12

Styling the Image
At present, the image sits hard against the edge of its container, the <div>
element. To give it some space, you can set margins on the top and left
using margin: 10px 0 0 10px.

You can also add a border to the image using border: 1px solid #777
as shown in Listing 12.4. The results can be seen in Figure 12.3.

LISTING 12.4 CSS Code for Styling the Image
div.thumbnail
{

width: 130px;
float: left;
margin: 0 10px 10px 0;
background: url(chapter12a.gif) no-repeat;

}

div.thumbnail img
{

margin: 10px 0 0 10px;
border: 1px solid #777;

}

Liquid and Fixed-Width Layouts The floated <div>
elements you have created will sit in a line beside
each other, depending on the width of your browser
window.

If you decrease the width of your browser, one or
more <div> elements may drop to a new line below.

This happens because the <div> elements have no con-
tainer apart from the browser window. This type of
layout is referred to as a liquid layout.

However, you can stop the <div> elements from drop-
ping to new lines. If you place them inside a fixed-
width container, they will remain in position—no
matter how narrow the browser window. This type of
layout is referred to as a fixed-width layout.

13_0672327457_CH12.qxd 10/17/05 2:31 PM Page 90

91Creating a Photo Gallery

FIGURE 12.3 Screenshot of styled image.

Styling the Paragraph Element
Most browsers render standard <p> elements with margins of 1em above
and below. You can override these margins using margin: 0.

Now the paragraph will sit under the image, but it is still sitting against
the edge of its container. You will need to give it some space using
padding. In this case, apply 20px of padding to the right, 30px below, and
10px to the left.

Next, you need to add a background image to finish off the illusion of the
drop-shadow box. This image (shown in Figure 12.4) will sit at the bot-
tom of the <p> element.

Set the image to no-repeat so it doesn’t reappear in a long caption. The
vertical background position should be set to 100%, which will make the
bottom of the image sit against the bottom of the <p> element. The code is
shown in Listing 12.5 and illustrated in Figure 12.5.

13_0672327457_CH12.qxd 10/17/05 2:31 PM Page 91

92 Lesson 12

FIGURE 12.4 Screenshot of background image used by <p>
element.

LISTING 12.5 CSS Code for Styling the <p> Element
div.thumbnail
{

width: 130px;
float: left;
margin: 0 10px 10px 0;
background: url(chapter12a.gif) no-repeat;

}

div.thumbnail img
{

border: 1px solid #777;
margin: 10px 0 0 10px;

}

div.thumbnail p
{

margin: 0;
padding: 0 20px 30px 10px;
background: url(chapter12b.gif) no-repeat 0 100%;

}

13_0672327457_CH12.qxd 10/17/05 2:31 PM Page 92

93Creating a Photo Gallery

FIGURE 12.5 Screenshot of final thumbnail gallery.

Forcing a New Line
There may be situations when you want to set a number of thumbnails
on each line. To do this, you need to create a new class and then apply
this class to specific <div> elements. The new class will have one
declaration—clear: left. This will move the <div> down to a new line,
below the bottom edge of any previous left-floating <div> elements. The
CSS code is shown in Listing 12.6.

LISTING 12.6 CSS Code Forcing a New Line
div.thumbnail
{

width: 130px;
float: left;
margin: 0 10px 10px 0;
background: url(chapter12a.gif) no-repeat;

}

div.thumbnail img
{

continues

13_0672327457_CH12.qxd 10/17/05 2:31 PM Page 93

94 Lesson 12

border: 1px solid #777;
margin: 10px 0 0 10px;

}

div.thumbnail p
{

margin: 0;
padding: 0 20px 30px 10px;
background: url(chapter12b.gif) no-repeat 0 100%;

}

.clear
{

clear: left;
}

This new class will need to be added to any <div> that must start on a
new line. The simplest way to add this new class is to include it in the
existing class attribute. So, class=”thumbnail” can be changed to
class=”thumbnail clear” as shown in Listing 12.7. The final results can
be seen in Figure 12.6.

LISTING 12.7 HTML Code Showing New Class
<div class=”thumbnail”>

<p>A flower from my garden</p>

</div>
<div class=”thumbnail”>

<p>A flower from my garden</p>

</div>
<div class=”thumbnail”>

<p>A flower from my garden</p>

</div>
<div class=”thumbnail clear”>

<p>A flower from my garden</p>

</div>
<div class=”thumbnail”>

LISTING 12.6 Continued

continues

13_0672327457_CH12.qxd 10/17/05 2:31 PM Page 94

95Creating a Photo Gallery

<p>A flower from my garden</p>

</div>

FIGURE 12.6 Screenshot of thumbnail gallery.

Creating a Side-By-Side Variation
Using the same selectors and HTML code, it is possible to change the
layout so that the images and their captions are displayed side by side.

First, the width of the <div> will need to be increased to accommodate
the caption beside the image. The declaration can be changed to
width: 250px.

Next, some padding-bottom and a border can be added to the <div>.

The background declaration can be removed completely.

The image must be floated to the left so that the caption can sit beside it.
Width does not need to be defined in this case because the image has its
own intrinsic width.

Finally, the image will need to be given some margin so that the caption
doesn’t butt up against it. You can use 10px for all sides except the bottom
as shown in Listing 12.8. The results can be seen in Figure 12.7.

13_0672327457_CH12.qxd 10/17/05 2:31 PM Page 95

96 Lesson 12

LISTING 12.8 CSS Code for the Side-By-Side Variation
div.thumbnail
{

float: left;
width: 250px;
margin: 0 10px 10px 0;
padding-bottom: 10px;
border: 1px solid #777;

}

div.thumbnail img
{

float: left;
border: 1px solid #777;
margin: 10px 10px 0 10px;

}

div.thumbnail p
{

margin: 0;
padding: 10px;

}

FIGURE 12.7 Screenshot of the side-by-side variation.

13_0672327457_CH12.qxd 10/17/05 2:31 PM Page 96

97Creating a Photo Gallery

Summary
In this lesson, you have learned to float a series of <div> elements, and
then style them. You also learned how to force a line break using clear.

In the next lesson, you will learn how to style a blockquote.

13_0672327457_CH12.qxd 10/17/05 2:31 PM Page 97

LESSON 13
Styling a Block
Quote

In this lesson, you will learn how to style a block quote using two back-
ground images. The aim is to create a quotation that sits inside two large
graphic quotation marks.

Applying the <blockquote>
Element
The <blockquote> element is often used to indent text. However, it should
not be used for this purpose. It should only be used to mark up long quo-
tations that consist of block level content.

For this lesson, you will need a quotation and a source or author for the
quotation. These two items will be marked up as paragraphs and then
placed inside a <blockquote>. The paragraph that contains the source
information will be given a source class. A class is used in this case
because you might want to have more than one <blockquote> on a page.

Additional information about the source, such as a web address, can
be added to the <blockquote> using the cite attribute as shown in
Listing 13.1.

LISTING 13.1 HTML Code Containing the Markup for a
Quotation
<blockquote cite=”http://www.sitename.com/quote/smith.htm”>

<p>
Lorem ipsum dolor ...

</p>
<p class=”source”>

John Smith
</p>

</blockquote>

14_0672327457_CH13.qxd 10/17/05 2:31 PM Page 98

To style the <blockquote> and its content, you will use three selectors:

• The first is a type selector, used to target any instance of the
<blockquote> on the page.

• The second is a descendant selector, used to target any <p>
element inside a <blockquote>.

• The third is another descendant selector, used to target any
<p> element that has been styled with the source class.

The selectors are shown in Listing 13.2.

Semantically Correct Markup and Block Quotes
Semantically correct markup is about understanding
HTML elements and what they mean. It is also about
using these elements to give meaning to the content
they contain.

If you use semantically correct markup, your content
will have meaning in a wide range of devices, includ-
ing text browsers, screen readers, and hand-held
devices.

If you use poor semantic markup, however, your con-
tent will either have no meaning or incorrect meaning
in a wide range of devices.

An example of poor semantic markup is using a
<blockquote> to indent text. The <blockquote> will
change the content presentation rather than add
meaning. Even worse, the indented content is given
incorrect meaning.

It would be far better to indent content using CSS and
save the <blockquote> for its intended purpose—long
quotations.

14_0672327457_CH13.qxd 10/17/05 2:31 PM Page 99

100 Lesson 13

LISTING 13.2 CSS Code Showing the Selectors for Styling
the <blockquote>
blockquote {...}
blockquote p {...}
blockquote p.source {...}

Styling the <blockquote> Element
Unstyled <blockquote> elements are indented on the left and right sides.
You can change this default behavior by resetting the margins. In this
case, you will set the top and bottom margins to 1em and the left and
right margins to 0. This can be achieved using a shorthand margin
declaration—margin: 1em 0.

Next, you can apply a border to the <blockquote> to separate it from
other content on the page. You can use a 1-pixel-wide border set to light
gray, border: 1px solid #ddd.

The first background image will be applied directly to the <blockquote>
element. The declaration will be background-image:
url(lesson13.gif).

The image will be positioned in the top left corner of the <blockquote>.
This is achieved by setting the x and y axis to 5px using a declaration of
background-position: 5px 5px.

To stop the image from repeating across the entire <blockquote>, add
background-repeat: no-repeat.

These three background declarations can be shortened into a single decla-
ration using background: url(lesson13.gif) 5px 5px no-repeat. The
background image is shown in Figure 13.1.

FIGURE 13.1 Background image applied to <blockquote>.

Now the image is in position, but the text is sitting over the top of it. This
can be fixed by applying some padding to the top of the <blockquote>

14_0672327457_CH13.qxd 10/17/05 2:31 PM Page 100

101Styling a Block Quote

using padding-top: 30px as shown in Listing 13.3. The results can be
seen in Figure 13.2.

LISTING 13.3 CSS Code Styling the <blockquote>
blockquote
{

margin: 1em 0;
border: 1px solid #ddd;
background: url(lesson13.gif) 5px 5px no-repeat;
padding-top: 30px;

}

FIGURE 13.2 Screenshot of styled <blockquote>.

Styling the Paragraph
Next, you will need to add padding to the left and right of any paragraphs
inside the <blockquote>. This will push the content away from the bor-
ders. You can use padding: 0 70px as shown in Listing 13.4. The results
can be seen in Figure 13.3.

LISTING 13.4 CSS Code Styling the Paragraph
blockquote
{

margin: 1em 0;
border: 1px solid #ddd;

14_0672327457_CH13.qxd 10/17/05 2:31 PM Page 101

102 Lesson 13

background: url(lesson13.gif) 5px 5px no-repeat;
padding-top: 30px;

}

blockquote p
{

padding: 0 70px;
}

LISTING 13.4 Continued

FIGURE 13.3 Screenshot of styled paragraph.

Styling the source Class
Now that the <blockquote> and paragraph elements are styled, you can
focus on the paragraph classed with source. This paragraph will be used
to place the second background image in the bottom-right corner of the
block quote.

A shorthand declaration can be used to set the image, repeat, and
position—background: url(lesson13a.gif) no-repeat 100% 100%.
The x and y axis must be set to 100% to place the bottom-right edge of the

14_0672327457_CH13.qxd 10/17/05 2:31 PM Page 102

103Styling a Block Quote

image in the bottom-right corner of the paragraph. no-repeat should be
used to stop the image from repeating under the text. The background
image is shown in Figure 13.4.

FIGURE 13.4 Background image applied to paragraph classed
with source.

You will need to apply padding-bottom: 30px to the paragraph to push
the text up 30 pixels and stop it from sitting on top of the background
image.

The top image sits 5px in from the top and left edges of the
<blockquote>. To achieve the same result on the bottom, apply a 5px
margin to the right and bottom of the source class paragraph using
margin: 0 5px 5px 0.

Finally, the source text can be differentiated from other block quote text
by aligning it to the right and making it italic. This can be achieved with
text-align: right and font-style: italic as shown in Listing 13.5.
The results can be seen in Figure 13.5.

LISTING 13.5 CSS Code Styling the source Class Paragraph
blockquote
{

margin: 1em 0;
border: 1px solid #ddd;
background: url(lesson13.gif) 5px 5px no-repeat;
padding-top: 30px;

}

blockquote p
{

padding: 0 70px;
}

blockquote p.source
{

continues

14_0672327457_CH13.qxd 10/17/05 2:31 PM Page 103

104 Lesson 13

background: url(lesson13a.gif) no-repeat 100% 100%;
padding-bottom: 30px;
margin: 0 5px 5px 0;
text-align: right;
font-style: italic;

}

LISTING 13.5 Continued

FIGURE 13.5 Screenshot of styled paragraph classed with source.

Creating a Variation
Using the same selectors and HTML code, it is possible to change the lay-
out so that the <blockquote> and its content looks entirely different.

For this example, you will create a fixed-width <blockquote> with one
large background image as shown in Figure 13.6.

FIGURE 13.6 Screenshot of new background image.

14_0672327457_CH13.qxd 10/17/05 2:31 PM Page 104

105Styling a Block Quote

In the blockquote selector, the background image and its position need to
change. In this case, both the x and y axes will be set to 0, which means
the image will sit in the top-left corner of the <blockquote>.

The padding-top declaration changes from 30px to 1px to trap paragraph
margins.

Trapping Margins A standard paragraph has prede-
fined top and bottom margins.

When a paragraph is placed inside of another con-
tainer, its top margin can cause problems. Some
browsers will display the paragraph and top margin
inside of the container. Other browsers, however, will
display the paragraph only, and allow the margin to
poke out the top of the container.

You can stop this from occurring by applying either
border-top or padding-top to the container. The
amount can be as tiny as 1px, as long as it is present.

This is referred to as trapping margins.

The blockquote.p selector changes from padding: 0 70px to padding:
0 1em 0 80px. This new padding will move the text away from the left
edge of the <blockquote> to allow room for the new background image.

The blockquote p.source selector has a range of changes. The back-
ground image is removed completely. Margins are set to 0. A 5px white
border is added to the top of the paragraph to separate the source from the
quotation. Padding is changed from padding-bottom: 30px to padding:
.5em .5em .5em 80px.

Finally, text-align: right is removed and background: #336 is
added. The results are shown in Listing 13.6. The results can be seen in
Figure 13.7.

14_0672327457_CH13.qxd 10/17/05 2:31 PM Page 105

106 Lesson 13

LISTING 13.6 CSS Code for the <blockquote> Variation
blockquote
{

margin: 1em 0;
border: 1px solid #000;
background: #000 url(lesson13b.gif) no-repeat 0 0;
padding-top: 1px;
color: #fff;
width: 500px;

}

blockquote p
{

padding: 0 1em 0 80px;
}

blockquote p.source
{

margin: 0;
border-top: 5px solid #fff;
padding: .5em .5em .5em 80px;
background: #336;
font-style: italic;

}

FIGURE 13.7 Screenshot of the <blockquote> variation.

Summary
In this lesson, you learned how to wrap the <blockquote> element around
a long quotation and source, and then style it in different ways. In the next
lesson, you will learn how to mark up and then style accessible data tables.

14_0672327457_CH13.qxd 10/17/05 2:31 PM Page 106

LESSON 14
Styling a Data
Table

This lesson is divided into two sections. First, you will learn how to add
accessibility features to a data table to make the content more accessible
for screen readers. Second, you will learn how to style various elements
within the table.

Starting with a Basic Table
As CSS increases in popularity, there is a growing trend to move away
from using tables to mark up content. However, there are times when
tables are the best markup option, especially for tabular data. A basic data
table is shown in Listing 14.1.

LISTING 14.1 HTML Code Containing the Markup for a
Data Table
<table>

<tr>
<td>Item</td>
<td>Threaded screws </td>
<td>Flat nails</td>
<td>Dyna-bolts </td>
<td>Spring washers</td>

</tr>
<tr>

<td>1 kg</td>
<td>$2.50</td>
<td>$3.50</td>
<td>$4.50</td>
<td>$2.50</td>

</tr>
<tr>

continues

15_0672327457_CH14.qxd 10/17/05 2:31 PM Page 107

108 Lesson 14

<td>2kg</td>
<td>$3.00</td>
<td>$4.00</td>
<td>$5.00</td>
<td>$3.00</td>

</tr>
<tr>

<td>3kg</td>
<td>$3.50</td>
<td>$4.50</td>
<td>$5.50</td>
<td>$3.50</td>

</tr>
<tr>

<td>4kg</td>
<td>$4.00</td>
<td>$5.00</td>
<td>$6.00</td>
<td>$4.00</td>

</tr>
</table>

Adding Accessibility Features to a
Data Table
There are a range of features that can be added to data tables to make
them more accessible.

The summary attribute shown in Listing 14.2 should be used on complex
data tables because it provides a clear description of what the table pre-
sents. It does not display on screens of current (standards-compliant) web
browsers, but it can display on other web-browsing devices such as hand-
helds, cell phones, and so forth. The summary attribute is used as an orien-
tation for people who use nonvisual devices.

LISTING 14.2 HTML Code Showing summary
<table summary=”Table of screws, Flat nails, Dyna-bolts and
Spring washers, in kilos”>

LISTING 14.1 Continued

15_0672327457_CH14.qxd 10/17/05 2:31 PM Page 108

109Styling a Data Table

A caption should be included with any data table. It provides a brief
description of the table’s contents. Unlike the summary, the caption is dis-
played on the screen—usually centered above the table. The caption should
appear directly after the opening table tag as shown in Listing 14.3.

LISTING 14.3 HTML Code Showing caption
<caption>

Pricing for threaded screws, flat nails, dyna-bolts and
spring washers
</caption>

The <th> element, shown in Listing 14.4, should be used to define any
row or column heading within a data table. It is used to create a relation-
ship between <th> and <td> elements, which is important for nonvisual
devices.

LISTING 14.4 HTML Code Showing <th> Elements
<th>Item</th>
<th>Threaded screws </th>
<th>Flat nails</th>
<th>Dyna-bolts </th>
<th>Spring washers</th>

The <thead>, <tbody>, and <tfoot> elements shown in Listing 14.5 are
used to group rows in tables. The <thead> and <tfoot> should contain
information about the table’s columns and the <tbody> should contain the
table data.

LISTING 14.5 HTML Showing <thead> and <tbody>
Elements
<thead>

<tr>
<th>Item</th>
<th>Threaded screws </th>
<th>Flat nails</th>
<th>Dyna-bolts </th>
<th>Spring washers</th>

</tr>
</thead>
<tbody>

continues

15_0672327457_CH14.qxd 10/17/05 2:31 PM Page 109

110 Lesson 14

<tr>
<th>1 kg</th>
<td>$2.50</td>
<td>$3.50</td>
<td>$4.50</td>
<td>$2.50</td>

</tr>
</tbody>

The abbr attribute, shown in Listing 14.6, is used to provide an abbrevi-
ated form of the relevant cell’s contents. The abbr attribute is important
for people who use screen readers and may have to hear a cell’s content
read out loud repeatedly.

LISTING 14.6 HTML Code Showing abbr Attributes
<tr>

<th>Item</th>
<th abbr=”screws”>Threaded screws</th>
<th abbr=”nails”>Flat nails</th>
<th abbr=”bolts”>Dyna-bolts</th>
<th abbr=”washers”>Spring washers</th>

</tr>

headers and ids are used to tie a table’s data cells with their appropriate
header. Each header must be given a unique id. The headers attribute is
then added to each <td> element as shown in Listing 14.7.

LISTING 14.7 HTML Code Showing headers and ids
<table summary=”Table of screws, Flat nails, Dyna-bolts and
Spring washers, in kilos”>

<caption>
Pricing for threaded screws, flat nails, dyna-bolts

and spring washers
</caption>
<thead>

<tr>
<th>Item</th>
<th id=”screws” abbr=”screws”>Threaded

screws</th>

LISTING 14.5 Continued

continues

15_0672327457_CH14.qxd 10/17/05 2:31 PM Page 110

111Styling a Data Table

<th id=”nails” abbr=”nails”>Flat nails</th>
<th id=”bolts” abbr=”bolts”>Dyna-bolts</th>
<th id=”washers” abbr=”washers”>Spring
washers</th>

</tr>
</thead>
<tbody>

<tr>
<th id=”one”>1 kg</th>
<td headers=”screws one”>$2.50</td>
<td headers=”nails one”>$3.50</td>
<td headers=”bolts one”>$4.50</td>
<td headers=”washers one”>$2.50</td>

</tr>
<tr>

<th id=”two”>2kg</th>
<td headers=”screws two”>$3.00</td>
<td headers=”nails two”>$4.00</td>
<td headers=”bolts two”>$5.00</td>
<td headers=”washers two”>$3.00</td>

</tr>
<tr>

<th id=”three”>3kg</th>
<td headers=”screws three”>$3.50</td>
<td headers=”nails three”>$4.50</td>
<td headers=”bolts three”>$5.50</td>
<td headers=”washers three”>$3.50</td>

</tr>
<tr>

<th id=”four”>4kg</th>
<td headers=”screws four”>$4.00</td>
<td headers=”nails four”>$5.00</td>
<td headers=”bolts four”>$6.00</td>
<td headers=”washers four”>$4.00</td>

</tr>
</tbody>

</table>

Creating Selectors to Style a Table
To style this table and its content, you will use eight selectors as shown in
Listing 14.8.

15_0672327457_CH14.qxd 10/17/05 2:31 PM Page 111

112 Lesson 14

LISTING 14.8 CSS Code Showing the Selectors for Styling
the Table
caption {...}
table {...}
th, td {...}
tr {...}
thead th {...}
tbody th {...}
tr.alternate {...}
tr.alternate th ... }

Styling the Caption
An unstyled table caption will be displayed above the table. On most
modern browsers the caption will be center aligned, but you can change
the default caption alignment using text-align: left.

To increase the space between the caption and its table, margin-bottom
can be set to .5em.

The caption also can be given more weight to make it stand out from the
table content. This is achieved using font-weight:bold as shown in
Listing 14.9. The results can be seen in Figure 14.1.

LISTING 14.9 CSS Code for Styling the Caption
caption
{

text-align: left;
margin: 0 0 .5em 0;
font-weight: bold;

}

FIGURE 14.1 Screenshot of styled caption.

15_0672327457_CH14.qxd 10/17/05 2:31 PM Page 112

113Styling a Data Table

Styling the <table> Element
Apply border-collapse: collapse to the <table> element to remove
cellspacing as shown in Listing 14.10.

LISTING 14.10 CSS Code for Styling the <table> Element
caption
{

text-align: left;
margin: 0 0 .5em 0;
font-weight: bold;

}

table
{

border-collapse: collapse;
}

Tables and cellspacing A standard table will have
about 2px of cellspacing between cells. This can be
removed using two methods.

The first method is to apply cellspacing=”0” as an
attribute inside the <table> element. This is not ideal
because a presentation attribute has been added to
the table. If you were to change the presentation at a
later date, you would need to adjust the HTML as well
as the CSS.

The second method is to apply border-collapse:
collapse to the <table> element using CSS. This method
is preferred because the appearance of the table can be
changed at any time without affecting the HTML.

Styling the <th> and <td> Elements
Now the <th> and <td> elements need to be styled with a right and bot-
tom border. Because the border will appear on all <td> and <th> elements,
you can group both elements into one selector.

15_0672327457_CH14.qxd 10/17/05 2:31 PM Page 113

114 Lesson 14

Applying a border is more powerful than using cellspacing because you
can change the color or width of these borders at any time to suit your
needs.

To apply padding to all cells, use padding: .5em as shown in Listing
14.11.

LISTING 14.11 CSS Code for Styling the <th> and <td>
Elements
caption
{

text-align: left;
margin: 0 0 .5em 0;
font-weight: bold;

}

table
{

border-collapse: collapse;
}

th, td
{

border-right: 1px solid #fff;
border-bottom: 1px solid #fff;
padding: .5em;

}

Styling the <tr> Element
The <tr> element should be styled with a background-color as shown in
Listing 14.12. This color can be changed to suit your needs. The results
can be seen in Figure 14.2.

LISTING 14.12 CSS Code for Styling the <tr> Element
caption
{

text-align: left;
margin: 0 0 .5em 0;
font-weight: bold;

}

15_0672327457_CH14.qxd 10/17/05 2:31 PM Page 114

115Styling a Data Table

table
{

border-collapse: collapse;
}

th, td
{

border-right: 1px solid #fff;
border-bottom: 1px solid #fff;
padding: .5em;

}

tr
{

background: #B0C4D7;
}

FIGURE 14.2 Screenshot of styled <tr> element.

Targeting Instances of the
<th> Element
The next step is to create background colors for the <th> element. Using
descendant selectors, it is possible to apply different colors to the <th>
elements on the top and left side of the table.

The <th> elements across the top of the table are styled with thead th
{...} because they appear inside the <thead> element.

The <th> elements down the side of the table are styled with tbody th
{...} because they appear inside the <tbody> element.

15_0672327457_CH14.qxd 10/17/05 2:31 PM Page 115

116 Lesson 14

The <th> elements down the side also can be set to font-weight: normal
to differentiate them from the headers across the top as shown in Listing
14.13. The results can be seen in Figure 14.3.

LISTING 14.13 CSS Code for Styling the <th> Elements
caption
{

text-align: left;
margin: 0 0 .5em 0;
font-weight: bold;

}

table
{

border-collapse: collapse;
}

th, td
{

border-right: 1px solid #fff;
border-bottom: 1px solid #fff;
padding: .5em;

}

tr
{

background: #B0C4D7;
}

thead th
{

background: #036;
color: #fff;

}

tbody th
{

font-weight: normal;
background: #658CB1;

}

15_0672327457_CH14.qxd 10/17/05 2:31 PM Page 116

117Styling a Data Table

Figure 14.3 Screenshot of styled <th> elements.

Creating Alternate Row Colors
It is possible to style alternate table rows so that they have different back-
ground colors. This aids readability, especially on a long table.

One method is to add a class to every second <tr> element. In this case,
the class is alternate. The <td> and <th> elements within these rows can
be given a slightly different background color. The selectors will need to
be tr.alternate td {...} and tr.alternate th {..} as shown in
Listing 14.14. The results can be seen in Figure 14.4.

LISTING 14.14 CSS Code for Styling Alternate Rows
caption
{

text-align: left;
margin: 0 0 .5em 0;
font-weight: bold;

}

table
{

border-collapse: collapse;
}

th, td
{

border-right: 1px solid #fff;
border-bottom: 1px solid #fff;

15_0672327457_CH14.qxd 10/17/05 2:31 PM Page 117

118 Lesson 14

padding: .5em;
}

tr
{

background: #B0C4D7;
}

thead th
{

background: #036;
color: #fff;

}

tbody th
{

font-weight: normal;
background: #658CB1;

}

tr.alternate
{

background: #D7E0EA;
}

tr.alternate th
{

background: #8AA9C7;
}

LISTING 14.14 Continued

FIGURE 14.4 Screenshot of styled alternate rows.

15_0672327457_CH14.qxd 10/17/05 2:31 PM Page 118

119Styling a Data Table

Summary
In this lesson, you learned how to add accessibility features to a data
table, including summary, caption, <thead>, <th>, headers, and ids. You
also learned how to style the table and its elements. These accessibility
features not only enhance the website via other devices, but help create
CSS suitable for these devices. In the next lesson, you will learn how to
create vertical navigation.

15_0672327457_CH14.qxd 10/17/05 2:31 PM Page 119

LESSON 15
Creating
Vertical
Navigation

In this lesson, you will learn how to create vertical navigation. You will
also learn how to apply background images and hover effects.

Why Use a List?
At its most basic level, site navigation is simply a list of links to other
pages in the site. So, a standard HTML list is the ideal starting point
(see Listing 15.1). The resulting list is shown in Figure 15.1.

LISTING 15.1 HTML Code Containing the Markup for a List
<ul id=”navigation”>

Home
About
Services
Staff
Portfolio
Contact
Sitemap

FIGURE 15.1 Screenshot of unstyled list.

16_0672327457_CH15.qxd 10/17/05 2:31 PM Page 120

Styling the List
To style this list, you will need to use selectors that target the , ,
and <a> elements. To make sure you do not target every instance of these
elements on the page, you will need to include the unique identifier,
navigation, within each selector. The four selectors that you will use
are shown in Listing 15.2.

LISTING 15.2 CSS Code Showing the Selectors for Styling
the List
ul#navigation {...}
ul#navigation a {...}
ul#navigation a:hover {...}
ul#navigation li {...}

What Are Selectors? Selectors are used to “select”
elements on an HTML page so that they can be styled.

For more information, see Lesson 3, “Selectors in
Action.”

Styling the Element
Most browsers display HTML lists with left indentation. To set this inden-
tation, some browsers use padding (Firefox, Netscape, and Safari), and
others use margins (Internet Explorer and Opera).

To remove this left indentation consistently across all browsers, set both
padding-left and margin-left to 0 on the element as shown in
Listing 15.3.

LISTING 15.3 CSS Code for Zeroing Margins and Padding
ul#navigation
{

margin-left: 0;
padding-left: 0;

}

16_0672327457_CH15.qxd 10/17/05 2:31 PM Page 121

122 Lesson 15

To remove the list bullets, set the list-style-type to none as in Listing
15.4. The results of the CSS style rules are shown in Figure 15.2.

LISTING 15.4 CSS Code for Removing List Bullets
ul#navigation
{

margin-left: 0;
padding-left: 0;
list-style-type: none;

}

FIGURE 15.2 Screenshot of list with the element styled.

Styling the <a> Element
Text links are generally only active when you mouse over the actual text
area. You can increase this active area by applying display: block; to
the <a> element. This will change it from inline to block level, and the
active area will extend to the full width of the list item.

When the <a> element is block level, users do not have to click on the
text; they can click on any area of the list item.

Style the <a> elements with display: block; as shown in Listing 15.5.

LISTING 15.5 CSS Code for Setting display: block
ul#navigation
{

margin-left: 0;
padding-left: 0;
list-style-type: none;

}

continues

16_0672327457_CH15.qxd 10/17/05 2:31 PM Page 122

123Creating Vertical Navigation

ul#navigation a
{

display: block;
}

To remove the underlines on the links, use text-decoration: none;
(see Listing 15.6).

LISTING 15.6 CSS Code for Removing Link Underlining
ul#navigation
{

margin-left: 0;
padding-left: 0;
list-style-type: none;

}

ul#navigation a
{

display: block;
text-decoration: none;

}

Changing Link Behavior Changing standard hyper-
link behavior (such as removing underlines) can be
confusing for some users who might not realize that
the item is a link.

For this reason, it is generally not a good idea to
remove underlines on links unless you provide some
other means to allow users to distinguish links.

To set the background color, you can use the shorthand rule background:
#036; as shown in Listing 15.7. This color can be changed to suit your
needs.

16_0672327457_CH15.qxd 10/17/05 2:31 PM Page 123

124 Lesson 15

LISTING 15.7 CSS Code for Setting Background Color
ul#navigation
{

margin-left: 0;
padding-left: 0;
list-style-type: none;

}

ul#navigation a
{

display: block;
text-decoration: none;
background: #036;

}

Next, the text color should be set to #fff (the hex color for white). See
Listing 15.8. Like the background color, text color can be changed to suit
your needs.

LISTING 15.8 CSS Code for Setting Text Color
ul#navigation
{

margin-left: 0;
padding-left: 0;
list-style-type: none;

}

ul#navigation a
{

display: block;
text-decoration: none;
background: #036;
color: #fff;

}

You will need .2em padding on the top and bottom of the <a> element,
and .5em padding on both sides. Rather than specify these amounts in
separate declarations, you can use one shorthand declaration to define
them all. In this case you will use padding: .2em .5em, which will apply
.2em of padding on the top and bottom of the <a> element, and .5em on
both sides as shown in Listing 15.9.

16_0672327457_CH15.qxd 10/17/05 2:31 PM Page 124

125Creating Vertical Navigation

LISTING 15.9 CSS Code for Setting Padding
ul#navigation
{

margin-left: 0;
padding-left: 0;
list-style-type: none;

}

ul#navigation a
{

display: block;
text-decoration: none;
background: #036;
color: #fff;
padding: .2em .5em;

}

Why Use Ems? You can use either pixels or ems to
specify measurement units for padding, margins, and
widths. Ems are more flexible because they scale up or
down to match the user’s font size settings.

To provide some space between the list items, you can add a border on the
bottom of each list item. In this case you will use border-bottom: #fff
as shown in Listing 15.10.

LISTING 15.10 CSS Code for Setting Borders
ul#navigation
{

margin-left: 0;
padding-left: 0;
list-style-type: none;

}

ul#navigation a
{

display: block;
text-decoration: none;
background: #036;

continues

16_0672327457_CH15.qxd 10/17/05 2:31 PM Page 125

126 Lesson 15

color: #fff;
padding: .2em .5em;
border-bottom: 1px solid #fff;

}

LISTING 15.10 Continued

Customizing the Border Bottom In this lesson, the
border-bottom is set to #fff, assuming that the page
background is white. However, the color of the
border-bottom should be set in the same color as
the page or container background.

If more space is required between list items, the width
of the border can be increased.

Set the width of the <a> element using width: 7em; as shown in Listing
15.11 and illustrated in Figure 15.3. This width can be changed to suit
your needs.

LISTING 15.11 CSS Code for Setting Width
ul#navigation
{

margin-left: 0;
padding-left: 0;
list-style-type: none;

}

ul#navigation a
{

display: block;
text-decoration: none;
background: #036;
color: #fff;
padding: .2em .5em;
border-bottom: 1px solid #fff;
width: 7em;

}

16_0672327457_CH15.qxd 10/17/05 2:31 PM Page 126

127Creating Vertical Navigation

FIGURE 15.3 Screenshot of list with <a> element styled.

List Width As discussed in Lesson 5, “Getting to
Know the CSS Box Model,” padding is added to the
content area to give a final width. In this case, .5em of
padding is applied to the left and right sides of the
list. When added to the content width of 7em, the list
items are now 8em wide.

Fixing Odd Borders Certain browsers, such as
Netscape, Mozilla, and Firefox, will render the border-
bottom incorrectly for some list items—generally in the
middle of a list. This can be fixed by changing the
border thickness to 1em instead of 1px.

Adding a Hover Effect
The :hover pseudo-class can be used to change the style of links when
they are rolled over. In this case, you will set the background to #69C and
the color to #000 as shown in Listing 15.12. The results can be seen in
Figure 15.4. These colors can be changed to suit your needs.

16_0672327457_CH15.qxd 10/17/05 2:31 PM Page 127

128 Lesson 15

LISTING 15.12 CSS Code for Setting Hover
ul#navigation
{

margin-left: 0;
padding-left: 0;
list-style-type: none;

}

ul#navigation a
{

display: block;
text-decoration: none;
background: #036;
color: #fff;
padding: .2em .5em;
border-bottom: 1px solid #fff;
width: 7em;

}

ul#navigation a:hover
{

background: #69C;
color: #000;

}

FIGURE 15.4 Screenshot of list showing hover.

Styling the Element
You might notice that there are slight gaps between list items in some ver-
sions of Internet Explorer for Windows or Opera. This can be overcome
by setting the element to display: inline (see Listing 15.13).

16_0672327457_CH15.qxd 10/17/05 2:31 PM Page 128

129Creating Vertical Navigation

LISTING 15.13 CSS Code for Setting display: Inline on the
 Element
ul#navigation
{

margin-left: 0;
padding-left: 0;
list-style-type: none;

}

ul#navigation a
{

display: block;
text-decoration: none;
background: #036;
color: #fff;
padding: .2em .5em;
border-bottom: 1px solid #fff;
width: 7em;

}

ul#navigation a:hover
{

background: #69C;
color: #000;

}

ul#navigation li
{

display: inline;
}

Summary
In this lesson, you have learned that lists can be styled to look like a verti-
cal navigation panel, how to set declarations on the <a> element, and how
to use the :hover pseudo-class. In the next lesson, you will learn how to
create horizontal navigation.

16_0672327457_CH15.qxd 10/17/05 2:31 PM Page 129

LESSON 16
Creating
Horizontal
Navigation

In this lesson, you will learn how to create horizontal navigation from a
standard HTML list. You will also learn how to float the element to
create a navigation bar and float the <a> element to create a series of
square buttons—each with a thin dividing line down its right edge.

Styling the List
To style this list, you will need to use selectors that target the , ,
and <a> elements. You will also need to include the unique identifier,
navigation, within each selector. The four selectors that you will use are
shown in Listing 16.1. The HTML code is shown in Listing 16.2.

LISTING 16.1 CSS Code Showing the Selectors for Styling
the List
ul#navigation {...}
ul#navigation li {...}
ul#navigation a {...}
ul#navigation a:hover {...}

LISTING 16.2 HTML Code Containing the Markup for a List
<ul id=”navigation”>

Home
About
Services
Staff
Portfolio
Contact

17_0672327457_CH16.qxd 10/17/05 2:31 PM Page 130

Styling the Element
As discussed in Lesson 15, “Creating Vertical Navigation,” most browsers
display HTML lists with left indentation. To remove this left indentation,
set both padding-left and margin-left to 0 on the element as
shown in Listing 16.3.

LISTING 16.3 CSS Code Zeroing Margins and Padding
ul#navigation
{

margin-left: 0;
padding-left: 0;

}

To remove the list bullets, set the list-style-type to none as in
Listing 16.4.

LISTING 16.4 CSS Code Removing List Bullets
ul#navigation
{

margin-left: 0;
padding-left: 0;
list-style-type: none;

}

Next, add a background color using the shorthand background: #036; as
shown in Listing 16.5. This color can be changed to suit your needs.

LISTING 16.5 CSS Code Setting Background Color
ul#navigation
{

margin-left: 0;
padding-left: 0;
list-style-type: none;
background: #036;

}

To float the , use float: left. You will also need to set a width. In
this case, we will use 100% because we want the list to spread across the
full width of the page. The results are shown in Listing 16.6 and illus-
trated in Figure 16.1. At this stage, the text is almost illegible. This will be
addressed when the <a> element is styled.

17_0672327457_CH16.qxd 10/17/05 2:31 PM Page 131

132 Lesson 16

LISTING 16.6 CSS Code Setting Float and Width
ul#navigation
{

margin-left: 0;
padding-left: 0;
list-style-type: none;
background: #036;
float: left;
width: 100%;

}

Why Float the and <a> Elements? In this lesson,
both the and <a> elements need to be floated.

The <a> element is floated so that the list items sit in a
horizontal line, butting up against each other.

The must be floated so that it wraps around the
<a> elements. Otherwise, it will have no height and
will not be visible.

FIGURE 16.1 Screenshot of list with the element styled.

Styling the Element
To make sure the list items are displayed in a single line, the element
must be set to display: inline as shown in Listing 16.7. The results can
be seen in Figure 16.2.

17_0672327457_CH16.qxd 10/17/05 2:31 PM Page 132

133Creating Horizontal Navigation

Listing 16.7 CSS Code Setting display: inline;
ul#navigation
{

margin-left: 0;
padding-left: 0;
list-style-type: none;
background: #036;
float: left;
width: 100%;

}

ul#navigation li
{

display: inline;
}

FIGURE 16.2 Screenshot of list with the element styled.

Styling the <a> Element
You can increase the active area of text links by applying display:
block; to the <a> element. This will change it from inline to block level
and allow you to apply padding to all sides of the element.

Set the <a> element to display: block; so that padding can be applied to
all sides. This will give the element additional width and height, increas-
ing the clickable area.

The <a> element should then be floated, so that each list item moves into
a single line butting against the previous item (see Listing 16.8).

Listing 16.8 CSS Code Setting display: block;
ul#navigation
{

margin-left: 0;
padding-left: 0;
list-style-type: none;
background: #036;

continues

17_0672327457_CH16.qxd 10/17/05 2:31 PM Page 133

134 Lesson 16

float: left;
width: 100%;

}

ul#navigation li
{

display: inline;
}

ul#navigation a
{

display: block;
float: left;

}

Listing 16.8 Continued

Floats and Width For this lesson, you will not be set-
ting a width on the floated <a> elements. This will
allow each list item to have its own width based on
the number of characters and the surrounding
padding.

However, this is not generally considered to be a good
practice. It is best to set a width on all floated items
(except if applied directly to an image, which has
implicit width).

If no width is set, the results can be unpredictable.
Theoretically, a floated element with an undefined
width should shrink to the widest element within it.
This could be a word, a sentence, or even a single
character—and results can vary from browser to
browser.

In this case, the results are acceptable because the
styled list displays well in almost all modern browsers
(including Internet Explore 5+, Netscape 6+, Opera 6+,
Firefox, and Safari).

17_0672327457_CH16.qxd 10/17/05 2:31 PM Page 134

135Creating Horizontal Navigation

Next, add some padding using the padding declaration. You can use .2em
for top and bottom padding, and 1em for left and right padding as shown
in Listing 16.9.

LISTING 16.9 CSS Code Setting Padding
ul#navigation
{

margin-left: 0;
padding-left: 0;
list-style-type: none;
background: #036;
float: left;
width: 100%;

}

ul#navigation li
{

display: inline;
}

ul#navigation a
{

display: block;
float: left;
padding: .2em 1em;

}

To remove the underlines on the links, use text-decoration: none;. To
set the text color and background color, use color: #fff; (white) and
background: #036; as shown in Listing 16.10. These colors can be
changed to suit your needs.

LISTING 16.10 CSS Code Setting Text Decoration, Color, and
Background Color
ul#navigation
{

margin-left: 0;
padding-left: 0;
list-style-type: none;
background: #036;
float: left;
width: 100%;

}

continues

17_0672327457_CH16.qxd 10/17/05 2:31 PM Page 135

136 Lesson 16

ul#navigation li
{

display: inline;
}

ul#navigation a
{

display: block;
float: left;
padding: .2em 1em;
text-decoration: none;
color: #fff;
background: #036;

}

To separate each list item, a white line divider will be added to the end of
each item. This is achieved by adding a white border to the right side of
each list item, using border-right: 1px solid #fff; as shown in
Listing 16.11 and illustrated in Figure 16.3.

LISTING 16.11 CSS Code Setting a Border
ul#navigation
{

margin-left: 0;
padding-left: 0;
list-style-type: none;
background: #036;
float: left;
width: 100%;

}

ul#navigation li
{

display: inline;
}

ul#navigation a
{

display: block;
float: left;
padding: .2em 1em;
text-decoration: none;

LISTING 16.10 Continued

continues

17_0672327457_CH16.qxd 10/17/05 2:31 PM Page 136

137Creating Horizontal Navigation

color: #fff;
background: #036;
border-right: 1px solid #fff;

}

FIGURE 16.3 Screenshot of list with the <a> element styled.

Styling the :hover Pseudo Class
Finally, the :hover pseudo class is used to change the style of links when
they are rolled over. In this case, you will set the background to #69C and
the color to #000 as shown in Listing 16.12 and illustrated in Figure 16.4.
These colors can be changed to suit your needs.

LISTING 16.12 CSS Code Setting a Hover
ul#navigation
{

margin-left: 0;
padding-left: 0;
list-style-type: none;
background: #036;
float: left;
width: 100%;

}

ul#navigation li
{

display: inline;
}

ul#navigation a
{

display: block;
float: left;
padding: .2em 1em;
text-decoration: none;
color: #fff;
background: #036;

continues

17_0672327457_CH16.qxd 10/17/05 2:31 PM Page 137

138 Lesson 16

border-right: 1px solid #fff;
}

ul#navigation a:hover
{

color: #000;
background: #69C;

}

LISTING 16.12 Continued

FIGURE 16.4 Screenshot of finished list.

Summary
In this lesson you have learned that lists can be styled to look like a hori-
zontal navigation panel, how to float the and <a> elements, and how
to use the :hover pseudo class. In the next lesson, you will learn how to
style a round-cornered box.

17_0672327457_CH16.qxd 10/17/05 2:31 PM Page 138

LESSON 17
Styling a
Round-
Cornered Box

In this lesson, you will learn how to create a flexible-width, round-
cornered box using four corner images.

Setting Up the HTML Code
The HTML code for this lesson is comprised of an overall <div> con-
tainer, a heading, and two paragraphs. The <div> is styled with a
pullquote id, and the second paragraph is styled with a furtherinfo
class as shown in Listing 17.1.

LISTING 17.1 HTML Code Containing the Markup for a
Round-Cornered Box
<div id=”pullquote”>

<h2>Heading here</h2>
<p>

Lorem ipsum dolor sit amet....
</p>
<p class=”furtherinfo”>

More information
</p>

</div>

Creating the Illusion of Round
Corners
There are many methods that can be used to create a flexible-width,
round-cornered box. The method described in this lesson uses four indi-
vidual corner images.

18_0672327457_CH17.qxd 10/17/05 2:32 PM Page 139

140 Lesson 17

These images should not be placed in the HTML code because they are
purely presentational. Ideally, they should be applied as background
images using CSS.

The top-left image will be applied as a background image to the <div>
container and the top-right image will be applied to the <h2> element.

The bottom-left image will be applied to the last <p> element inside the
box. This <p> element will be given a .furtherinfo class to differentiate
it from other paragraphs in the box.

The bottom-right image will be applied to a specific instance of the <a>
element.

Adding Elements to Achieve Round Corners There
are many ways to create a flexible-width, round-
cornered box.

One commonly used method involves nesting four
levels of <div> elements that are then used to position
the background images.

Where possible, it is better to use existing HTML
elements or instances of elements rather than add
new elements. Additional elements create unnecessary
markup, which can increase page size and make
maintenance more difficult.

Creating Selectors to Style the
Round-Cornered Box
To style the round-cornered box, you will need to use the five selectors
shown in Listing 17.2.

LISTING 17.2 CSS Code Showing the Selectors for Styling
the Two-Column Layout
div#pullquote
div#pullquote h2

18_0672327457_CH17.qxd 10/17/05 2:32 PM Page 140

141Styling a Round-Cornered Box

div#pullquote p
div#pullquote p.furtherinfo
div#pullquote p.furtherinfo a

Preparing the Images
The four images used in this lesson are shown in Figures 17.1 through
17.4. The style and color of these images can be changed to suit
your needs.

FIGURE 17.1 Image 1, which will be applied to the <div> element.
The image should be made over 2,000 pixels long so that it will
grow to the width of the widest monitors.

FIGURE 17.2 Image 2, which will be applied to the <h2> element.

FIGURE 17.3 Image 3, which will be applied to the <p> element
styled with .furtherinfo.

FIGURE 17.4 Image 4, which will be applied to the <a> element.

Styling the <div> Element
The first step in creating a round-cornered box is to style the <div>, which
needs to be given some space on all sides. This can be achieved using
margin: 2em. Next, the <div> needs to have a background image applied
to the top-left corner. Use background: #09f url(lesson17a.gif)
no-repeat; as shown in Listing 17.3. The results can be seen in
Figure 17.5.

18_0672327457_CH17.qxd 10/17/05 2:32 PM Page 141

142 Lesson 17

LISTING 17.3 CSS Code for Styling the <div> Element
div#pullquote
{

margin: 2em;
background: #09f url(lesson17a.gif) no-repeat;

}

FIGURE 17.5 Screenshot of styled <div> element.

Styling the <h2> Element
Now that the <div> has been styled, the <h2> element will be used to
position the second background image in the top-right corner.

The <h2> element’s margins have to be turned off using margin: 0.

Next, the <h2> needs some padding on all edges except the bottom. This is
achieved using padding: 20px 20px 0 20px.

Finally, the background image is added using background: url
(lesson17b.gif) no-repeat 100% 0;. The horizontal background
position is set to 100%, so the right edge of the image will sit against the
right edge of the <h2> element. The image is also set to no-repeat so that
it does not repeat across the background of the <h2> element as shown in
Listing 17.4. The results can be seen in Figure 17.6.

18_0672327457_CH17.qxd 10/17/05 2:32 PM Page 142

143Styling a Round-Cornered Box

Listing 17.4 CSS Code for Styling the <div> Element
div#pullquote
{

margin: 2em;
background: #09f url(lesson17a.gif) no-repeat;

}

div#pullquote h2
{

margin: 0;
padding: 20px 20px 0 20px;
background: url(lesson17b.gif) no-repeat 100% 0;

}

FIGURE 17.6 Screenshot of styled <h2> element.

Styling the <p> Element
The <p> element must be padded on both sides to keep it away from the
edges of its container. This can be achieved using padding: 0 20px as
shown in Listing 17.5. The results can be seen in Figure 17.7.

Listing 17.5 CSS Code for Styling the <p> Element
div#pullquote
{

margin: 2em;
background: #09f url(lesson17a.gif) no-repeat;

}

continues

18_0672327457_CH17.qxd 10/17/05 2:32 PM Page 143

144 Lesson 17

div#pullquote h2
{

margin: 0;
padding: 20px 20px 0 20px;
background: url(lesson17b.gif) no-repeat 100% 0;

}

div#pullquote p
{

padding: 0 20px;
}

Listing 17.5 Continued

FIGURE 17.7 Screenshot of styled <p> element.

Styling the .furtherinfo Class
The last paragraph inside the round-cornered box is styled with a
.furtherinfo class. This paragraph will be used to position the third
image in the bottom-left corner.

The paragraph must be given some padding, but it will only be padded on
the left edge. This can be achieved using padding: 0 0 0 20px.

The background image can be set using background:
url(lesson17c.gif) no-repeat 0 100%;. The vertical background posi-
tion is set to 100%, so the bottom edge of the image will sit against the
bottom of the <p> element. The image is also set to no-repeat so that it

18_0672327457_CH17.qxd 10/17/05 2:32 PM Page 144

145Styling a Round-Cornered Box

does not repeat across the background of the <p> element as shown in
Listing 17.6. The results can be seen in Figure 17.8.

LISTING 17.6 CSS Code for Styling the .furtherinfo Class
div#pullquote
{

margin: 2em;
background: #09f url(lesson17a.gif) no-repeat;

}

div#pullquote h2
{

margin: 0;
padding: 20px 20px 0 20px;
background: url(lesson17b.gif) no-repeat 100% 0;

}

div#pullquote p
{

padding: 0 20px;
}

div#pullquote p.furtherinfo
{

padding: 0 0 0 20px;
background: url(lesson17c.gif) no-repeat 0 100%;

}

Figure 17.8 Screenshot of styled .furtherinfo class.

18_0672327457_CH17.qxd 10/17/05 2:32 PM Page 145

146 Lesson 17

Styling the <a> Element
The bottom-right image is applied to the <a> element.

In order for the image to display correctly, the <a> element must first be
converted to block level using display: block.

The next step is to add padding using padding: 0 20px 20px 0;. This
will apply padding to the right and bottom of the element.

The content of the <a> element can be aligned to the right by using
text-align: right.

Finally, the background image is applied using background: url
(lesson17d.gif) no-repeat 100% 100%; as shown in Listing 17.7.
This will apply the image to the bottom-right edge of the <a> element.
The results can be seen in Figure 17.9.

LISTING 17.7 CSS Code for Styling the <a> Element
div#pullquote
{

margin: 2em;
background: #09f url(lesson17a.gif) no-repeat;

}

div#pullquote h2
{

margin: 0;
padding: 20px 20px 0 20px;
background: url(lesson17b.gif) no-repeat 100% 0;

}

div#pullquote p
{

padding: 0 20px;
}

div#pullquote p.furtherinfo
{

padding: 0 0 0 20px;
background: url(lesson17c.gif) no-repeat 0 100%;

}

div#pullquote p.furtherinfo a

continues

18_0672327457_CH17.qxd 10/17/05 2:32 PM Page 146

147Styling a Round-Cornered Box

{
display: block;
padding: 0 20px 20px 0;
text-align: right;
background: url(lesson17d.gif) no-repeat 100% 100%;

}

FIGURE 17.9 Screenshot of styled <a> element.

Creating a Fixed-Width Variation
Creating a fixed-width version of the round-cornered box requires only
two background images.

The first image can be applied to the <div> container using background:
#09f url(lesson17f.gif) no-repeat 0 100%;. This will place the
image in the bottom corner of the box. The image used is shown in
Figure 17.10.

FIGURE 17.10 Background image used to style the <div> element.

The <div> element needs to be given a width to match the width of the
two images. 400px has been used here. This measurement can be changed
to suit your needs.

18_0672327457_CH17.qxd 10/17/05 2:32 PM Page 147

148 Lesson 17

The <div> must also be given some bottom padding so that the text
doesn’t sit over the top of the image. This can be achieved using padding-
bottom: 20px.

The <p> element must be padded on both sides to keep it away from the
edges of its container. This can be achieved using padding: 0 20px.

The <h2> element must have the margins set to 0 so that there are no gaps
at the top of the container. It must also be padded on the top right and left
using padding: 20px 20px 0 20px;.

A background image is applied to the <h2> element using background:
url(lesson17e.gif) no-repeat 100% 0;. This will position the image
at the top left of the element. The image is shown in Figure 17.11.

FIGURE 17.11 Background image used to style the <h2> element.

Finally, the .furtherinfo paragraph content needs to be aligned right.
This can be achieved using text-align: right as shown in Listing 17.8.
The results can be seen in Figure 17.12.

LISTING 17.8 CSS Code for Styling the Fixed-Width,
Round-Cornered Box
div#pullquote
{

background: #09f url(lesson17f.gif) no-repeat 0 100%;
width: 400px;
padding-bottom: 20px;

}

div#pullquote p
{

padding: 0 20px;
}

div#pullquote h2
{

margin: 0;
padding: 20px 20px 0 20px;
background: url(lesson17e.gif) no-repeat 100% 0;

}
continues

18_0672327457_CH17.qxd 10/17/05 2:32 PM Page 148

149Styling a Round-Cornered Box

div#pullquote p.furtherinfo
{

text-align: right;
}

FIGURE 17.12 Screenshot of fixed-width, round-cornered box.

Creating a Top-Only Flexible
Variation
To create a top-only flexible variation of the round-cornered box, two
background images are needed.

The first image can be applied to the <div> container using background:
#fff url(lesson17g.jpg) no-repeat;. This will place the image in the
top-left corner of the box. The image used is shown in Figure 17.13.

Figure 17.13 Background image used to style the <div> element.
The image should be made over 2,000 pixels long so that it will
grow to the width of the widest monitors.

18_0672327457_CH17.qxd 10/17/05 2:32 PM Page 149

150 Lesson 17

The <p> element must be padded on both sides to keep it away from the
edges of its container. This can be achieved using padding: 0 20px.

The <h2> element must have the margins set to 0 so that there are no gaps
at the top of the container. It must also be padded on the top right and left
using padding: 20px 20px 0 20px;.

A background image is applied to the <h2> element using background:
url(lesson17h.jpg) no-repeat 100% 0;. This will position the image
at the right of the element. The image is shown in Figure 17.14.

FIGURE 17.14 Background image used to style the <h2> element.

Finally, the .furtherinfo paragraph content needs to be aligned right.
This can be achieved using text-align: right as shown in Listing 17.9.
The results can be seen in Figure 17.15.

LISTING 17.9 CSS Code for Styling the Top-Only Variation
div#pullquote
{

background: #fff url(lesson17g.jpg) no-repeat;
}

div#pullquote p
{

padding: 0 20px;
}

div#pullquote h2
{

margin: 0;
padding: 20px 20px 0 20px;
background: url(lesson17h.jpg) no-repeat 100% 0;

}

continues

18_0672327457_CH17.qxd 10/17/05 2:32 PM Page 150

151Styling a Round-Cornered Box

div#pullquote p.furtherinfo
{

text-align: right;
}

FIGURE 17.15 Screenshot of styled top-only variation.

Summary
In this lesson, you learned how to apply images to four different elements
to create the illusion of a flexible, round-cornered box. You also learned
how to create a fixed-width, round-cornered box and a top-only, round-
cornered box. In the next lesson, you will learn how to set up and style a
site header using an <h1> element, an image, and a list.

18_0672327457_CH17.qxd 10/17/05 2:32 PM Page 151

LESSON 18
Creating a Site
Header

In this lesson, you will learn how to set up and style a site header using
an <h1> element, an image, and a list.

Setting Up the HTML Code
The HTML code for this lesson is comprised of three main components: a
<div> element, which helps define the header section semantically; an
<h1> element; and a element for navigation as shown in Listing 18.1.

LISTING 18.1 HTML Code Containing the Markup for the
Site Header
<div id=”container”>

<h1>

</h1>
<ul id=”topnav”>

Skip to content
Home
About
Services
Staff
Portfolio
Contact

</div>

19_0672327457_CH18.qxd 10/17/05 2:32 PM Page 152

Creating Selectors to Style
the Header
To style the site header and its content, you will use 10 selectors as shown
in Listing 18.2.

LISTING 18.2 CSS Code Showing the Selectors for Styling
the Header
body {...}
#container {...}
h1 {...}
h1 img {...}
ul#topnav {...}
ul#topnav li {...}
ul#topnav li a:link {...}
ul#topnav li a:visited {...}
ul#topnav li a:hover {...}
ul#topnav li a:active {...}

Styling the <body> Element
Some browsers use margins and others use padding on the <body> ele-
ment to indent content from the edges of the browser window. Because

Skip to content Link What does the Skip to
content link mean?

This link, called a skip link, enables users to skip
over navigation links to get to the main content of
the page.

Skip links are beneficial for blind, visually impaired,
and mobility impaired users, as well as people who
use text browsers, mobile phones, and PDAs.

Some developers use hidden skip links, which are
specifically designed for blind users. However, skip
links should be visible for people who cannot use the
mouse and must use tabbing to navigate websites.

19_0672327457_CH18.qxd 10/17/05 2:32 PM Page 153

154 Lesson 18

this site header sits against the top edge of the browser window, you will
need to set both margins and padding to 0.

Theoretically, you should be able to apply auto margins to the left and
right of a container to center it on the page. However, some browsers won’t
center the container using this method because they ignore the auto mar-
gins. This problem can be overcome by adding two simple declarations.

The first declaration, text-align: center, is applied to the <body>
element. The second declaration, text-align: left, is added to the
container rule set (see “Styling the Container” later in this lesson).

A background-color and color must also be set on the <body> element.
In this case, you can use a background color of #BOBFC2 and a color of
#444 as shown in Listing 18.3. The results can be seen in Figure 18.1.

LISTING 18.3 CSS Code for Styling the Body
body
{

margin: 0;
padding: 0;
text-align: center;
background: #B0BFC2;
color: #444;

}

FIGURE 18.1 Screenshot of styled <body>.

Styling the Container
Now that the <body> element has been styled, all content will be
centered on the page. This can be overcome by setting the container to
text-align: left.

19_0672327457_CH18.qxd 10/17/05 2:32 PM Page 154

155Creating a Site Header

For browsers that support auto margins, the correct centering method is
then applied: margin: 0 auto.

The container can be set to a width of 700px. This width can be changed
to suit your needs.

Finally, the container must be set with a white background using
background: #fff as shown in Listing 18.4. The results can be seen in
Figure 18.2.

LISTING 18.4 CSS Code for Styling the Container
body
{

margin: 0;
padding: 0;
text-align: center;
background: #B0BFC2;
color: #444;

}

#container
{

text-align: left;
margin: 0 auto;
width: 700px;
background: #FFF;

}

FIGURE 18.2 Screenshot of styled container.

19_0672327457_CH18.qxd 10/17/05 2:32 PM Page 155

156 Lesson 18

Styling the <h1> Element
As you saw in Listing 18.1, the <h1> element contains an image. This site
header graphic is placed inside the <h1> element to give it greater seman-
tic meaning. Screen readers and text-based browsers will read the alt
attribute “Sitename” as if it were a text heading.

You will need to set margins and padding to 0 so that the image can sit
against the top edge of the browser window.

You also can add a white border to the bottom of the <h1> element using
the shorthand border: 1px solid #fff; as shown in Listing 18.5. The
results can be seen in Figure 18.3.

LISTING 18.5 CSS Code for Styling the <h1> Element
body
{

margin: 0;
padding: 0;
text-align: center;
background: #B0BFC2;
color: #444;

}

#container
{

text-align: left;
margin: 0 auto;
width: 700px;
background: #FFF;

}

h1
{

margin: 0;
padding: 0;
border-bottom: 1px solid #fff;

}

19_0672327457_CH18.qxd 10/17/05 2:32 PM Page 156

157Creating a Site Header

FIGURE 18.3 Screenshot of styled <h1> element.

Styling the <image> Element
The image should be set to display: block. This will remove any gaps
that appear below it and force the <h1> border-bottom to sit up against it.

The image is nested inside an <a> element. In some browsers this will
cause the image to display with a 2-pixel-wide border. To avoid this, the
image should be styled with border: 0 as shown in Listing 18.6. The
results can be seen in Figure 18.4.

LISTING 18.6 CSS Code for Styling the <image> Element
body
{

margin: 0;
padding: 0;
text-align: center;
font: 85% arial, helvetica, sans-serif;
background: #B0BFC2;
color: #444;

}

#container
{

text-align: left;
margin: 0 auto;
width: 700px;
background: #FFF;

}

h1

continues

19_0672327457_CH18.qxd 10/17/05 2:32 PM Page 157

158 Lesson 18

{
margin: 0;
padding: 0;
border-bottom: 1px solid #fff;

}

h1 img
{

display: block;
border: 0;

}

LISTING 18.6 Continued

FIGURE 18.4 Screenshot of styled <image> element.

Styling the Element
As discussed in Lesson 15, “Creating Vertical Navigation,” most browsers
display HTML lists with left indentation. To remove this left indentation
consistently across all browsers, you must override both margins and
padding.

Here, you will set the margin to 0 so that the list sits up against the <h1>
element.

The list items will need to be padded with 5px above and below, and 10px
to the left and right. This can be achieved with a shorthand padding decla-
ration of padding: 5px 10px.

The HTML bullets must be removed using list-style-type: none.

The can be styled with background-color: #387A9B.

19_0672327457_CH18.qxd 10/17/05 2:32 PM Page 158

159Creating a Site Header

Because you do not want these rules to be applied to all elements on
the page, you should use a descendant selector that targets the topnav list
only. This is achieved by using ul#topnav as shown in Listing 18.7. The
results can be seen in Figure 18.5.

LISTING 18.7 CSS Code for Styling the Element
body
{

margin: 0;
padding: 0;
text-align: center;
font: 85% arial, helvetica, sans-serif;
background: #B0BFC2;
color: #444;

}

#container
{

text-align: left;
margin: 0 auto;
width: 700px;
background: #FFF;

}

h1
{

margin: 0;
padding: 0;
border-bottom: 1px solid #fff;

}

h1 img
{

display: block;
border: 0;

}

ul#topnav
{

margin: 0;
padding: 5px 10px;
list-style-type: none;
background: #387A9B;

}

19_0672327457_CH18.qxd 10/17/05 2:32 PM Page 159

160 Lesson 18

FIGURE 18.5 Screenshot of styled element.

Styling the Element
The list must be displayed across the screen rather than down. This is
achieved by setting the to display: inline.

Next, a graphic bullet needs to be added to the . The best way to
do this is by using a background image set with background:
url(header-bullet.gif) no-repeat 0 50%;. This will place one
image vertically centered beside each list item.

Padding will need to be added to move the text away from the background
image. In this case, padding: 0 10px 0 8px; will be used as shown in
Listing 18.8. This will apply 10px of padding to the right and 8px to the
left of each list item. The results can be seen in Figure 18.6.

LISTING 18.8 CSS Code for Styling the Element
body
{

margin: 0;
padding: 0;
text-align: center;
font: 85% arial, helvetica, sans-serif;
background: #B0BFC2;
color: #444;

}

#container
{

text-align: left;
margin: 0 auto;

continues

19_0672327457_CH18.qxd 10/17/05 2:32 PM Page 160

161Creating a Site Header

width: 700px;
background: #FFF;

}

h1
{

margin: 0;
padding: 0;
border-bottom: 1px solid #fff;

}

h1 img
{

display: block;
border: 0;

}

ul#topnav
{

margin: 0;
padding: 5px 10px;
list-style-type: none;
background: #387A9B;

}

ul#topnav li
{

display: inline;
background: url(header-bullet.gif) no-repeat 0 50%;
padding: 0 10px 0 8px;

}

FIGURE 18.6 Screenshot of styled element.

19_0672327457_CH18.qxd 10/17/05 2:32 PM Page 161

162 Lesson 18

Styling the <a> Element
To avoid targeting all links on the page, a specific selector should be used.
Here, you will use ul#topnav li a:link, ul#topnav li a:visited,
ul#topnav li a:hover, and ul#topnav li a:active.

The link and visited pseudo-classes can be set with text-decoration:
none (which will turn off link underlines) and color: #FFF as shown in
Listing 18.9.

The hover and active pseudo-classes also will be set with text-
decoration: none as well as color: #387A9B; and background:
#FFF;. The results can be seen in Figure 18.7.

LISTING 18.9 CSS Code for Styling the <a> Element
body
{

margin: 0;
padding: 0;
text-align: center;
font: 85% arial, helvetica, sans-serif;
background: #B0BFC2;
color: #444;

}

#container
{

text-align: left;
margin: 0 auto;
width: 700px;
background: #FFF;

}

h1
{

margin: 0;
padding: 0;
border-bottom: 1px solid #fff;

}

h1 img

continues

19_0672327457_CH18.qxd 10/17/05 2:32 PM Page 162

163Creating a Site Header

{
display: block;
border: 0;

}

ul#topnav
{

margin: 0;
padding: 5px 10px;
list-style-type: none;
background: #387A9B;

}

ul#topnav li
{

display: inline;
background: url(header-bullet.gif) no-repeat 0 50%;
padding: 0 10px 0 8px;

}

ul#topnav li a:link, ul#topnav li a:visited
{

text-decoration: none;
color: #fff;

}

ul#topnav li a:hover, ul#topnav li a:active
{

text-decoration: none;
color: #387A9B;
background: #fff;

}

FIGURE 18.7 Screenshot of styled <a> element.

19_0672327457_CH18.qxd 10/17/05 2:32 PM Page 163

164 Lesson 18

Summary
In this lesson, you have learned how to center content within a browser
window and style an <h1> element, an <image> element, and a
element as links. In the next lesson, you will learn how to position a
two-column page layout with a header and a footer.

19_0672327457_CH18.qxd 10/17/05 2:32 PM Page 164

LESSON 19
Positioning
Two Columns
with a Header
and a Footer

In this lesson, you will learn how to position a two-column page layout
with a header and a footer. There are many ways to position these two
columns. This method involves floating them both because it is the most
reliable method across most modern browsers.

Setting Up the HTML Code
The HTML code for this lesson is comprised of five main containers: an
<h1> element, and three <div> elements inside an overall <div> container
as shown in Listing 19.1.

LISTING 19.1 HTML Code Containing the Markup for a
Two-Column Layout
<div id=”container”>

<h1>
Sitename

</h1>
<div id=”nav”>

Home
About us
Services
Staff
Portfolio
Contact us

continues

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 165

166 Lesson 19

</div>
<div id=”content”>

<h2>
About Sitename

</h2>
<p>

Lorem ipsum dolor....
</p>
<p>

Ut wisi enim ad...
</p>

</div>
<div id=”footer”>

Copyright © Sitename 2005
</div>

</div>

Creating Selectors to Style the
Two-Column Layout
To style the two-column layout and its content, you will use 12 selectors
as shown in Listing 19.2.

LISTING 19.2 CSS Code Showing the Selectors for Styling a
Two-Column Layout
body {...}
#container {...}
h1 {...}
#nav {...}
#nav ul {...}
#nav li {...}
#content {...}
#footer {...}
h2 {...}
a:link {...}
a:visited {...}
a:hover, a:active {...}

LISTING 19.1 Continued

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 166

167Positioning Two Columns with a Header and a Footer

Styling the <body> Element
As discussed in Lesson 18, “Creating a Site Header,” to center a container
on the page, you must find ways to work around browsers that don’t sup-
port auto margins. The first work-around involves applying text-align:
center to the <body> element as shown in Listing 19.3. The results can be
seen in Figure 19.1.

A background-color and color also must be set on the <body> element.
You can use a background color of #BOBFC2 and a color of #444.

LISTING 19.3 CSS Code for Styling the Body
body
{

text-align: center;
background: #B0BFC2;
color: #444;

}

FIGURE 19.1 Screenshot of styled <body>.

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 167

168 Lesson 19

Styling the Container
Now that the <body> element has been styled, all content will be
centered on the page. This can be overcome by setting the container to
text-align: left.

For browsers that support auto margins, the correct centering method is
then applied: margin: 0 auto.

The container can be set to a width of 700px. This width can be changed
to suit your needs.

Finally, the container must be set with a background image using
background: #FFF url(header-base.gif) repeat-y; as shown in
Listing 19.4.

The background image can be seen in Figure 19.2 and the results are
shown in Figure 19.3.

FIGURE 19.2 Background image used for container.

Creating the Illusion of Column Colors One problem
with floating containers is that they will generally
only extend to the depth of their content. If one col-
umn is much shorter than another, it can be very hard
to create columns using background colors alone.

So, how do you get the shorter column’s background
color to extend to the bottom of the page?

One simple solution is to use a background image that
gives the illusion of column colors. This image can be
added to the overall container as a background image
and repeated down the y axis.

The floated containers then sit over the top of this
repeated image, and the colors will extend to the bot-
tom of the page, no matter which column is longer.

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 168

169Positioning Two Columns with a Header and a Footer

LISTING 19.4 CSS Code for Styling the Container
body
{

text-align: center;
background: #B0BFC2;
color: #444;

}

#container
{

text-align: left;
margin: 0 auto;
width: 700px;
background: #FFF url(header-base.gif) repeat-y;

}

FIGURE 19.3 Screenshot of styled container.

Styling the <h1> Element
The first step in styling the heading is to set a background color. You can
use background: #D36832. The color can then be set to #fff.

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 169

170 Lesson 19

Next, padding: 20px can be applied to create some space around the
<h1> content.

You will then need to set margin: 0 to remove the default top and bottom
margins.

You also can add a border to the bottom of the <h1> element using the
shorthand border: 5px solid #387A9B; as shown in Listing 19.5. The
results can be seen in Figure 19.4.

LISTING 19.5 CSS Code for Styling the <h1> Element
body
{

text-align: center;
background: #B0BFC2;
color: #444;

}

#container
{

text-align: left;
margin: 0 auto;
width: 700px;
background: #FFF url(header-base.gif) repeat-y;

}

h1
{

background: #D36832;
color: #FFF;
padding: 20px;
margin: 0;
border-bottom: 5px solid #387A9B;

}

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 170

171Positioning Two Columns with a Header and a Footer

FIGURE 19.4 Screenshot of styled <h1> element.

Styling the #nav Container
To position the #nav container and #content container beside each other,
they will both need to be floated.

To float the #nav container, use float: left. You also will need to set a
width, which in this case will be 130px.

Internet Explorer 5 and 5.5 for Windows will sometimes display margins
at double the specified width in certain circumstances. This Double
Margin Float Bug is explained in Lesson 11, “Positioning an Image and
Its Caption.” The bug can be fixed by setting the floated item to display:
inline. All other browsers will ignore this declaration, but Internet
Explorer 5 and 5.5 for Windows will then apply the correct margin width.

Now that the margins will display correctly in all recent browsers, you
can apply margin-left: 20px.

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 171

172 Lesson 19

Finally, padding needs to be applied to the top and bottom of the con-
tainer. Here, you will need to use padding: 15px 0 as shown in Listing
19.6. The results can be seen in Figure 19.5.

LISTING 19.6 CSS Code for Styling the #nav Container
body
{

text-align: center;
background: #B0BFC2;
color: #444;

}

#container
{

text-align: left;
margin: 0 auto;
width: 700px;
background: #FFF url(header-base.gif) repeat-y;

}

h1
{

background: #D36832;
color: #FFF;
padding: 20px;
margin: 0;
border-bottom: 5px solid #387A9B;

}

#nav
{

float: left;
width: 130px;
display: inline;
margin-left: 20px;
padding: 15px 0;

}

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 172

173Positioning Two Columns with a Header and a Footer

Figure 19.5 Screenshot of styled #nav container.

Styling the Element
Both the margins and padding of the need to be set to 0 to remove
any browser default styling.

To remove list bullets, use list-style-type: none.

The list items will need to be aligned against the right edge of the #nav
container. This can be achieved using text-align: right as shown in
Listing 19.7. The results can be seen in Figure 19.6.

LISTING 19.7 CSS Code for Styling the Element
body
{

text-align: center;
background: #B0BFC2;
color: #444;

}

continues

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 173

174 Lesson 19

#container
{

text-align: left;
margin: 0 auto;
width: 700px;
background: #FFF url(header-base.gif) repeat-y;

}

h1
{

background: #D36832;
color: #FFF;
padding: 20px;
margin: 0;
border-bottom: 5px solid #387A9B;

}

#nav
{

float: left;
width: 130px;
display: inline;
margin-left: 20px;
padding: 15px 0;

}

#nav ul
{

margin: 0;
padding: 0;
list-style-type: none;
text-align: right;

}

LISTING 19.7 Continued

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 174

175Positioning Two Columns with a Header and a Footer

FIGURE 19.6 Screenshot of styled element.

Styling the Element
The list items will now have a background image applied to them to act as
a bullet. You will use background: url(header-bullet.gif) no-repeat
100% .4em; to place the background image against the right edge of the
 element, and .4em from the top. The image is also set to no-repeat,
so it does not repeat across the entire element.

Padding can then be applied to the right edge and bottom of the . The
right padding will move the list content away from the edge so that it does
not appear over the top of the background image. The bottom padding is
used to provide some space between list items as shown in Listing 19.8.
The results can be seen in Figure 19.7.

LISTING 19.8 CSS Code for Styling the Element
body
{

text-align: center;
background: #B0BFC2;
color: #444;

}

continues

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 175

176 Lesson 19

#container
{

text-align: left;
margin: 0 auto;
width: 700px;
background: #FFF url(header-base.gif) repeat-y;

}

h1
{

background: #D36832;
color: #FFF;
padding: 20px;
margin: 0;
border-bottom: 5px solid #387A9B;

}

#nav
{

float: left;
width: 130px;
display: inline;
margin-left: 20px;
padding: 15px 0;

}

#nav ul
{

margin: 0;
padding: 0;
list-style-type: none;
text-align: right;

}

#nav li
{

background: url(header-bullet.gif) no-repeat 100% .4em;
padding: 0 10px 5px 0;

}

LISTING 19.8 Continued

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 176

177Positioning Two Columns with a Header and a Footer

FIGURE 19.7 Screenshot of styled element.

Styling the #content Container
The #content container needs to be set to float: left so that it sits
beside the #nav container. You also will need to set a width, which in this
case will be 475px.

To create a gutter between the two columns, use margin-left: 45px.

Finally, padding needs to be applied to the top and bottom of the con-
tainer. You will need to use padding: 15px 0 as shown in Listing 19.9.
The results can be seen in Figure 19.8.

LISTING 19.9 CSS Code for Styling the #content Container
body
{

text-align: center;
background: #B0BFC2;
color: #444;

}

#container
{

text-align: left;
continues

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 177

178 Lesson 19

margin: 0 auto;
width: 700px;
background: #FFF url(header-base.gif) repeat-y;

}

h1
{

background: #D36832;
color: #FFF;
padding: 20px;
margin: 0;
border-bottom: 5px solid #387A9B;

}

#nav
{

float: left;
width: 130px;
display: inline;
margin-left: 20px;
padding: 15px 0;

}

#nav ul
{

margin: 0;
padding: 0;
list-style-type: none;
text-align: right;

}

#nav li
{

background: url(header-bullet.gif) no-repeat 100% .4em;
padding: 0 10px 5px 0;

}

#content
{

float: left;
width: 475px;
margin-left: 45px;
padding: 15px 0;

}

LISTING 19.9 Continued

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 178

179Positioning Two Columns with a Header and a Footer

FIGURE 19.8 Screenshot of styled #content container.

Styling the #footer Container
The #footer container is displayed after the #nav and #content con-
tainers. Because these two containers are floated, there is a possibility that
the #footer container might try to sit beside them. This can be fixed
using the clear property on the #footer container. The four options are
clear: left, clear: right, clear: both, and clear: none.

Here you will use clear: both, which will force the #footer container to
sit below the two floated containers.

To set a background color, use background: #387A9B. The color can then
be set to #fff.

Next, padding can be used to create some space around the content. You
can apply 5px to the top and bottom, and 10px to the left and right edges
using padding: 5px 10px as shown in Listing 19.10.

To align the footer content to the right, use text-align: right.

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 179

180 Lesson 19

Finally, the font size of the footer can be reduced because it is less impor-
tant information. You can use font-size: 80% as shown in Listing 19.10.
The results can be seen in Figure 19.9.

LISTING 19.10 CSS Code for Styling the #footer Container
body
{

text-align: center;
background: #B0BFC2;
color: #444;

}

#container
{

text-align: left;
margin: 0 auto;
width: 700px;
background: #FFF url(header-base.gif) repeat-y;

}

h1
{

background: #D36832;
color: #FFF;
padding: 20px;
margin: 0;
border-bottom: 5px solid #387A9B;

}

#nav
{

float: left;
width: 130px;
display: inline;
margin-left: 20px;
padding: 15px 0;

}

#nav ul
{

margin: 0;
padding: 0;
list-style-type: none;
text-align: right;

}

continues

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 180

181Positioning Two Columns with a Header and a Footer

#nav li
{

background: url(header-bullet.gif) no-repeat 100% .4em;
padding: 0 10px 5px 0;

}

#content
{

float: left;
width: 475px;
margin-left: 45px;
padding: 15px 0;

}

#footer
{

clear: both;
background: #387A9B;
color: #fff;
padding: 5px 10px;
text-align: right;
font-size: 80%;

}

FIGURE 19.9 Screenshot of styled #footer container.

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 181

182 Lesson 19

Styling the <h2> Element
The <h2> element is used for the main heading on the page. Its top margin
needs to be removed so that the <h2> element lines up with the content in
the #nav container. This is achieved using margin-top: 0.

Next, the color can be changed using color: #B23B00.

Standard headings generally are displayed in bold text. You can override
this default behavior using font-weight: normal as shown in Listing
19.11. The results can be seen in Figure 19.10.

LISTING 19.11 CSS Code for Styling the <h2> Element
body
{

text-align: center;
background: #B0BFC2;
color: #444;

}

#container
{

text-align: left;
margin: 0 auto;
width: 700px;
background: #FFF url(header-base.gif) repeat-y;

}

h1
{

background: #D36832;
color: #FFF;
padding: 20px;
margin: 0;
border-bottom: 5px solid #387A9B;

}

#nav
{

float: left;
width: 130px;

continues

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 182

183Positioning Two Columns with a Header and a Footer

display: inline;
margin-left: 20px;
padding: 15px 0;

}

#nav ul
{

margin: 0;
padding: 0;
list-style-type: none;
text-align: right;

}

#nav li
{

background: url(header-bullet.gif) no-repeat 100% .4em;
padding: 0 10px 5px 0;

}

#content
{

float: left;
width: 475px;
margin-left: 45px;
padding: 15px 0;

}

#footer
{

clear: both;
background: #387A9B;
color: #fff;
padding: 5px 10px;
text-align: right;
font-size: 80%;

}

h2
{

margin-top: 0;
color: #B23B00;
font-weight: normal;

}

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 183

184 Lesson 19

FIGURE 19.10 Screenshot of styled <h2> element.

Styling the <a> Element
The final step in this lesson involves setting the link colors. You will work
on four pseudo-classes.

The a:link pseudo-class can be set to color: #175B7D, and the
a:visited pseudo-class can be set to color: #600.

The a:hover and a:active pseudo-classes also can be set with color:
#fff; and background: #175B7D as shown in Listing 19.12. The results
can be seen in Figure 19.11.

LISTING 19.12 CSS Code for Styling the <h2> Element
body
{

text-align: center;
background: #B0BFC2;
color: #444;

}

#container
continues

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 184

185Positioning Two Columns with a Header and a Footer

{
text-align: left;
margin: 0 auto;
width: 700px;
background: #FFF url(header-base.gif) repeat-y;

}

h1
{

background: #D36832;
color: #FFF;
padding: 20px;
margin: 0;
border-bottom: 5px solid #387A9B;

}

#nav
{

float: left;
width: 130px;
display: inline;
margin-left: 20px;
padding: 15px 0;

}

#nav ul
{

margin: 0;
padding: 0;
list-style-type: none;
text-align: right;

}

#nav li
{

background: url(header-bullet.gif) no-repeat 100% .4em;
padding: 0 10px 5px 0;

}

#content
{

float: left;
width: 475px;
margin-left: 45px;

continues

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 185

186 Lesson 19

padding: 15px 0;
}

#footer
{

clear: both;
background: #387A9B;
color: #fff;
padding: 5px 10px;
text-align: right;
font-size: 80%;

}

h2
{

margin-top: 0;
color: #B23B00;
font-weight: normal;

}

a:link
{

color: #175B7D;
}

a:visited
{

color: #600;
}

a:hover, a:active
{

color: #fff;
background: #175B7D;

}

LISTING 19.12 Continued

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 186

187Positioning Two Columns with a Header and a Footer

FIGURE 19.11 Screenshot of styled <a> element.

Summary
In this lesson, you learned how to center content within a browser win-
dow, style an <h1> element, and position and style two columns and a
footer. In the next lesson, you will learn how to style a page for print
using CSS.

20_0672327457_CH19.qxd 10/17/05 2:32 PM Page 187

LESSON 20
Styling a Page
for Print

In this lesson, you will learn how to style a page for print using CSS. You
will also learn about the media type and how it is used.

Setting Up the Print CSS
In the past, many sites provided two versions of each page—one designed
for the screen and the other designed to be printed. The two versions gen-
erally used the same content, but were presented in different ways.

One advantage of CSS is that you can style a page for print without the
need for additional pages. This is achieved using the media attribute,
which can be applied to external style sheet links (as shown in Listing
20.1) or to the style element for embedded styles (as shown in
Listing 20.2).

LISTING 20.1 HTML Code Containing a Link to an External
Style Sheet with a Media Value of screen
<link rel=”stylesheet” href=”lesson20.css” type=”text/css”
media=”screen”>

LISTING 20.2 HTML Code Containing an Embedded Style
Sheet with a Media Value of screen
<style type=”text/css” media=”screen”>
<!--
... Screen style rules go here ...
-->
</style>

21_0672327457_CH20.qxd 10/17/05 2:32 PM Page 188

If your layout needs to be identical for screen and print, the media
attribute value can be set to all as shown in Listing 20.3 (for external
style sheets) and Listing 20.4 (for embedded styles).

LISTING 20.3 HTML Code Containing a Link to an External
Style Sheet with a Media Value of all
<link rel=”stylesheet” href=”lesson20.css” type=”text/css”
media=”all”>

LISTING 20.4 HTML Code Containing an Embedded Style
Sheet with a Media Value of all
<style type=”text/css” media=”all”>
<!--
... All style rules go here ...
-->
</style>

If the layout needs to be different for screen and print, the media attribute
values can be set to screen and print as shown in Listings 20.5 and 20.6.

LISTING 20.5 HTML Code Containing Links to External
Style Sheets with Media Values Set to screen and print
<link rel=”stylesheet” href=”lesson20.css” type=”text/css”
media=”screen”>
<link rel=”stylesheet” href=”lesson20-print.css”
type=”text/css” media=”print”>

LISTING 20.6 HTML Code Containing Embedded Style
Sheets with Media Values Set to screen and print
<style type=”text/css” media=”screen”>
<!--
... Screen style rules go here ...
-->
</style>

<style type=”text/css” media=”print”>
<!--
... Print style rules go here ...
-->
</style>

21_0672327457_CH20.qxd 10/17/05 2:32 PM Page 189

190 Lesson 20

Media Types and Older Browsers There are currently
10 media types within the CSS2 Specification. They are

• all—Suitable for all devices

• aural—For speech synthesizers

• braille—For Braille tactile-feedback devices

• embossed—For paged Braille printers

• handheld—For handheld devices such as mobile
phones and PDAs

• print—For print material and for documents
viewed in Print Preview mode

• projection—For projected presentations

• screen—For color computer screens

• tty—For media using fixed-pitch character
grids such as teletypes and terminals

• tv—For television-type devices

Multiple media types can be provided within the same
attribute as long as they are separated by commas.
For example, you could use media=”print, projection”
to target these media types only.

If no media type is specified, screen will be applied
because it is the default value.

Some early browsers, such as Netscape Navigator 4,
do not understand the all media type or comma-
separated media types. If you intend to support these
browsers, it might be best to specify screen or no
media type at all.

21_0672327457_CH20.qxd 10/17/05 2:32 PM Page 190

191Styling a Page for Print

Starting with Existing HTML
and CSS Code
For this lesson, you will use the HTML code from Lesson 19,
“Positioning Two Columns with a Header and a Footer,” as shown in
Listing 20.7 and rework it for print.

LISTING 20.7 HTML Code Containing the Markup for
a Two-Column Layout
<div id=”container”>

<h1>
Sitename

</h1>
<div id=”nav”>

Home
About us
Services
Staff
Portfolio
Contact us

</div>
<div id=”content”>

<h2>
About Sitename

</h2>
<p>

Lorem ipsum dolor....
</p>
<p>

Ut wisi enim ad...
</p>

</div>
<div id=”footer”>

Copyright © Sitename 2005
</div>

</div>

21_0672327457_CH20.qxd 10/17/05 2:32 PM Page 191

192 Lesson 20

Creating Selectors to Style for Print
To style the two-column layout for print, you will use five selectors as
shown in Listing 20.8.

LISTING 20.8 CSS Code Showing the Selectors for Styling
the Two-Column Layout for Print
body {...}
h1 {...}
#nav {...}
#footer {...}
a {...}

Some Warnings About Styling for Print When styling
pages for print, you should be aware that floated con-
tainers and complex absolute positioning can cause
problems in some browsers.

Long floated containers can cause problems in some
versions of Mozilla and Netscape. These browsers
sometimes have trouble calculating the length of
floated containers and will only print the first page of
the container’s content.

Complex absolute positioning (also layouts that need
to be pixel perfect) can cause problems for Internet
Explorer 6. This browser has been known to crash
when using Print Preview to view absolutely posi-
tioned layouts.

Although some floated and absolutely positioned con-
tent can be used, it is best to keep the overall layout
as simple as possible when styling for print.

Many browsers do not print background images as a
default. For this reason, background images should
not be used to display information that is critical to
the reader.

21_0672327457_CH20.qxd 10/17/05 2:32 PM Page 192

193Styling a Page for Print

Styling the <body> Element
The <body> element will be styled with font, color, and background dec-
larations as shown in Listing 20.9.

The font property will be used to determine the base font size and family
for all elements on the page. In this example, 100% has been used because
it enables the user to control the font size. A serif font has been chosen
because it is more readable in print, whereas a sans-serif font is more
readable on a screen or monitor (small cell phone screens in particular
make serif type difficult to read). These can be changed to suit your
needs.

No margins or padding have been specified for the <body> element;
these will be determined by the printer. The results can be seen in
Figure 20.1.

LISTING 20.9 CSS Code for Styling the Body
body
{

font: 100% georgia, times, serif;
background: #fff;
color: #000;

}

21_0672327457_CH20.qxd 10/17/05 2:32 PM Page 193

194 Lesson 20

FIGURE 20.1 Screenshot of styled <body>.

Styling the <h1> Element
The <h1> element will be styled very simply with border-bottom and
margin-bottom as shown in Listing 20.10 and Figure 20.2.

Listing 20.10 CSS Code for Styling the <h1> Element
body
{

font: 100% georgia, times, serif;
background: #fff;
color: #000;

}

h1
{

border-bottom: 1px solid #999;
margin-bottom: 1em;

}

21_0672327457_CH20.qxd 10/17/05 2:32 PM Page 194

195Styling a Page for Print

FIGURE 20.2 Screenshot of styled <h1>.

What Is an Em? In traditional typesetting, an em
space is defined as the width of an uppercase M in the
current face and point size. An em dash is the width
of a capital M, an en dash is half the width of a
capital M, and an em quad (a unit of spacing material
typically used for paragraph indentation) is the square
of a capital M.

In CSS, an em is a relative measure of length that
inherits size information from parent elements. If the
parent element is the <body>, the size of the element
is actually determined by the user’s browser font set-
tings. So in most browsers, where the default font size
is 16px, 1em will be 16px.

21_0672327457_CH20.qxd 10/17/05 2:32 PM Page 195

196 Lesson 20

Styling the #nav Container
To remove the navigation from the printed page, use display: none; as
shown in Listing 20.11. The results can be seen in Figure 20.3.

LISTING 20.11 CSS Code for Styling the #nav Container
body
{

font: 100% georgia, times, serif;
background: #fff;
color: #000;

}

h1
{

border-bottom: 1px solid #999;
margin-bottom: 1em;

}

#nav
{

display: none;
}

Hiding Content from the Printer Some website con-
tent has no purpose on a printed page, such as site-
based navigation or some advertising.

These areas of content can be hidden from the printer
using display: none;.

When this declaration is applied to an element, the
elements and all descendants will not be displayed.
You cannot override this behavior by setting a differ-
ent display property on the descendant elements.

21_0672327457_CH20.qxd 10/17/05 2:32 PM Page 196

197Styling a Page for Print

FIGURE 20.3 Screenshot of styled #nav container.

Styling the #footer Container
The footer can be separated from other content using border-top and
margin-top properties.

The footer content also can be right-aligned using the text-align
property.

To add space between the border and footer content, padding-top can be
used as shown in Listing 20.12. The results can be seen in Figure 20.4.

LISTING 20.12 CSS Code for Styling the #footer Container
body
{

font: 100% georgia, times, serif;
background: #fff;
color: #000;

}

h1

continues

21_0672327457_CH20.qxd 10/17/05 2:32 PM Page 197

198 Lesson 20

{
border-bottom: 1px solid #999;
margin-bottom: 1em;

}

#nav
{

display: none;
}

#footer
{

border-top: 1px solid #999;
text-align: right;
margin-top: 3em;
padding-top: 1em;

}

LISTING 20.12 Continued

FIGURE 20.4 Screenshot of styled #footer container.

21_0672327457_CH20.qxd 10/17/05 2:32 PM Page 198

199Styling a Page for Print

Styling the <a> Element
Hyperlinks have no real value on a printed page. To make links appear the
same as all other content, you could set the color to #000 and then turn off
underlines with text-decoration: none; as shown in Listing 20.13. The
final result can be seen in Figure 20.5.

LISTING 20.13 CSS Code for Styling the <a> Element
body
{

font: 100% georgia, times, serif;
background: #fff;
color: #000;

}

h1
{

border-bottom: 1px solid #999;
margin-bottom: 1em;

}

#nav
{

display: none;
}

#footer
{

border-top: 1px solid #999;
text-align: right;
margin-top: 3em;
padding-top: 1em;

}

a
{

color: #000;
text-decoration: none;

}

21_0672327457_CH20.qxd 10/17/05 2:32 PM Page 199

200 Lesson 20

FIGURE 20.5 Screenshot of styled <a> element.

Summary
In this lesson, you have learned how to style a layout specifically for print
using the media attribute. In the next lesson, you will learn how to posi-
tion a three-column liquid layout with a header and a footer.

21_0672327457_CH20.qxd 10/17/05 2:32 PM Page 200

LESSON 21
Positioning
Three
Columns with
a Header and a Footer

In this lesson, you will learn how to position a three-column liquid layout
with a header and a footer. This method involves placing background
images inside two containers to give the illusion of column colors, and
then floating all three columns.

Setting Up the HTML Code
Although tables can be used to create HTML page layouts, they are not
ideal. Pages laid out with tables are often much larger in size due to the
additional markup that is required. They are also less flexible, so it is
harder to move sections of the layout without restructuring the markup
completely.

CSS-based layouts, on the other hand, are generally smaller in file size
and much more flexible.

The HTML code for this lesson is comprised of seven main containers—
an <h1> element and six <div> elements as shown in Listing 21.1.

LISTING 21.1 HTML Code Containing the Markup for a
Three-Column Layout
<h1>

Sitename
</h1>
<div id=”container”>

continues

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 201

202 Lesson 21

<div id=”container2”>
<div id=”content”>

<h2>
Page heading

</h2>
<p>

Lorem ipsum dolor sit amet...
</p>

</div>
<div id=”news”>

<h3>
News

</h3>
<p>

Lorem ipsum dolor sit amet...
</p>

</div>
<div id=”nav”>

<h3>
Sections

</h3>

Home
About us
Services
Staff
Portfolio
Contact us

</div>
<div id=”footer”>

Copyright © Sitename 2005
</div>

</div>
</div>

Creating Selectors to Style the
Three-Column Layout
To style the three-column layout and its content, you will use 10 selectors
as shown in Listing 21.2.

LISTING 21.1 Continued

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 202

203Positioning Three Columns with a Header and a Footer

LISTING 21.2 CSS Code Showing the Selectors for Styling
the Three-Column Layout
body {...}
h1 {...}
h2, h3, p {...}
#container {...}
#container2 {...}
#content {...}
#news {...}
#nav {...}
#nav ul {...}
#footer {...}

What Is a Liquid Layout? There are four main meth-
ods used to lay out web pages. They are

• Liquid layout—All containers on the page have
their widths defined in percents. A liquid lay-
out will resize when you resize your browser
window.

• Combination liquid and fixed layout—Similar
to liquid layouts, except one or more of the
containers on the page have fixed widths.

• Fixed-width layout—All containers on the page
have their widths defined in pixels or other
fixed units. A fixed layout will not move in and
out when you resize your browser window.

• Em-driven layout—All containers on the page
have their widths defined in ems. The contain-
ers will scale according to the user’s current
browser font size. These layouts will not move
when the browser window is resized.

You also can use combinations of the preceding list.

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 203

204 Lesson 21

Creating a Liquid-Layout Grid
When creating a liquid layout, it is important to include vertical gutters so
that the content columns do not butt up against each other. All widths
should be set in percentages so that the entire page can be resized as a
single unit, depending on the size of the browser window.

Percentage widths are calculated by the browser, so there will be some
degree of rounding up or down of the measurements. For this reason, you
should leave some undefined space so that there is room for possible
rounding errors.

For this layout, the total width of the containers and their padding adds up
to 100%. However, the padding on the right side of the #nav has not been
included, so there is 3% of undefined space within the overall layout. The
measurements are shown in Figure 21.1.

FIGURE 21.1 Diagram of liquid-layout grid.

Creating the Background Images
This layout uses two background images to give the illusion of column
colors. The images must be wide enough to ensure they fill the largest
screen. Here, they are 2000px wide.

The first image will be used to create the #content and #news column
background colors.

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 204

205Positioning Three Columns with a Header and a Footer

The second image will be used to create the #nav column background
color. Because this image sits over the top of the first image, it must have
a transparent background as shown in Figure 21.2.

FIGURE 21.2 Diagram showing the background images.

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 205

206 Lesson 21

The background-color and color properties also must be set on the
<body> element. You can use a background color of #387A9B and a color
of #333 as shown in Listing 21.3. The results can be seen in Figure 21.3.

LISTING 21.3 CSS Code for Styling the <body> Element
body
{

margin: 0;
padding: 0;
font: 90% arial, helvetica, sans-serif;
background: #387A9B;
color: #333;

}

Setting margin and padding on the <body> Element
Browsers use different methods to set their default
indentation on the <body> element.

If padding: 0 is used, Opera will set the content
against the edges of the browser window.

If margin: 0 is used, all other standards-compliant
browsers will set the content against the edges of the
browser window.

The only way to force all browsers to work the same
way is to set both margin and padding to 0.

Styling the <body> Element
Now that the layout grid and images are finished, you can begin coding
the page.

The first step is to force the contents of the page up against the edges of
the browser window. To do this, you must set both margin and padding
to 0.

You can set both font-size and font-family for all elements on the page
by applying these properties to the <body> element using font: 90%
arial, helvetica, sans-serif;.

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 206

207Positioning Three Columns with a Header and a Footer

FIGURE 21.3 Screenshot of the styled <body> element.

Styling the <h1> Element
The <h1> element will be used to create the top banner.

First, the background-color and color properties must be set. In this
example, you will use a background color of #D36832 and a color of #fff.

Standard <h1> elements have predefined top and bottom margins. To force
the <h1> element into the top corner of the browser window, these mar-
gins must be set to 0.

To create space around the <h1> content, padding: .5em 3%; is used.
This will put .5em of padding on the top and bottom of the content, and
3% on the left and right edges.

Finally, a border is applied to the bottom of the element using border-
bottom: 5px solid #387A9B; as shown in Listing 21.4 and Figure 21.4.

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 207

208 Lesson 21

LISTING 21.4 CSS Code for Styling the <h1> Element
body
{

margin: 0;
padding: 0;
font: 90% arial, helvetica, sans-serif;
background: #387A9B;
color: #333;

}

h1
{

background: #D36832;
color: #FFF;
margin: 0;
padding: .5em 3%;
border-bottom: 5px solid #387A9B;

}

FIGURE 21.4 Screenshot of the styled <h1> element.

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 208

209Positioning Three Columns with a Header and a Footer

Styling the <h2> and <h3> Elements
The <h2> and <h3> elements sit inside the #container and #container2
elements. Some browsers will display these heading elements and their
top margin inside the container. Other browsers will display the headings
only and allow the margin to poke out the top of the container. This is
explained in more detail in the “Trapping Margins” Note in Lesson 13,
“Styling a Block Quote.” There are many ways to overcome this problem.
In this lesson, the top margins on the <h2> and <h3> elements will be
removed using margin-top: 0 (see Listing 21.5 and Figure 21.5).

Listing 21.5 CSS Code for Styling the <h2> and <h3>
Elements
body
{

margin: 0;
padding: 0;
font: 90% arial, helvetica, sans-serif;
background: #387A9B;
color: #333;

}

h1
{

background: #D36832;
color: #FFF;
margin: 0;
padding: .5em 3%;
border-bottom: 5px solid #387A9B;

}

h2, h3
{

margin-top: 0;
}

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 209

210 Lesson 21

FIGURE 21.5 Screenshot of styled <h2> and <h3> elements.

Styling the First Container
The first background image will be applied to the #container element
using background: url(back01.gif) repeat-y 50% 0; as shown in
Listing 21.6. This will repeat the background image—back01.gif—down
the y axis. The image will be positioned so that 50% of the image will sit
exactly 50% of the way across the background of the #container element
(see Figure 21.6).

LISTING 21.6 CSS Code for Styling the First Container
body
{

margin: 0;
padding: 0;
font: 90% arial, helvetica, sans-serif;
background: #387A9B;
color: #333;

}
continues

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 210

211Positioning Three Columns with a Header and a Footer

h1
{

background: #D36832;
color: #FFF;
margin: 0;
padding: .5em 3%;
border-bottom: 5px solid #387A9B;

}

h2, h3
{

margin-top: 0;
}

#container
{

background: url(back01.gif) repeat-y 50% 0;
}

FIGURE 21.6 Screenshot of the styled first container.

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 211

212 Lesson 21

Styling the Second Container
The second background image will be applied to the #container2 ele-
ment using background: url(back02.gif) repeat-y 80% 0; as shown
in Listing 21.7 and Figure 21.7. Like the preceding #container rules, this
will place 80% of the image 80% of the way across the browser window.
The image is repeated down the y axis.

LISTING 21.7 CSS Code for Styling the Second Container
body
{

margin: 0;
padding: 0;
font: 90% arial, helvetica, sans-serif;
background: #387A9B;
color: #333;

}

h1
{

background: #D36832;
color: #FFF;
margin: 0;
padding: .5em 3%;
border-bottom: 5px solid #387A9B;

}

h2, h3
{

margin-top: 0;
}

#container
{

background: url(back01.gif) repeat-y 50% 0;
}

#container2
{

background: url(back02.gif) repeat-y 80% 0; }
}

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 212

213Positioning Three Columns with a Header and a Footer

Figure 21.7 Screenshot of the styled second container.

Styling the #content Column
The first column must be floated and set with a width of 44%. It also
should be given some margin using margin: 1em 3%; as shown in Listing
21.8. The results can be seen in Figure 21.8. This will provide 1em of
space above the container and 3% margin on either side, as a gutter
between other columns.

LISTING 21.8 CSS Code for Styling the #content Column
body
{

margin: 0;
padding: 0;
font: 90% arial, helvetica, sans-serif;
background: #387A9B;
color: #333;

}

continues

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 213

214 Lesson 21

h1
{

background: #D36832;
color: #FFF;
margin: 0;
padding: .5em 3%;
border-bottom: 5px solid #387A9B;

}

h2, h3
{

margin-top: 0;
}

#container
{

background: url(back01.gif) repeat-y 50% 0;
}

#container2
{

background: url(back02.gif) repeat-y 80% 0;
}

#content
{

width: 44%;
float: left;
margin: 1em 3%;

}

LISTING 21.8 Continued

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 214

215Positioning Three Columns with a Header and a Footer

Figure 21.8 Screenshot of the styled #content column.

Styling the #news Column
The second column must be floated and set with a width of 24%. Like the
first column, it also should be given a margin of 1em 3%; as shown in
Listing 21.9 and Figure 21.9. As with the #content column, this will
provide 1em of space above the container and 3% margin on either side.

LISTING 21.9 CSS Code for Styling the #news Column
body
{

margin: 0;
padding: 0;
font: 90% arial, helvetica, sans-serif;
background: #387A9B;
color: #333;

}

continues

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 215

216 Lesson 21

h1
{

background: #D36832;
color: #FFF;
margin: 0;
padding: .5em 3%;
border-bottom: 5px solid #387A9B;

}

h2, h3
{

margin-top: 0;
}

#container
{

background: url(back01.gif) repeat-y 50% 0;
}

#container2
{ background: url(back02.gif) repeat-y 80% 0;
}

#content
{

width: 44%;
float: left;
margin: 1em 3%;

}

#news
{

width: 24%;
float: left;
margin: 1em 3%;

}

LISTING 21.9 Continued

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 216

217Positioning Three Columns with a Header and a Footer

FIGURE 21.9 Screenshot of the styled #news column.

Styling the #nav Column
The third column must be floated and set with a width of 14%. Like the
other columns, it also should be padded. However, the padding for this
element is padding: 1em 0 1em 3%; as shown in Listing 21.10. The
right-edge padding is not defined because this space is left undefined for
rounding errors. The results can be seen in Figure 21.10.

LISTING 21.10 CSS Code for Styling the #nav Column
body
{

margin: 0;
padding: 0;
font: 90% arial, helvetica, sans-serif;
background: #387A9B;
color: #333;

}

continues

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 217

218 Lesson 21

h1
{

background: #D36832;
color: #FFF;
margin: 0;
padding: .5em 3%;
border-bottom: 5px solid #387A9B;

}

h2, h3
{

margin-top: 0;
}

#container
{

background: url(back01.gif) repeat-y 50% 0;
}

#container2
{

background: url(back02.gif) repeat-y 80% 0;
}

#content
{

width: 44%;
float: left;
margin: 1em 3%;

}

#news
{

width: 24%;
float: left;
margin: 1em 3%;

}

#nav
{

width: 14%;
float: left;
margin: 1em 0 1em 3%;

}

LISTING 21.10 Continued

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 218

219Positioning Three Columns with a Header and a Footer

FIGURE 21.10 Screenshot of the styled #nav column.

Styling the Element
The third column contains a navigation list. In this lesson, the list items
will line up with the edge of the container without bullets. This is
achieved using three declarations—margin: 0;, padding: 0;, and
list-style-type: none;.

To add space between each list item, the line-height can be increased
using line-height: 150%; as shown in Listing 21.11 and Figure 21.11.

LISTING 21.11 CSS Code for Styling the Element
body
{

margin: 0;
padding: 0;
font: 90% arial, helvetica, sans-serif;
background: #387A9B;

continues

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 219

220 Lesson 21

color: #333;
}

h1
{

background: #D36832;
color: #FFF;
margin: 0;
padding: .5em 3%;
border-bottom: 5px solid #387A9B;

}

h2, h3
{

margin-top: 0;
}

#container
{

background: url(back01.gif) repeat-y 50% 0;
}

#container2
{

background: url(back02.gif) repeat-y 80% 0;
}

#content
{

width: 44%;
float: left;
margin: 1em 3%;

}

#news
{

width: 24%;
float: left;
margin: 1em 3%;

}

#nav
{

width: 14%;

LISTING 21.11 Continued

continues

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 220

221Positioning Three Columns with a Header and a Footer

float: left;
margin: 1em 0 1em 3%;

}

#nav ul
{

margin: 0;
padding: 0;
list-style-type: none;
line-height: 150%;

}

FIGURE 21.11 Screenshot of the styled element.

Styling the #footer Element
The #footer must sit under the three floated columns. This is achieved
using clear: both;. The background-color and color properties can be
applied using background: #387A9B; and color: #fff;.

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 221

222 Lesson 21

Next, the #footer element should be padded to provide some space
around the content. This is achieved using padding: 5px 3%;.

Finally, the footer content can be aligned to the right using text-align:
right; as shown in Listing 21.12. The results can be seen in
Figure 21.12.

LISTING 21.12 CSS Code for Styling the #footer Element
body
{

margin: 0;
padding: 0;
font: 90% arial, helvetica, sans-serif;
background: #387A9B;
color: #333;

}

h1
{

background: #D36832;
color: #FFF;
margin: 0;
padding: .5em 3%;
border-bottom: 5px solid #387A9B;

}

h2, h3
{

margin-top: 0;
}

#container
{

background: url(back01.gif) repeat-y 50% 0;
}

#container2
{

background: url(back02.gif) repeat-y 80% 0;
}

#content
{

width: 44%;
float: left;
margin: 1em 3%;

continues

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 222

223Positioning Three Columns with a Header and a Footer

}

#news
{

width: 24%;
float: left;
margin: 1em 3%;

}

#nav
{

width: 14%;
float: left;
margin: 1em 0 1em 3%;

}

#nav ul
{

margin: 0;
padding: 0;
list-style-type: none;
line-height: 150%;

}

#footer
{

clear: both;
background: #387A9B;
color: #fff;
padding: 5px 3%;
text-align: right;

}

Collapsing Liquid Layouts Three-column liquid lay-
outs will generally expand and contract to the width
of the browser window.

When a browser window is reduced in width, one or
more columns might drop below the first column on
the page.

Why does this happen? If there isn’t enough horizon-
tal room on the current line for the floated column, it
will move down, line by line, until there is room for it.

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 223

224 Lesson 21

FIGURE 21.12 Screenshot of the finished layout.

Summary
In this lesson, you learned how to create a three-column liquid layout with
column colors. You also learned how to style an <h1> element to make a
banner. In the next lesson, you will learn how to fix some common CSS
errors as well as learn some tips for troubleshooting CSS.

22_0672327457_CH21.qxd 10/17/05 2:33 PM Page 224

LESSON 22

Troubleshooting CSS

In this lesson, you will learn how to fix some common CSS errors. You
also will learn some tips for troubleshooting CSS.

Setting Up the CSS Code
The CSS code for this lesson is shown in Listing 22.1. The code contains
12 common CSS problems that will be corrected during the lesson.

LISTING 22.1 CSS Code Showing All the Rules with
12 Common Problems
body
{

font-family: times, times new roman, serif;
}

#container
{

border: 1px gray;
background-image: url(“background.jpg”);
background-repeat: repeat-x;
background-attach: fixed;
width: 700;

}

continues

23_0672327457_CH22.qxd 10/17/05 2:33 PM Page 225

226 Lesson 22

h1
{

font-size: 200%;
color: none;

}

.introductionText
{

font-weight: bold;
}

h2
{

font-size: 120%
font-weight: normal;
color: #34a32;

}

p, ul,
{

font-size: 80%;
color: 333;

}

a:visited
{

color: purple;
}

a:link
{

color: blue;
}

a:hover
{

color: red;
}

a:active
{

color: black;
}

LISTING 22.1 Continued

continues

23_0672327457_CH22.qxd 10/17/05 2:33 PM Page 226

227Troubleshooting CSS

#container p
{

color: #000;
}

p.intro
{

color: #900;
}

Fixing the Problems
Problem 1—In the body rule set, the font family name Times New
Roman contains whitespace. Any font with whitespace should be wrapped
in quotation marks. Listing 22.2 shows the problem and Listing 22.3
shows the corrected code.

LISTING 22.2 CSS Code Showing an Unquoted font-family
Name
body
{

font-family: times, times new roman, serif;
}

LISTING 22.3 CSS Code Showing a Quoted font-family
Name
body
{

font-family: times, “times new roman”, serif;
}

Problem 2—The border property in the #container rule set does not
have border-style specified. This border will not be displayed because
the default border-style is none. A border-style dotted, dashed,
solid, double, grooved, ridged, inset, or outset should be specified.
Listing 22.4 shows the problem and Listing 22.5 shows the corrected
code.

23_0672327457_CH22.qxd 10/17/05 2:33 PM Page 227

228 Lesson 22

LISTING 22.4 CSS Code Showing an Incorrect border
Declaration
#container
{

border: 1px gray;
background-image: url(“background.jpg”);
background-repeat: repeat-x;
background-attach: fixed;
width: 700;

}

LISTING 22.5 CSS Code Showing a Correct border
Declaration
#container
{

border: 1px solid gray;
background-image: url(“background.jpg”);
background-repeat: repeat-x;
background-attach: fixed;
width: 700;

}

Problem 3—The background-attach property does not exist. The cor-
rect property is background-attachment. Listing 22.6 shows the problem
and Listing 22.7 shows the corrected code.

LISTING 22.6 CSS Code Showing an Incorrect Property
#container
{

border: 1px solid gray;
background-image: url(“background.jpg”);
background-repeat: repeat-x;
background-attach: fixed;
width: 700;

}

23_0672327457_CH22.qxd 10/17/05 2:33 PM Page 228

229Troubleshooting CSS

LISTING 22.7 CSS Code Showing a Correct Property
#container
{

border: 1px solid gray;
background-image: url(“background.jpg”);
background-repeat: repeat-x;
background-attachment: fixed;
width: 700;

}

Problem 4—The width value in the #container rule set does not con-
tain a unit of measurement. Browsers will have to guess whether the
author requires the width to be rendered in points, picas, pixels, ems,
exs, millimeters, centimeters, inches, or percents. Listing 22.8 shows
the problem and Listing 22.9 shows the corrected code.

LISTING 22.8 CSS Code Showing a Width Measurement
Without a Specified Unit Value
#container
{

border: 1px solid gray;
background-image: url(“background.jpg”);
background-repeat: repeat-x;
background-attachment: fixed;
width: 700;

}

LISTING 22.9 CSS Code Showing a Width Measurement
in Pixels
#container
{

border: 1px solid gray;
background-image: url(“background.jpg”);
background-repeat: repeat-x;
background-attachment: fixed;
width: 700px;

}

Problem 5—In the <h1> rule set, the color value is specified as none.
This is an invalid value. The value should be specified in hexadecimal
RGB, keywords, user interface keywords, or decimal RGB. The author

23_0672327457_CH22.qxd 10/17/05 2:33 PM Page 229

230 Lesson 22

might also prefer the element to inherit its color from the parent, in which
case inherit should be used. Listing 22.10 shows the problem and
Listing 22.11 shows the corrected code.

LISTING 22.10 CSS Code Showing an Incorrect Color Value
h1
{

font-size: 200%;
color: none;

}

LISTING 22.11 CSS Code Showing a Correct Color Value
h1
{

font-size: 200%;
color: inherit;

}

Problem 6—Some authors prefer to use upper- and lowercase class
names. For the class to be applied, the uppercase and lowercase letters
must be exactly the same within the HTML code and within the class
selector.

Let’s assume the HTML code contains an IntroductionText class. In this
lesson, the author has specified .introductionText. The selector does not
match the HTML classname, so the rule will not be applied. Listing 22.12
shows the problem and Listing 22.13 shows the corrected code.

LISTING 22.12 CSS Code Showing an Incorrectly Spelled
Classname
.introductionText
{

font-weight: bold;
}

LISTING 22.13 CSS Code Showing the Correctly Spelled
Classname
.IntroductionText
{

font-weight: bold;
}

23_0672327457_CH22.qxd 10/17/05 2:33 PM Page 230

231Troubleshooting CSS

Problem 7—In the <h2> rule set, the font-size declaration is missing
a semicolon. Browsers will read the next declaration, font-weight:
normal;, as part of the font-size declaration. This combined declaration
is invalid, so both declarations will be ignored. Listing 22.14 shows the
problem and Listing 22.15 shows the corrected code.

LISTING 22.14 CSS Code Showing a Declaration with a
Missing Semicolon
h2
{

font-size: 120%
font-weight: normal;
color: #34a32;

}

LISTING 22.15 CSS Code Showing the Corrected
Declaration
h2
{

font-size: 120%;
font-weight: normal;

color: #34a32;
}

Problem 8—The hexadecimal number within the <h2> rule set is miss-
ing a digit. Hexadecimal numbers must be three or six digits. Listing
22.16 shows the problem and Listing 22.17 shows the corrected code.

LISTING 22.16 CSS Code Showing an Incorrect Hexadecimal
Number
h2
{

font-size: 120%;
font-weight: normal;

color: #34a32;
}

23_0672327457_CH22.qxd 10/17/05 2:33 PM Page 231

232 Lesson 22

LISTING 22.17 CSS Code Showing a Correct Hexadecimal
Number
h2
{

font-size: 120%;
font-weight: normal;

color: #34a323;
}

Problem 9—There is an additional comma at the end of the multiple
selectors p, ul,. This will cause the entire rule set to be ignored. Listing
22.18 shows the problem and Listing 22.19 shows the corrected code.

LISTING 22.18 CSS Code Showing a Comma at the End of
the Selectors
p, ul,
{

font-size: 80%;
color: 333;

}

LISTING 22.19 CSS Code Showing the Corrected Multiple
Selector
p, ul
{

font-size: 80%;
color: 333;

}

Problem 10—The color #333 is missing a # symbol for hexadecimal
values. Although some browsers will apply this incorrect declaration,
others will not. Listing 22.20 shows the problem and Listing 22.21 shows
the corrected code.

LISTING 22.20 CSS Code Showing a Color Value Without
a # Symbol
p, ul
{

font-size: 80%;
color: 333;

}

23_0672327457_CH22.qxd 10/17/05 2:33 PM Page 232

233Troubleshooting CSS

LISTING 22.21 CSS Code Showing the Corrected
Declaration
p, ul
{

font-size: 80%;
color: #333;

}

Problem 11—The a:hover pseudo-class will not be applied because it
comes before the a:link pseudo-class. The order must be swapped.
Listing 22.22 shows the problem and Listing 22.23 shows the corrected
code.

LISTING 22.22 CSS Code Showing the a:hover Pseudo-class
Before the a:link Pseudo-class
a:hover
{

color: red;
}

a:link
{

color: blue;
}

LISTING 22.23 CSS Code Showing the Pseudo-classes in
Correct Order
a:link
{

color: blue;
}

a:hover
{

color: red;
}

Problem 12—The #container p { color: black; } rule set will style
all paragraphs within the #container element to the black color. The
next rule set, p.intro { color: #900; }, is designed to style the first
paragraph in the #container element to the #900 color.

23_0672327457_CH22.qxd 10/17/05 2:33 PM Page 233

234 Lesson 22

However, the p.intro rule set will not be applied because the #container
p rule set has more weight. Selectors that contain IDs have more weight
than selectors with classes. All paragraphs inside the #container will still
be styled to the black color.

For the p.intro rule set to be applied, the selector must be changed to
#container p.intro, which gives it more weight. Listing 22.24 shows
the problem and Listing 22.25 shows the corrected code.

LISTING 22.24 CSS Code Showing a Rule Set Without ID
#container p
{

color: #000;
}

p.intro
{

color: #900;
}

LISTING 22.25 CSS Code Showing a Rule Set with ID
#container p
{

color: #000;
}

#container p.intro
{

color: #900;
}

Some Tips for Troubleshooting
CSS Problems
Tip 1—Make sure you validate your HTML and CSS files. Seven of
the twelve problems listed previously would be immediately picked up by
the CSS validator.

You can find the W3C HTML validator at http://validator.w3.org/. The
W3C CSS validator is at http://jigsaw.w3.org/css-validator/.

23_0672327457_CH22.qxd 10/17/05 2:33 PM Page 234

235Troubleshooting CSS

Tip 2—The best way to avoid problems, especially when you are new
to CSS, is to build your layouts in stages and test each stage across a
range of browsers. Start with the overall framework, position these ele-
ments, and test across browsers. When you feel confident that the frame-
work is stable, you can start styling more detailed elements.

Tip 3—If there is a specific problem on a page, it often helps to turn
on borders so that you can identify the elements and see how they
interact. An example of turning on borders is shown in Listing 22.26.

LISTING 22.26 CSS Code Showing a Rule Set to Turn
On Borders
li a { border: 1px solid red; }

Tip 4—A quick technique for finding major errors in the CSS is to
comment out one rule set at a time (as shown in Listing 22.27) and
observe the results. When you have found the offending rule sets, you
can begin commenting out declarations within these sets to find the
culprit.

LISTING 22.27 CSS Code Showing a Commented-Out
Rule Set
h2
{

font-size: 120%;
font-weight: normal;
color: #34a323;

}

/*
p, ul,
{

font-size: 80%;
color: #333;

}
*/

Tip 5—Whenever possible, use a full and complete doctype at the top
of your (X)HTML document. All (X)HTML documents must have a
doctype declaration to be valid. The doctype states the version of
(X)HTML being used in the document. Web browsers use doctypes to

23_0672327457_CH22.qxd 10/17/05 2:33 PM Page 235

236 Lesson 22

determine which rendering mode to use. If a correct and full doctype is
present in a document, many web browsers will switch to Standards
mode, which means they will follow the CSS specification more closely.

The main doctypes are shown in Listings 22.28 to 22.32.

LISTING 22.28 HTML Code Showing HTML 4.01 Strict
Doctype
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

LISTING 22.29 HTML Code Showing HTML 4.01 Transitional
Doctype
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>

LISTING 22.30 HTML Code Showing XHTML 1.0 Strict
Doctype
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

LISTING 22.31 HTML Code Showing XHTML 1.0
Transitional Doctype
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

LISTING 22.32 HTML Code Showing XHTML 1.1 Doctype
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

Summary
In this lesson, you learned how to fix some common CSS errors, as well
as some tips for troubleshooting CSS.

23_0672327457_CH22.qxd 10/17/05 2:33 PM Page 236

A - B
<a> element, 74. See also links

headers, styling for, 162
printing, styling for, 199
round-cornered boxes,

creating, 146-147
styling, 122-126, 133-137
two-column layouts, styling

for, 184
a:, 71. See also pseudo-classes
abbr attribute (data tables), 110
active links, 68-69. See also links
adjacent sibling selectors, 25
attribute selectors, 26
author style sheets, 4

background images
headings, adding to, 62
links, styling, 71-73
liquid layouts, 204-205
printing, 192
scalable images, 64-65

background property shortcuts, 48
background-positions, adding,

46-47
background-repeat, setting, 45

backgrounds
<body> element, adding to, 44
boxes, 39
Macintosh Internet

Explorer, 44
shorthand properties, 18

block level element, 35-36. See
also boxes

block quotes
paragraphs, styling, 101-102
source class, styling, 102-104
trapping margins, 105
variations, creating, 104-106

<blockquote> element
applying, 98-99
styling, 100-101

<body> element
background images,

adding, 44
background shortcuts,

utilizing, 48
background-position, adding,

46-47
background-repeat, 45
headers, styling for, 153-154
liquid layouts, styling for,

206-207
padding, 48
printing, styling for, 193

INDEX

24_0672327457_Index.qxd 10/17/05 2:33 PM Page 237

238 Sams Teach Yourself CSS in 10 Minutes

selectors for styling, 44
two-column layouts, styling

for, 167
bold styles, applying, 54
border-style, specifying, 227
borders

boxes, 40
headings, applying to, 61
images, styling, 82
links, applying, 73-74
lists, fixing, 127
shorthand properties, 14-15
turning on, 234

boxes
backgrounds, 39
block level element, 35-36
borders, 40
content area, formatting,

40-41
inline level element, 35-36
margins, 37-38
padding, 39-40
round-cornered boxes

<a> element, 146-147
<div> element, 140-141
fixed-widths, 147-149
.furtherinfo class, 144
<h2> element, 142-143
overview, 139-140
<p> element, 143
selectors, 140
top-only flexible

variation, 149-151
width, setting, 36-37

browser style sheets, 3-4
browsers, hiding styles, 32-34

C
caption attribute (data tables), 109
captions

containers
floating, 78
styling, 79-80

images, displaying side-
by-side, 83

styling, 81
tables, styling, 112
wrapping, 77

cascading, 4
case-sensitive class names,

reconciling, 230
cellspacing, removing from

tables, 113
child selectors, 25
cite attribute, 98
class selectors, 22-23
colors

background boxes, 39
column colors, creating, 168
h1 rule set, fixing, 229
<h2> element, adding to, 64
headings, adding to, 58
hexadecimal colors,

headings, 60
table rows, alternating,

117-118
text, styling, 41

comments (CSS), adding, 11
complex absolute positioning, 192
containers

border-style, specifying, 227
headers, styling for, 154
images, 78-80
liquid layouts, styling for,

210-212
long floated containers, 192
two-column layouts, 168
width, fixing, 229

contents
boxes, formatting area, 40-41
liquid layouts, styling for, 213
two-column layouts, styling

for, 177

24_0672327457_Index.qxd 10/17/05 2:33 PM Page 238

239INDEX

D - E - F
data table accessibility features,

108-111
declarations

description of, 7
multiple declarations,

utilizing, 9
descendant selectors, 23-24
<div> element

description of, 21
lines, moving down, 93
positioning, 88
round-cornered boxes,

creating, 140-141
doctype, 235
Double Margin Float Bug, 79

em-driven layouts, 203
 element, 66
ems, 195

advantages of, 125
versus percents, 53

external style sheets, 30-31

fixed-width layouts, 90, 203
flexible headings, 57
focus links, 68. See also links
 element, removing, 51-52
font families, setting, 53
fonts

bold styles, applying, 54
headings, styling, 58-60
italic styles, applying, 54
whitespace, fixing, 227

footers
liquid layouts, styling for, 221
printing, styling for, 197
two-column layouts, styling

for, 179-180
.furtherinfo class, 144

G - H
generic font families, 53

<h1> element
headers, styling for, 156
liquid layouts, styling for, 207
printing, styling for, 194
two-column layouts, styling

for, 169
h1 rule set color values, fixing, 229
<h2> element, 142-143

background images,
adding, 65

colors, adding, 64
liquid layouts, styling for, 209
targeting, 63
two-column layouts, styling

for, 182

<h3> element, 209
headings, 44

<a> element, styling, 162
background images,

adding, 62
<body> element, styling,

153-154
borders, applying, 61
color, adding, 58
containers, styling, 154
data table headers, 110
flexible headings, 57
fonts, styling, 58-60
<h1> element, styling, 156
hexadecimal colors,

utilizing, 60
<image> element, styling, 157
@import styles, 32
 element, styling, 160
padding, adding, 60
round-cornered headings, 66.

See also <h2> element

How can we make this index more useful? Email us at indexes@samspublishing.com

24_0672327457_Index.qxd 10/17/05 2:33 PM Page 239

240 Sams Teach Yourself CSS in 10 Minutes

standard settings, overriding,
59

styles, applying, 29-30
text options, setting, 60
 element, styling,

158-159
hexadecimal

colors
headings, adding to, 60
specifying, 41

numbers, 231
horizontal navigation

<a> element, styling, 133-137
:hover pseudo-class, styling,

137
HTML lists, styling, 130
 element, styling, 132
 element, styling,

131-132
hover effects, 68, 127. See also

links
hover pseudo-class, styling, 137

I
icons, 71-73
ID selectors, 22-23
ids (data tables), 110
<image> element, 157
images

backgrounds
background-repeat, 45
<body> element, adding

to, 44
boxes, 39
<h2> element, 65

headings, adding to, 62
links, styling, 71-73
liquid layouts, 204-205
Macintosh Internet

Explorer 5, 44
printing, 192
scalable images, 64-65

borders, styling, 82
captions, displaying

side-by side, 83
containers, 78-80
photo frame variations,

creating, 84-85
scalable background images,

creating, 64
wrapping, 77

@import rule, 32-34
inline level element, 35-36. See

also boxes
inline styles, applying, 29
italic styles, applying, 54

J - K - L
layouts

em-driven layouts, 203
fixed-width layouts, 90, 203
liquid layouts

background images,
204-205

<body> element, styling,
206-207

collapsing, 223
containers, styling,

210-212
content columns,

styling, 213
creating, 204
description of, 90, 203
footers, styling, 221
<h1> element,

styling, 207
<h2> element, styling,

209
<h3> element, styling,

209
nav, styling, 217
news columns,

styling, 215
 element,

styling, 219

24_0672327457_Index.qxd 10/17/05 2:33 PM Page 240

241INDEX

 element
headers, styling for, 160
styling, 128-132
two-column layouts, styling

for, 175
line-height, setting, 53
links

active areas, increasing, 74-75
a:active versus a:focus, 69
borders, applying, 73-74
pseudo-classes

class selector
combinations, 70

order, setting, 69
types of, 68

states of, 68
styling, with background

images, 71-73
underlines, removing, 73-74

liquid layouts
background images, 204-205
<body> element, styling,

206-207
collapsing, 223
containers, styling, 210-212
content columns, styling, 213
creating, 204
description of, 90, 203
footers, styling, 221
<h1> element, styling, 207
<h2> element, styling, 209
<h3> element, styling, 209
nav, styling, 217
news columns, styling, 215
 element, styling, 219

list-style shorthand properties, 18
lists

<a> element, styling, 122-126
borders, fixing, 127
hover effects, adding, 127
 element, styling, 128-129
purpose of, 120

styling, 121
 element, styling, 121

long floated containers, 192

M - N - O
Macintosh Internet Explorer

background images, 44
margins

<body> element, setting, 206
boxes, 37-38
shorthand properties, 16-18
trapping, 105

media attribute
media types, 190
styling for print, 188-189

nav container
liquid layouts, styling for, 217
printing, styling for, 196
two-column layouts, styling

for, 171-172
Netscape Navigator 4, hiding

styles, 32-34
news columns, styling, 215
none background images, 44
normal links, 68. See also links

P
<p> element

header styles, applying, 29-30
fonts, styling, 53
round-cornered boxes,

creating, 143
padding

block quotes, 101
<body> element, 48, 206
boxes, 39-40
headings, adding to, 60
shorthand properties, 16-18

How can we make this index more useful? Email us at indexes@samspublishing.com

24_0672327457_Index.qxd 10/17/05 2:33 PM Page 241

242 Sams Teach Yourself CSS in 10 Minutes

paragraphs
selectors, styling for, 52
thumbnail galleries, styling,

91
trapping margins, 105

percents versus ems, 53
photo frame variations, creating,

84-85
photo galleries. See thumbnail

galleries
printing

<a> element, styling for, 199
background images, 192
<body> element, styling

for, 193
complex absolute positioning,

192
CSS, setting up, 188-190
footer container, styling

for, 197
<h1> element, styling for, 194
hiding content from, 196
long floated containers, 192
nav container, styling for, 196

properties (rule sets)
description of, 8
shorthand properties

background, 18
borders, 14-15
list-style, 18
margins/padding, 16-18
utilizing, 11-13

pseudo-classes. See also individual
pseudo-classes

links
class selector

combinations, 70
order, setting, 69
styling with, 71-73
types of, 68

organizing, 233
selectors, 26-27

Q - R
quotes. See block quotes

repeating images, 45
round-cornered boxes

<a> element, 146-147
<div> element, 140-141
fixed-widths, 147-149
.furtherinfo class, 144
<h2> element, 142-143
overview, 139-140
<p> element, 143
selectors, 140
top-only flexible variation,

149-151
round-cornered headings, 66.

See also <h2> element
rule sets

background shorthand
properties, 18

border shorthand properties,
14-15

creating, 7-9
declarations

description of, 7
multiple declarations,

utilizing, 9
definition of, 6
list-style shorthand properties,

18
margins/padding shorthand

properties, 16-18
selectors. See also selectors

combining, 10
description of, 7

values, 8
whitespace, utilizing, 8

24_0672327457_Index.qxd 10/17/05 2:33 PM Page 242

243INDEX

S
scalable background images,

creating, 64
selectors. See also individual

selectors
adjacent sibling selectors, 25
attribute selectors, 26
body styling, 44
child selectors, 25
class selector/pseudo-class

combinations, 70
class selectors, 22-23
combining, 10
descendant selectors, 23-24
description of, 7, 121
ID selectors, 22-23
paragraphs, styling, 52
prioritizing, 233
pseudo-class selectors, 27
pseudo-element selectors, 26
type selectors, 21
universal selectors, 24

shorthand properties
backgrounds, 18
borders, 14-15
list-style, 18
margins/padding, 16-18
utilizing, 11-13

side-by-side variations (thumbnail
galleries), creating, 95

Skip to content links, 153
source class block quotes, styling,

102-104
style sheets, 3-4
styles

external style sheets, applying
with, 30-31

header, applying, 29-30
hiding from old browsers,

32-34

@import rule, utilizing, 32
inline, applying, 29

summary attribute (data tables),
108

T
<table> element, styling, 113
tables

basic table example, 107-108
captions, styling, 112
cellspacing, removing, 113
data table accessibility

features, 108-111
row colors, alternating,

117-118
selectors for styling, 111
<td> element, styling, 113-114
<th> element

styling, 113-114
targeting, 115-116

<tr> element, styling, 114-115
<tbody> element, 109
<td> element, styling, 113-114
text

bold styles, applying, 54
color property, 41
headings, styling, 58-60
italic styles, applying, 54
whitespace, fixing, 227

<tfoot> element, 109
<th> element

purpose of, 109
styling, 113-114
targeting, 115-116

<thead> element, 109
thumbnail galleries

creating, 87
<div> element, positioning, 88
images, styling, 90

How can we make this index more useful? Email us at indexes@samspublishing.com

24_0672327457_Index.qxd 10/17/05 2:33 PM Page 243

244 Sams Teach Yourself CSS in 10 Minutes

paragraph element, styling, 91
side-by-side variations,

creating, 95
thumbnail galleries,

creating, 87
top-only flexible variation round-

cornered box, 149-151
<tr> element

styling, 114-115
table row colors, alternating,

117
trapping margins, 105
two-column layouts

<a> element, styling, 184
<body> element, styling, 167
column colors, creating, 168
containers, styling, 168
content containers, styling,

177
footer containers, styling,

179-180
<h1> element, styling, 169
<h2> element, styling, 182
 element, styling, 175
nav containers, styling,

171-172
 element, styling, 173

type selectors, 21

U - V
 element

headers, styling for, 158-159
liquid layouts, styling for, 219
styling, 121, 131-132
two-column layouts, styling

for, 173
underlined links, 73-74
universal selectors, 24
url background images, 44
user style sheets, 3-4

values (rule sets), 8
vertical navigation, 120. See also

lists
visited links, 68. See also links

W - X - Y - Z
W3C, 4
whitespace

fixing, 227
utilizing in rule sets, 8

widths
boxes, setting, 36-37
container, fixing, 229
lists, 127
round-cornered boxes,

147-149
wrapping images and captions, 77

XHTML doctype, 235

24_0672327457_Index.qxd 10/17/05 2:33 PM Page 244

	Ajax Starter Kit Quick Start Guide
	Table of Contents
	Part I: A Refresher on Web Technologies
	1 Anatomy of a Website
	Workings of the World Wide Web
	Summary

	2 Writing Web Pages in HTML
	Introducing HTML
	Elements of an HTML Page
	A More Advanced HTML Page
	Some Useful HTML Tags
	Cascading Style Sheets in Two Minutes
	Summary

	3 Sending Requests Using HTTP
	Introducing HTTP
	The HTTP Request and Response
	HTML Forms
	Summary

	4 Client-Side Coding Using JavaScript
	About JavaScript
	In at the Deep End
	Manipulating Data in JavaScript
	Summary

	5 Server-Side Programming in PHP
	Introducing PHP
	Embedding PHP in HTML Pages
	Variables in PHP
	Controlling Program Flow
	Summary

	6 A Brief Introduction to XML
	Introducing XML
	XML Basics
	JavaScript and XML
	The Document Object Model (DOM)
	Summary

	Part II: Introducing Ajax
	7 Anatomy of an Ajax Application
	The Need for Ajax
	Introducing Ajax
	The Constituent Parts of Ajax
	Putting It All Together
	Summary

	8 The XMLHTTPRequest Object
	More About JavaScript Objects
	Introducing XMLHTTPRequest
	Creating the XMLHTTPRequest Object
	Summary

	9 Talking with the Server
	Sending the Server Request
	Monitoring Server Status
	The Callback Function
	Summary

	10 Using the Returned Data
	The responseText and responseXML Properties
	Another Useful JavaScript DOM Property
	Parsing responseXML
	Providing User Feedback
	Summary

	11 Our First Ajax Application
	Constructing the Ajax Application
	The HTML Document
	Adding JavaScript
	Putting It All Together
	Summary

	Part III: More Complex Ajax Technologies
	12 Returning Data as Text
	Getting More from the responseText Property
	Summary

	13 AHAH—Asynchronous HTML and HTTP
	Introducing AHAH
	Creating a Small Library for AHAH
	Using myAHAHlib.js
	Summary

	14 Returning Data as XML
	Adding the “x” to Ajax
	The responseXML Property
	Project—An RSS Headline Reader
	Summary

	15 Web Services and the REST Protocol
	Introduction to Web Services
	REST—Representational State Transfer
	Using REST in Practice
	REST and Ajax
	Summary

	16 Web Services Using SOAP
	Introducing SOAP (Simple Object Access Protocol)
	The SOAP Protocol
	Using Ajax and SOAP
	Reviewing SOAP and REST
	Summary

	17 A JavaScript Library for Ajax
	An Ajax Library
	Reviewing myAHAHlib.js
	Implementing Our Library
	Using the Library
	Extending the Library
	Summary

	18 Ajax “Gotchas”
	Common Ajax Errors
	The Back Button
	Bookmarking and Links
	Telling the User That Something Is Happening
	Making Ajax Degrade Elegantly
	Dealing with Search Engine Spiders
	Pointing Out Active Page Elements
	Don’t Use Ajax Where It’s Inappropriate
	Security
	Test Code Across Multiple Platforms
	Ajax Won’t Cure a Bad Design
	Some Programming Gotchas
	Summary

	Part IV: Commercial and Open Source Ajax Resources
	19 The prototype.js Toolkit
	Introducing prototype.js
	Wrapping XMLHTTPRequest—the Ajax Object
	Example Project—Stock Price Reader
	Summary

	20 Using Rico
	Introducing Rico
	Rico’s Other Interface Tools
	Summary

	21 Using XOAD
	Introducing XOAD
	XOAD HTML
	Advanced Programming with XOAD
	Summary

	INDEX

	Sams Teach Yourself HTML in 10 Minutes
	Contents
	1 What’s It All About?
	What Is the Internet?
	What Is HTML?
	Then, What’s XHTML?
	How Do They Work?
	Using Web Browsers
	Getting Connected

	2 Creating Your First Page
	Getting Started
	Required Elements
	Saving and Viewing the Page
	XHTML Requirements
	Using Good Form

	3 Adding Text and More
	Paragraphs
	Text Emphasis
	Headings
	Special Characters
	Math and Science Notations
	English Isn’t the Only Language
	Meta Tags

	4 Linking Text and Documents
	What Is a URL?
	Hyperlinks
	Linking to Other Files and Email
	Linking Within the Same Page

	5 Adding Your Own Style
	Style Sheets
	Defining the Rules
	Add a Little class
	Applying Styles
	Formatting Text with Styles
	Adding Lines

	6 Creating Lists
	Types of Lists
	Bulleted (Unordered) Lists
	Numbered (Ordered) Lists
	Definition Lists

	7 Creating Tables
	Simple Tables
	Formatting Tables
	Advanced Tables
	Using Tables for Layout

	8 Using Graphics
	Adding Images
	Adding Alternate Text
	Image Attributes
	Using Images as Links
	Image Etiquette

	9 Mapping Images
	What Are Image Maps?
	Creating Client-Side Image Maps
	Adding Text Links for Older Browsers

	10 Creating Frames
	Simple Frames
	Nested Frames
	Linking Between Frames
	The Two Biggest Problems with Frames
	Using Frames Effectively

	11 Building Online Forms
	Creating Forms
	Form Fields
	Receiving Form Data

	12 Making It Sing: Sound and Video
	Adding Sound and Video
	Finding Plug-ins

	13 Designing with HTML
	Design Basics
	Layout, Content, and Navigation
	Fonts and Colors
	Images

	14 Creating Active Web Pages
	What Are Active Web Pages?
	DHTML
	Java and ActiveX
	JavaScript and VBScript

	15 Using Web Authoring Tools
	Why Use a Tool?
	Microsoft FrontPage
	Macromedia Dreamweaver
	Other Popular Web Tools

	16 Making a Name for Yourself
	Web Hosting
	Search Pages and Indexes
	Adding Your Web Site to the Search Engine
	Advertising

	17 Planning for the Future
	The Future of the Internet
	What Is XML?
	Being Prepared

	A: HTML/XHTML Quick Reference
	Required Elements
	Text Phrases and Paragraphs
	Text Formatting Elements
	Lists
	Links <a>...
	Tables
	Frames
	Embedded Content
	Style <style>...</style>
	Forms
	Scripts
	Common Attributes and Events

	B: Style Sheet Quick Reference
	Text and Fonts
	Typography
	Colors and Backgrounds
	Borders and Tables
	List
	Layout

	C: Special Characters
	Symbol Entities
	Character Entities
	Greek Entities
	Other Entities

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K
	L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W
	X–Z

	Sams Teach Yourself JavaScript in 24 Hours
	Table of Contents
	Part I: Introducing the Concept of Web Scripting and the JavaScript Language
	HOUR 1: Understanding JavaScript
	Learning Web Scripting Basics
	How JavaScript Fits into a Web Page
	Browsers and JavaScript
	Specifying JavaScript Versions
	JavaScript Beyond the Browser
	Exploring JavaScript’s Capabilities
	Alternatives to JavaScript

	HOUR 2: Creating Simple Scripts
	Tools for Scripting
	Displaying Time with JavaScript
	Beginning the Script
	Adding JavaScript Statements
	Creating Output
	Adding the Script to a Web Page
	Testing the Script

	HOUR 3: Getting Started with JavaScript Programming
	Basic Concepts
	JavaScript Syntax Rules
	Using Comments
	Best Practices for JavaScript

	HOUR 4: Working with the Document Object Model (DOM)
	Understanding the Document Object Model (DOM)
	Using Window Objects
	Working with Web Documents
	Accessing Browser History
	Working with the Location Object

	Part II: Learning JavaScript Basics
	HOUR 5: Using Variables, Strings, and Arrays
	Using Variables
	Understanding Expressions and Operators
	Data Types in JavaScript
	Converting Between Data Types
	Using String Objects
	Working with Substrings
	Using Numeric Arrays
	Using String Arrays
	Sorting a Numeric Array

	HOUR 6: Using Functions and Objects
	Using Functions
	Introducing Objects
	Using Objects to Simplify Scripting
	Extending Built-in Objects

	HOUR 7: Controlling Flow with Conditions and Loops
	The if Statement
	Using Shorthand Conditional Expressions
	Testing Multiple Conditions with If and Else
	Using Multiple Conditions with switch
	Using for Loops
	Using While Loops
	Using Do…While Loops
	Working with Loops
	Looping Through Object Properties

	HOUR 8: Using Built-in Functions and Libraries
	Using the Math Object
	Working with Math Functions
	Using the with Keyword
	Working with Dates
	Using Third-Party Libraries
	Other Libraries

	Part III: Learning More About the DOM
	HOUR 9: Responding to Events
	Understanding Event Handlers
	Using Mouse Events
	Using Keyboard Events
	Using the onLoad and onUnload Events

	HOUR 10: Using Windows and Frames
	Controlling Windows with Objects
	Moving and Resizing Windows
	Using Timeouts
	Displaying Dialog Boxes
	Working with Frames

	HOUR 11: Getting Data with Forms
	The Basics of HTML Forms
	Using the Form Object with JavaScript
	Scripting Form Elements
	Displaying Data from a Form
	Sending Form Results by Email

	HOUR 12: Working with Style Sheets
	Style and Substance
	Defining and Using CSS Styles
	Using CSS Properties
	Creating a Simple Style Sheet
	Using External Style Sheets
	Controlling Styles with JavaScript

	HOUR 13: Using the W.3C DOM
	The DOM and Dynamic HTML
	Understanding DOM Structure
	Creating Positionable Elements (Layers)

	HOUR 14: Using Advanced DOM Features
	Working with DOM Nodes
	Hiding and Showing Objects
	Modifying Text Within a Page
	Adding Text to a Page

	Part IV: Working with Advanced JavaScript Features
	HOUR 15: Unobtrusive Scripting
	Scripting Best Practices
	Reading Browser Information
	Cross-Browser Scripting
	Supporting Non-JavaScript Browsers

	HOUR 16: Debugging JavaScript Applications
	Avoiding Bugs
	Basic Debugging Tools
	Creating Error Handlers
	Advanced Debugging Tools

	HOUR 17: AJAX: Remote Scripting
	Introducing AJAX
	Using XMLHttpRequest
	Creating a Simple AJAX Library
	Creating an AJAX Quiz Using the Library
	Debugging AJAX Applications

	HOUR 18: Greasemonkey: Enhancing the Web with JavaScript
	Introducing Greasemonkey
	Working with User Scripts
	Creating Your Own User Scripts

	Part V: Building Multimedia Applications with JavaScript
	HOUR 19: Using Graphics and Animation
	Using Dynamic Images
	Creating Rollovers
	A Simple JavaScript Slideshow

	HOUR 20: Working with Sound and Plug-Ins
	Introducing Plug-Ins
	JavaScript and Flash
	Playing Sounds with JavaScript
	Testing Sounds in JavaScript

	Part VI: Creating Complex Scripts
	HOUR 21: Building JavaScript Drop-Down Menus
	Designing Drop-Down Menus
	Scripting Drop-Down Menu Behavior

	HOUR 22: Creating a JavaScript Game
	About the Game
	Creating the HTML Document
	Creating the Script
	Adding Style with CSS

	HOUR 23: Creating JavaScript Applications
	Creating a Scrolling Window
	Style Sheet Switching with JavaScript

	HOUR 24: Your Future with JavaScript
	Learning Advanced JavaScript Techniques
	Future Web Technologies
	Planning for the Future
	Moving on to Other Languages

	Part VII: Appendixes
	APPENDIX A: Other JavaScript Resources
	Other Books
	JavaScript Websites
	Web Development Sites
	This Book’s Website

	APPENDIX B: Tools for JavaScript Developers
	HTML and Text Editors
	HTML Validators
	Debugging Tools

	APPENDIX C: Glossary
	A
	B
	C
	D
	E
	G
	F
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	APPENDIX D: JavaScript Quick Reference
	Built-in Objects
	Creating and Customizing Objects
	JavaScript Statements
	JavaScript Built-in Functions

	APPENDIX E: DOM Quick Reference
	DOM Level 0
	DOM Level 1

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X–Z

	Sams Teach Yourself XML in 10 Minutes
	Table of Contents
	PART I XML Documents
	1 What Is XML?
	What Is XML For?
	XML Is a Markup Language
	XML Is a Meta Language
	How Does XML Relate to HTML?
	Separating Content from Presentation
	How Is XML Written?
	Summary

	2 The Structureof an XML Document
	An XML Document
	Prolog
	Document Type Declaration
	Document Element
	CDATA Sections
	Content After the Document Element End Tag
	Summary

	3 XML Must Be Well-Formed
	Well-Formed XML Documents
	XML Names
	Elements
	Attributes
	Other Characteristics of Well-Formedness
	Well-Formedness and XML Processor Type
	Summary

	4 Valid XML—Document Type Definitions
	Shared Documents: Why We Need DTDs
	What Is a Valid XML Document?
	What a DTD Is
	Declaring Elements in DTDs
	Declaring Attributes in DTDs
	Declaring Entities in the DTD
	Summary

	5 XML Entities
	What Is an Entity?
	Parsed Entities
	Unparsed Entities
	Summary

	6 Characters in XML
	Internationalization
	XML and Internationalization
	Unicode
	Fonts, Characters, and Glyphs
	Summary

	7 The Logic Hidden in XML
	Modeling Data As XML
	W3C XML Data Models
	XPath
	The XML Information Set
	Summary

	8 Namespaces in XML
	What Is a Namespace, and Why DoYou Need Them?
	Using Namespaces in XML
	Using Multiple Namespaces in aDocument
	Summary

	PART II Manipulating XML
	9 The XML Path Language—XPath
	How XPath Is Used
	Accessing Elements
	Accessing Attributes
	XPath Functions
	Summary

	10 XSLT—Creating HTML from XML
	XSLT Basics
	Creating a Simple HTML Page
	Creating an HTML List
	Creating an HTML Table
	Summary

	11 XSLT—Transforming XML Structure
	Why Change Structure?
	Copying Elements
	Creating New Elements
	Creating New Attributes
	Summary

	12 XSLT—Sorting XML
	Conditional Processing and Sorting Data
	Conditional Processing
	The xsl:if Element
	Sorting Output
	Multiple Sorts
	Summary

	13 Styling XML with CSS
	Cascading Style Sheets and XML
	Associating a Stylesheet
	Using CSS Rules with XML
	Some Examples Using CSS Styling
	Using CSS with XSLT
	Summary

	14 Linking in XML—XLink
	The XML Linking Language
	XLink Attributes
	XLink Examples
	Document Fragments and XPointer
	XPointer and XPath
	Summary

	PART III Programming XML
	15 Presenting XML Graphically—SVG
	What Is SVG?
	Advantages of SVG
	Creating SVG
	Some SVG Examples
	Summary

	16 The Document Object Model
	The Document Object Model
	DOM Interfaces
	DOM Interfaces Properties andMethods
	Summary

	17 The Document Object Model—2
	Creating a New Element
	Retrieving Information from the DOM
	Summary

	PART IV Where XML is Going
	18 SAX—The Simple API for XML
	What SAX Is and How It Differs from DOM
	Basics of SAX Programming
	Installing a SAX Parser
	Simple SAX Example
	Summary

	19 Beyond DTDs—W3C XML Schema
	W3C XML Schema Basics
	Declaring Elements
	Defining Complex and Simple Types
	Summary

	PART V Appendices
	A XML Online Resources
	Web Sites
	Mailing Lists

	B XML Tools
	XML Editors
	XSLT Tools
	XLink and XPointer Tools

	C XML Glossary

	INDEX

	Sams Teach Yourself PHP in 10 Minutes
	Contents
	PART I PHP Foundations
	1 Getting to Know PHP
	PHP Basics
	Your First Script

	2 Variables
	Understanding Variables
	Data Types
	Summary

	3 Flow Control
	Conditional Statements
	Loops
	Summary

	4 Functions
	Using Functions
	Arguments and Return Values
	Using Library Files
	Summary

	PART II Working with Data

	5 Working with Numbers
	Arithmetic
	Numeric Data Types
	Numeric Functions
	Summary

	6 Working with Strings
	Anatomy of a String
	Formatting Strings
	String Functions
	Summary

	7 Working with Arrays
	What Is an Array?
	Array Functions
	Multidimensional Arrays
	Summary

	8 Regular Expressions
	Introducing Regular Expressions
	Using ereg
	Summary

	9 Working with Dates and Times
	Date Formats
	Working with Timestamps
	Summary

	10 Using Classes
	Object-Oriented PHP
	What Is a Class?
	Creating and Using Objects
	Summary

	PART III The Web Environment
	11 Processing HTML Forms
	Submitting a Form to PHP
	Processing a Form with PHP
	Creating a Form Mail Script
	Summary

	12 Generating Dynamic HTML
	Setting Default Values
	Creating Form Elements
	Summary

	13 Form Validation
	Enforcing Required Fields
	Displaying Validation Warnings
	Enforcing Data Rules
	Highlighting Fields That Require Attention
	Summary

	14 Cookies and Sessions
	Cookies
	Sessions
	Summary

	15 User Authentication
	Types of Authentication
	Building an Authentication System
	Summary

	16 Communicating with the Web Server
	HTTP Headers
	Server Environment Variables
	Summary

	PART IV Using Other Services from PHP
	17 Filesystem Access
	Managing Files
	Reading and Writing Files
	Summary

	18 Host Program Execution
	Executing Host Programs
	The Host Environment
	Security Considerations
	Summary

	19 Using a MySQL Database
	Using MySQL
	Executing SQL Statements
	Debugging SQL
	Summary

	20 Database Abstraction
	The PEAR DB Class
	Database Portability Issues
	Summary

	21 Running PHP on the Command Line
	The Command-Line Environment
	Writing Scripts for the Command Line
	Summary

	22 Error Handling
	Error Reporting
	Summary

	PART V Configuring and Extending PHP
	23 PHP Configuration
	Configuration Settings
	Configuration Directives
	Loadable Modules
	Summary

	24 PHP Security
	Safe Mode
	Other Security Features
	Summary

	25 Using PEAR
	Introducing PEAR
	Using PEAR
	Summary

	PART VI Appendix
	A Installing PHP
	Linux/Unix Installation
	Windows Installation
	Troubleshooting

	INDEX

	Sams Teach Yourself CSS in 10 Minutes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0052005200200044006f006e006e0065006c006c00650079>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

